Example Sheet 2: Nonlinear Waves

Lent 2017

Note that parts of the Tripos questions 6 and 9^{\dagger} overlap with earlier questions on this sheet; where this is the case, you may simply quote the earlier results rather than rederive them. As usual, a * denotes a question, or part of a question, that should not be done at the expense of questions on later sheets. Starred questions are **not** necessarily harder than unstarred questions.

Corrections and suggestions should be emailed to S.J.Cowley@maths.cam.ac.uk.

1. Shock formation. At time t=0 the velocity u(x,t) in a one-dimensional simple wave, propagating in the positive x direction through a perfect gas, has the form $u=u_m\sin kx$, where u_m and k are positive constants. Find the time t^* at which shocks form. Sketch u(x) at times t=0, $t=\frac{1}{2}t^*$ and $t=t^*$. Show that in the time interval $(0,t^*)$ a single wave-crest (i.e. a local maximum of u(x,t)) travels a distance

$$\frac{1}{k} \left(\frac{2c_0}{(\gamma + 1)u_m} + 1 \right).$$

Comment. When $k = 2\pi \times (1 \text{kHz})/c_0$, $c_0 = 340 \text{ms}^{-1}$, $\gamma = 1.4$, and $u_m = 0.05 \text{ms}^{-1}$ (equivalent to 120dB, the pain threshold for the ear), the distance is about 320m.

- 2. Shock formation for an accelerating piston. A perfect gas, initially at rest, occupies the region to the right of a piston whose position is $X(t) = \frac{1}{2}at^2$ for t > 0. Find the time and position where a shock first forms. Added 06/02/17: repeat the analysis for $X(t) = \frac{1}{3}at^3$.
- 3. Blood flow. An artery is modelled as a long straight tube with elastic walls and cross-sectional area A(x,t), which contains incompressible, inviscid blood of density ρ . On the assumption that the fluid velocity u and pressure p do not vary across the artery, conservation of mass and momentum imply that

$$A_t + (uA)_x = 0$$
 and $\rho u_t + \rho u u_x = -p_x$.

The area A is related to the fluid pressure p by an elastic 'tube law' of the form p = P(A), where P(A) is some given, strictly increasing function. Find the Riemann invariants and their corresponding propagation speeds.

Now suppose that

Waves: D24b

$$P(A) = p_0 + \frac{\rho c_0^2}{2\kappa} \left(\frac{A}{A_0}\right)^{2\kappa} ,$$

where p_0 , A_0 , c_0 and κ are positive constants. For t < 0 the artery has uniform area A_0 and there is no flow. Blood is then pumped into the artery (x > 0) with velocity U(t) at x = 0, where

$$U(t) = \begin{cases} U_0 \frac{t}{t_1} \left(2 - \frac{t}{t_1} \right) & (0 \leqslant t \leqslant 2t_1), \\ 0 & (t > 2t_1), \end{cases}$$

and $U_0(1-\kappa) < c_0$ (so that the inlet flow remains subcritical/'subsonic'). Calculate the time and place at which a 'shock' first forms.

Comment. In an adult human, typical values are $A_0 = 5 \times 10^{-4} \,\mathrm{m}^2$, $U_0 = 1.2 \,\mathrm{m \, s}^{-1}$, $\kappa = 1$, $c_0 = 5 \,\mathrm{m \, s}^{-1}$, $p_0 = 10^4 \,\mathrm{N \, m}^{-2}$, $\rho = 10^3 \,\mathrm{kg \, m}^{-3}$, $t_1 = 0.35 \,\mathrm{s}$. Do you expect shocks to form?

[†] These are somewhat old Tripos questions, when paper 4 questions were double the length of 'long' questions ... so that educational and 'interesting' questions could be set.

4. A general expansion fan. A piston confines an inviscid compressible fluid (not necessarily a perfect gas) to the right-hand half, x > 0, of an infinite tube. The fluid is initially at rest, u = 0, with uniform density ρ_0 and sound speed c_0 . For t > 0 the piston moves with constant speed V away from the fluid. Assuming that the fluid can keep up with the piston, show that there is a region R_2 in the (x,t)-plane, in which the local sound speed c takes a constant value c_2 , which differs from the value c_0 in the undisturbed region R_0 . Find an equation that determines c_2 in terms of V and the function $c(\rho)$. Deduce the condition on V for the fluid to keep up with the piston.

Show by reductio ad absurdum, or otherwise, that all the C_+ characteristics lying outside both R_2 and R_0 must pass through the origin. Deduce that for t > 0

$$u + c = \begin{cases} c_2 - V , & -Vt \leq x \leq (c_2 - V)t \\ xt^{-1} , & (c_2 - V)t \leq x \leq c_0t \\ c_0 , & x \geq c_0t \end{cases}$$

Sketch the forms of u and c as functions of x at two different times.

- 5. Expansion fan and escape velocity. Consider the situation in question 4 for the case of a perfect gas with specific-heat ratio γ . Find the equations in regions R_0 , R_1 and R_2 of
 - (i) the C_{-} characteristic that originates at $x = \xi$ and t = 0,
 - (ii) the trajectory of the gas particle which is at $x = \xi$ when t = 0.

Sketch the C_+ and C_- characteristics and the particle trajectories in the (x, t)-plane. Hence explain what happens when $V > 2(\gamma - 1)^{-1}c_0$.

