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Mathematical Tripos Part II Prof. C. P. Caulfield

WAVES Lent 2025

Example Sheet 1: Sound Waves

1. Plane waves and radiation. A thin piston executes very small oscillations about x = 0 in a

long straight fluid-filled tube with cross-sectional area A and rigid walls aligned with the x-axis.

Given the piston velocity Ẋ(t), find the velocity potential φ(x, t) for the (linearised) sound waves

generated in x > 0 and x < 0 (linearising X ≈ 0). Show that if x0 > 0 the total power AIx

radiated across x = x0 is
(

q(t− x0/c0)
)2

c0/ρ0A, (1)

where q(t) = ρ0AẊ(t) is the rate at which mass is displaced on one side of the piston. What is the

corresponding result for x0 < 0? [Later in the course, we will analyse the effects of nonlinearity.]

2. Reflection and transmission. An interface at x = 0 separates fluid of density ρ0 and sound speed

c0 in x < 0 from fluid of density ρ1 and sound speed c1 in x > 0. A plane harmonic sound wave is

incident from x < 0 with wavevector k = (k, 0, 0) and amplitude A (of its pressure perturbation).

What is the frequency ω and the wavevector k′ of the transmitted sound wave in x > 0?

Write down the form of the pressure perturbation in x < 0 and x > 0, find the corresponding

velocity potential and state the interfacial boundary conditions. Hence find the amplitudes of the

reflected and transmitted waves.

Assume wlog that A = 1. Verify that the time-averaged acoustic energy flux is conserved.

When is all the energy flux transmitted? How much is reflected if ρ0 ≫ ρ1 and c0 ≈ c1?

3. Evanescent waves near an interface. Find solutions to the wave equation of the form

φ(x, y, t) = exp(ikx− iωt)f(y) , (2)

for the case k > ω/c0 > 0. Hence find the solution in y > 0 in which there is no disturbance as

y → ∞ and waves are forced by the inhomogenous boundary condition

v = Re [v0 exp(ikx− iωt)] on y = 0 .

Here ∇φ = (u, v, 0) and v0 is a real constant. Over what lengthscale do the waves decay away from

the boundary?

Calculate the time-averaged acoustic energy flux 〈 I 〉 and verify that:

(a) the energy flux perpendicular to the boundary y = 0 satisfies 〈 Iy 〉 = 0;

(b) the energy flux parallel to the boundary satisfies 〈 Ix 〉 = c 〈E 〉 at any position y, where E is

the acoustic energy density and c = ω/k is the phase velocity in the x-direction. [Since c < c0, the

disturbance and its energy travel subsonically along the boundary.]

*Assuming that surface tension and gravity are negligible, determine whether a non-zero

solution can exist in which evanescent sound waves propagate along both sides of an (unforced)

interface between two fluids with different physical properties in y < 0 and y > 0,

4. Acoustic waveguide. Find solutions to the wave equation of the form (2) for a region 0 < y < h

with a rigid boundary at y = 0 and a free boundary at y = h. (Take ω > 0, but make no a

priori assumption about k.) Show that a wave can propagate in the x-direction only if ω exceeds

a critical value ωc. What happens if a disturbance is generated at x = 0 with frequency ω < ωc?
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5. Spherical waves and radiation. Explain why the general spherically symmetric solution φ(r, t)

to the wave equation can be written as

φ =
−1

4πρ0

(

q(t− r/c0)

r
+

Q(t+ r/c0)

r

)

, (3)

where q and Q are arbitrary functions. Assume from now on that there are only outgoing waves.

Calculate the radial velocity ur and the pressure perturbation p̃.

(a) By considering the volume flux through a sphere of radius ǫ as ǫ → 0, show that q(t) is the

mass flux out of r = 0. Show also that φ actually satisfies

∇2φ− c−2

0
∂2φ/∂t2 = q(t)δ(x)/ρ0 , (4)

where δ is the Dirac delta function. (Hint: integrate (4) over r 6 ǫ and let ǫ → 0.) [The notation

in (3) is standard and motivated by the meaning of q. In some of the detailed calculations below,

you may prefer to write q(t)/4πρ0 = f(t) for brevity.]

