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Waves: D24b Example Sheet 2: Nonlinear Waves Lent 2017

Note that parts of the Tripos questions 6 and 9 † overlap with earlier questions on this sheet; where this
is the case, you may simply quote the earlier results rather than rederive them. As usual, a ∗ denotes a
question, or part of a question, that should not be done at the expense of questions on later sheets. Starred
questions are not necessarily harder than unstarred questions.

Corrections and suggestions should be emailed to S.J.Cowley@maths.cam.ac.uk.

1. Shock formation. At time t = 0 the velocity u(x, t) in a one-dimensional simple wave,
propagating in the positive x direction through a perfect gas, has the form u = um sin kx ,
where um and k are positive constants. Find the time t∗ at which shocks form. Sketch u(x)
at times t = 0, t = 1

2 t
∗ and t = t∗. Show that in the time interval (0, t∗) a single wave-crest

(i.e. a local maximum of u(x, t)) travels a distance

1

k

(

2c0
(γ + 1)um

+ 1

)

.

Comment. When k = 2π × (1kHz)/c0, c0 = 340ms−1, γ = 1.4, and um = 0.05ms−1

(equivalent to 120dB, the pain threshold for the ear), the distance is about 320m.

2. Shock formation for an accelerating piston. A perfect gas, initially at rest, occupies the
region to the right of a piston whose position is X(t) = 1

2at
2 for t > 0. Find the time and

position where a shock first forms. Added 06/02/17: repeat the analysis for X(t) = 1
3at

3.

3. Blood flow. An artery is modelled as a long straight tube with elastic walls and cross-
sectional area A(x, t), which contains incompressible, inviscid blood of density ρ. On the
assumption that the fluid velocity u and pressure p do not vary across the artery, conservation
of mass and momentum imply that

At + (uA)x = 0 and ρut + ρuux = −px.

The area A is related to the fluid pressure p by an elastic ‘tube law’ of the form p = P (A),
where P (A) is some given, strictly increasing function. Find the Riemann invariants and
their corresponding propagation speeds.

Now suppose that

P (A) = p0 +
ρc20
2κ

(

A

A0

)2κ

,

where p0, A0, c0 and κ are positive constants. For t < 0 the artery has uniform area A0 and
there is no flow. Blood is then pumped into the artery (x > 0) with velocity U(t) at x = 0,
where

U(t) =







U0
t

t1

(

2−
t

t1

)

(0 6 t 6 2t1),

0 (t > 2t1),

and U0(1 − κ) < c0 (so that the inlet flow remains subcritical/’subsonic’). Calculate the
time and place at which a ‘shock’ first forms.

Comment. In an adult human, typical values are A0 = 5× 10−4m2, U0 = 1.2m s−1, κ = 1,
c0 = 5ms−1, p0 = 104Nm−2, ρ = 103 kgm−3, t1 = 0.35 s. Do you expect shocks to form?

† These are somewhat old Tripos questions, when paper 4 questions were double the length of ‘long’ questions

. . . so that educational and ‘interesting’ questions could be set.
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4. A general expansion fan. A piston confines an inviscid compressible fluid (not necessarily
a perfect gas) to the right-hand half, x > 0, of an infinite tube. The fluid is initially at
rest, u = 0, with uniform density ρ0 and sound speed c0. For t > 0 the piston moves with
constant speed V away from the fluid. Assuming that the fluid can keep up with the piston,
show that there is a region R2 in the (x, t)-plane, in which the local sound speed c takes
a constant value c2, which differs from the value c0 in the undisturbed region R0. Find an
equation that determines c2 in terms of V and the function c(ρ). Deduce the condition on
V for the fluid to keep up with the piston.

Show by reductio ad absurdum, or otherwise, that all the C+ characteristics lying outside
both R2 and R0 must pass through the origin. Deduce that for t > 0

u+ c =







c2 − V , −V t 6 x 6 (c2 − V )t
xt−1 , (c2 − V )t 6 x 6 c0t
c0 , x > c0t

Sketch the forms of u and c as functions of x at two different times.

5. Expansion fan and escape velocity. Consider the situation in question 4 for the case of a
perfect gas with specific-heat ratio γ. Find the equations in regions R0, R1 and R2 of

(i) the C− characteristic that originates at x = ξ and t = 0,

(ii) the trajectory of the gas particle which is at x = ξ when t = 0.

Sketch the C+ and C− characteristics and the particle trajectories in the (x, t)-plane. Hence
explain what happens when V > 2(γ − 1)−1c0.