- 6. Two expansion fans (Tripos 75425). A perfect gas, with constant specific heats in the ratio γ , is initially at rest with uniform sound speed c_0 . It is confined by two pistons to the region $0 < x < 2\ell$ of a long cylindrical tube. At time t = 0, both pistons are set into impulsive motion away from the gas with constant velocities u = -V < 0 and u = U > 0.
 - (i) For $0 \le t \le \ell/c_0$ show that in the part $x \le \ell$ of the tube (which cannot have been reached by any signal from the piston initially at $x = 2\ell$), every C_+ characteristic is a straight line. Show that the fluid velocity u takes the value

$$u = \frac{2}{\gamma + 1} \left(\frac{x}{t} - c_0 \right)$$
 for $\left(c_0 - \frac{\gamma + 1}{2} V \right) t < x < c_0 t$.

Give the corresponding value of c. Find the shape of the C_- characteristics when u and c take these values.

(ii) Deduce that, when $t > \ell/c_0$, the equation

$$u = \frac{2}{\gamma + 1} \left(\frac{x}{t} - c_0 \right)$$

is satisfied only in the smaller interval

$$\left(c_0 - \frac{\gamma + 1}{2}V\right)t < x < \frac{\ell}{\gamma - 1}\left((\gamma + 1)\left(\frac{c_0t}{\ell}\right)^{(3-\gamma)/(\gamma + 1)} - 2\left(\frac{c_0t}{\ell}\right)\right).$$

(iii) For a case with V/c_0 about $\frac{1}{2}$ and U/c_0 about $\frac{1}{4}$, give a rough sketch indicating **four** areas of the (x,t) plane throughout each of which u takes a different constant value, to be specified.

7. A piston-generated shock. A piston moves with constant positive velocity u_1 into a perfect gas of specific heat ratio $\gamma > 1$, generating a shock wave which moves ahead of the piston. Show that a possible solution of all the relevant equations is one in which the gas is at rest beyond the shock, at pressure p_0 , and is moving with constant velocity u_1 in the region between the piston and the shock, throughout which region the density and pressure also take constant values ρ_1, p_1 which are determined by

$$\frac{\rho_1}{\rho_0} = \frac{2\gamma + (\gamma + 1)\beta}{2\gamma + (\gamma - 1)\beta} , \qquad \frac{1}{\beta^2} + \frac{\gamma + 1}{2\gamma\beta} = \frac{c_0^2}{\gamma^2 u_1^2} ,$$

where β is the shock strength defined as $(p_1 - p_0)/p_0 > 0$, and ρ_0 and c_0 are the density and sound speed of the undisturbed gas. Show also that the shock speed $V = c_0 \left(1 + \frac{\gamma + 1}{2\gamma}\beta\right)^{1/2}$.

8. Traffic flow. Assume that the speed of cars down a long straight (one-way) road is a known, monotonically decreasing function $u(\rho)$ of the local density ρ of traffic. The flux of cars is thus given by $q(\rho) = \rho u$. From conservation of cars deduce that ρ is constant on characteristics $dx/dt = c(\rho)$, where $c = dq/d\rho$. Deduce also that if a shock develops between regions of density ρ_1 and ρ_2 then it propagates with speed $[q(\rho_1) - q(\rho_2)]/(\rho_1 - \rho_2)$.

Consider the case $u(\rho) = U(1 - \rho/\rho_0)$ where U is (10% faster than) the speed limit and ρ_0 is the density of a nose-to-tail traffic jam. Sketch the functions $q(\rho)$ and $c(\rho)$. Explain why shocks only form when light traffic is behind heavy traffic, and why the shocks can travel either forwards or backwards depending on the density of traffic.

A queue of cars with density ρ_0 is waiting in -L < x < 0 behind a red traffic light at x = 0. There are no other cars on the road. The light turns green at t = 0. Find the time T when the last car starts to move, and determine the velocity of the last car for t > T. [Hint: The solution involves both a shock and an expansion fan.]

*9. A method to generate shock waves in a 'shock tube' (Tripos 85427). An infinitely long uniform tube contains two perfect gases separated by a membrane at x = 0. The gas in x > 0 has pressure p_1 , density ρ_1 and specific heat ratio γ_1 ; the corresponding values for the gas in x < 0 are p_2 , ρ_2 , γ_2 where $p_2 > p_1$. At t = 0 the membrane is burst. Assuming that the interface between the two gases remains plane and moves with constant speed V, use the one-dimensional equations of motion to show that there are three regions in the tube in which the pressure is uniform,

$$p = p_2 \text{ for } x < -\left(\frac{\gamma_2 p_2}{\rho_2}\right)^{1/2} t$$
,
 $p = p_1 \text{ for } x > Ut$,
 $p = p_m \text{ for } -\left[\left(\frac{\gamma_2 p_2}{\rho_2}\right)^{1/2} - \frac{\gamma_2 + 1}{2}V\right] t < x < Ut$,

where p_m is as yet unknown, and the shock velocity, U, is a constant to be found in terms of p_m , p_1 , ρ_1 , γ_1 .

Show that V is related to p_m by the following two equations:

$$V = (p_m - p_1) \left(\frac{1}{2} \rho_1 \left[(\gamma_1 + 1) p_m + (\gamma_1 - 1) p_1 \right] \right)^{-1/2} ,$$

$$V = \frac{2}{\gamma_2 - 1} \left(\frac{\gamma_2 p_2}{\rho_2} \right)^{1/2} \left[1 - \left(\frac{p_m}{p_2} \right)^{(\gamma_2 - 1)/2 \gamma_2} \right] ,$$

and hence show that there is a unique solution for p_m and V.