(b) Show that in the far-field, i.e. for ‘large’ r, the kinetic energy density K, the potential energy

density W , and the acoustic-energy flux I = p̃u, approximately satisfy the same equations, K = W

and I = (K + W )c0, as in a plane wave. Similarly, show that the total power radiated across a

‘large’ sphere of radius R is approximately

(

q̇(t−R/c0)
)2

/4πρ0c0 . (5)

[The solution (3) with Q = 0 is called a point source, or an acoustic monopole of strength q̇(t).]

What does ‘large r’ mean for a time-harmonic source with q(t) = Re(q0e
iωt)?

(c) For the same time-harmonic source, show that 〈K 〉/〈W 〉 ∼ (c0/rω)
2 as r → 0 and find both

Ir and 〈 Ir 〉 in the same limit. Comment on these results. Compare (1) with (5) for the case

A ≪ (c0/ω)
2. (What does this condition mean physically?) [This is one of the principles behind

the ‘horn loudspeaker’.]

6. Harmonic series. Explain why (3) describes a possible acoustic disturbance in a conical tube of

any cross-sectional shape. Model an oboe (with all the finger-holes closed) as a small-angle conical

tube of length ℓ: at the narrow end the cross-sectional area is effectively zero and p̃ is finite; the

larger end is open and p̃ may be assumed to be zero. [This is a good approximation only if the

radius of the larger end is much less than c0/ω.] Show that the instrument has a set of normal

modes (i.e. standing-wave solutions of the form R(r)e−iωt) with frequencies

ωℓ/c0 = nπ (n ∈ Z) . (†)

If, instead, the larger end is closed, so that the radial velocity is zero there, show that the corre-

sponding normal-mode frequencies are the solutions of

ωℓ/c0 = tan(ωℓ/c0) . (‡)

Find approximate solutions of (‡) in the high-frequency limit. [The set of frequencies (†) forms a

musical ‘harmonic series’, while the set (‡) does not.]
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7. An oscillating bubble (Tripos 93124). A bubble makes small spherically symmetric oscillations

in a compressible inviscid fluid. When the radius a(t) is perturbed slightly from its mean value

a0, the internal dynamics of the bubble are such that the bubble exerts a perturbation pressure

−β(a − a0) on the fluid, where β is a constant. Derive the linearised equation of motion for the

oscillations

ρ0a0ä+
βa0
c0

ȧ+ β(a− a0) = 0 ,

where ρ0 is the undisturbed density of the fluid and c0 is the sound speed (you may quote results

from question 5). What is the mechanism of energy loss from the oscillations represented by the

‘damping’ term in this ODE for a?

8*. Images. Explain briefly how the method of images can be used to find the sound field produced

by a point source placed either near a plane rigid boundary, or in the corner between two plane

rigid boundaries at right-angles (i.e. find an image system that satisfies the boundary conditions).

For each case, use the results of 5(b) to write down an approximation to the time-averaged

total power radiated by a time-harmonic point source if the distance of the source to the boundaries

is much less than a wavelength. Will a whistle sound louder if blown near a wall?

9*. Source with boundaries. A point source (monopole) is placed at x = x0 inside a straight

semi-infinite tube aligned along the positive x-axis with a closed end at x = 0 and cross-sectional

area A. By integrating (4) with δ(x) replaced by δ(x − x0), and using the boundary conditions,

show that the cross-sectional average potential

φ(x, t) =
1

A

∫ ∫

φ dy dz

satisfies
∂2φ

∂x2
−

1

c2
0

∂2φ

∂t2
=

q(t)

ρ0A
δ(x− x0).

[Hint: Recall δ(x) = δ(x)δ(y)δ(z).] What conditions should be imposed on φ and ∂φ/∂x at x = 0,

x = x0 and as x → ∞?

For a time-harmonic source, q(t) = q0e
iωt (real part understood), show that

φ =
ic0q0
ωρ0A

exp{iω[t− (x− x0)/c0]}

1 + i tan(ωx0/c0)
in x > x0.

If A ≪ (c0/ω)
2, why it is reasonable to assume that the sound field is almost one-dimensional

(i.e. φ(x, t) ≈ φ(x, t)) except near x = x0? Making this assumption, show that if x0 ≪ c0/ω (what

does this mean physically?) then the time-averaged power radiated across a section in x > x0 is

the same as the time-average of (1) for this q(t) and a large factor 4πc2
0
/ω2A bigger than (5).
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