6. Two expansion fans (Tripos 75425). A perfect gas, with constant specific heats in the ratio
γ, is initially at rest with uniform sound speed c0. It is confined by two pistons to the region
0 < x < 2ℓ of a long cylindrical tube. At time t = 0, both pistons are set into impulsive
motion away from the gas with constant velocities u = −V < 0 and u = U > 0.

(i) For 0 6 t 6 ℓ/c0 show that in the part x ≤ ℓ of the tube (which cannot have been
reached by any signal from the piston initially at x = 2ℓ), every C+ characteristic is a
straight line. Show that the fluid velocity u takes the value

u =
2

γ + 1

(x

t
− c0

)

for

(

c0 −
γ + 1

2
V

)

t < x < c0t .

Give the corresponding value of c. Find the shape of the C− characteristics when u
and c take these values.

(ii) Deduce that, when t > ℓ/c0, the equation

u =
2

γ + 1

(x

t
− c0

)

is satisfied only in the smaller interval

(

c0 −
γ + 1

2
V

)

t < x <
ℓ

γ − 1

(

(γ + 1)

(

c0t

ℓ

)(3−γ)/(γ+1)

− 2

(

c0t

ℓ

))

.

(iii) For a case with V/c0 about 1
2 and U/c0 about 1

4 , give a rough sketch indicating four

areas of the (x, t) plane throughout each of which u takes a different constant value, to
be specified.
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7. A piston-generated shock. A piston moves with constant positive velocity u1 into a perfect
gas of specific heat ratio γ > 1, generating a shock wave which moves ahead of the piston.
Show that a possible solution of all the relevant equations is one in which the gas is at rest
beyond the shock, at pressure p0, and is moving with constant velocity u1 in the region
between the piston and the shock, throughout which region the density and pressure also
take constant values ρ1, p1 which are determined by

ρ1
ρ0

=
2γ + (γ + 1)β

2γ + (γ − 1)β
,

1

β2
+

γ + 1

2γβ
=

c20
γ2u21

,

where β is the shock strength defined as (p1− p0)/p0 > 0, and ρ0 and c0 are the density and

sound speed of the undisturbed gas. Show also that the shock speed V = c0

(

1 + γ+1
2γ β

)1/2
.

8. Traffic flow. Assume that the speed of cars down a long straight (one-way) road is a known,
monotonically decreasing function u(ρ) of the local density ρ of traffic. The flux of cars is thus
given by q(ρ) = ρu. From conservation of cars deduce that ρ is constant on characteristics
dx/dt = c(ρ), where c = dq/dρ. Deduce also that if a shock develops between regions of
density ρ1 and ρ2 then it propagates with speed [q(ρ1)− q(ρ2)]/(ρ1 − ρ2).

Consider the case u(ρ) = U(1− ρ/ρ0) where U is (10% faster than) the speed limit and ρ0
is the density of a nose-to-tail traffic jam. Sketch the functions q(ρ) and c(ρ). Explain why
shocks only form when light traffic is behind heavy traffic, and why the shocks can travel
either forwards or backwards depending on the density of traffic.

A queue of cars with density ρ0 is waiting in −L < x < 0 behind a red traffic light at x = 0.
There are no other cars on the road. The light turns green at t = 0. Find the time T when
the last car starts to move, and determine the velocity of the last car for t > T . [Hint: The
solution involves both a shock and an expansion fan.]

∗9. A method to generate shock waves in a ‘shock tube’ (Tripos 85427). An infinitely long
uniform tube contains two perfect gases separated by a membrane at x = 0. The gas in
x > 0 has pressure p1, density ρ1 and specific heat ratio γ1; the corresponding values for the
gas in x < 0 are p2, ρ2, γ2 where p2 > p1. At t = 0 the membrane is burst. Assuming that
the interface between the two gases remains plane and moves with constant speed V , use
the one-dimensional equations of motion to show that there are three regions in the tube in
which the pressure is uniform,

p = p2 for x < −

(

γ2p2
ρ2

)1/2

t ,

p = p1 for x > Ut ,

p = pm for −

[

(

γ2p2
ρ2

)1/2

−
γ2 + 1

2
V

]

t < x < Ut ,

where pm is as yet unknown, and the shock velocity, U , is a constant to be found in terms
of pm, p1, ρ1, γ1.

Show that V is related to pm by the following two equations:

V = (pm − p1)
(

1
2ρ1 [(γ1 + 1)pm + (γ1 − 1)p1]

)

−1/2
,

V =
2

γ2 − 1

(

γ2p2
ρ2

)1/2
[

1−

(

pm
p2

)(γ2−1)/2γ2
]

,

and hence show that there is a unique solution for pm and V .

Mathematical Tripos II: Waves 3 S.J.Cowley@maths.cam.ac.uk, Lent 2017


