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Mathematical Tripos Part II Prof. C. P. Caulfield
WAVES Lent 2025

Example Sheet 3: Dispersive Waves and Ray Theory

1. Finite-depth capillary–gravity waves. The dispersion relation for water waves of wavenumber
k, including the effects of surface tension, is

ω2 = k(g + Tk2/ρ) tanh kh .

Show that for sufficiently large k the group and phase velocities cg and c become proportional
to k1/2 and independent of g and h, and that cg ∼ 3

2c. What is ‘sufficiently large’?

In ripple-tank experiments it is desired to keep cg and c as constant as possible for smallish
values of kh. By expanding ω2 about k = 0, determine approximately what value of h, h0 say,
should be used. *Show also that for h > h0 there must exist a minimum value of the group
velocity at some finite non-zero value of k.

Comment: For water, a typical value of T/ρg would be 7.5mm2, so that h0 = 4.7mm.

2. Stationary phase. (Tripos 77126). A hypothetical physical system permits one-dimensional
wave propagation in the x-direction according to the equation

∂ψ

∂t
− β

∂3ψ

∂x3
= 0 (β > 0, constant) . (∗)

Write down the corresponding dispersion relation and sketch graphs of frequency, phase veloc-
ity and group velocity as functions of wave number. Determine whether the shortest or the
longest waves are found at the front of a dispersing wave packet arising from a localised initial
disturbance. Do the wave crests move faster or slower than the wave packet as a whole?

Assume that ψ is real. An initial disturbance is given in the form of a Fourier integral,

ψ(x, 0) =

∫

∞

−∞

A(k)eikx dk .

Write down the corresponding solution ψ(x, t) of (∗). Use the method of stationary phase to
obtain an approximation to this solution for large t with V = x/t held constant, where V > 0.

What can you say about ψ in the same large-time limit if (i) V < 0 *(ii) V = 0?

3. Stationary phase. Find a combination of gravity waves (neglecting surface tension) on deep
water travelling in the directions x increasing and x decreasing that satisfies the conditions

ζ = ζ0 cos kx, ∂ζ/∂t = 0 ,

at time t = 0, where ζ is the upward displacement of the free surface at z = 0.

In a deep and very long channel parallel to the x-axis, the water surface is distorted by the
action of air jets into a shape

ζ = −ζ0e
−(x/a)2 ,

independent of y, and then released from rest at time t = 0. Obtain the subsequent shape of
the free surface as a sum of two Fourier integrals. Use the method of stationary phase to obtain
their approximate value when x and t are both large and positive.
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4. The steady wave pattern generated by a duck swimming on a (pseudo-)fluid. Consider
a duck swimming steadily with velocity (U, 0) on a deep homogeneous ‘pseudo-fluid’. In the
duck’s frame, the dispersion relation is found to be

Ω(k) = λ|k|p − Uk1 , k = (k1, k2)

where λ and p are constants, and 0 < p < 1. (For a ‘real’ fluid p = 1
2 and λ = g1/2.) The duck

generates a steady wave pattern. By writing (k1, k2) = |k|(cosβ, sinβ), show that the waves
satisfy

|k| =

(

λ

U cosβ

)1/(1−p)

,

and that the group velocity of these waves can be expressed as

cg = U(p cos2 β − 1, p sinβ cosβ) .

Deduce that the waves occupy a wedge of semi-angle sin−1[p/(2 − p)] about the negative x1-
axis. Find equation(s) describing the wave crests. *Sketch, or plot numerically, the wave-crest
pattern for the case p = 2

3 .

5. Trapped internal gravity waves. Two semi-infinite layers of fluid with uniform densities
ρ0−∆ρ and ρ0+∆ρ are separated by a layer of fluid in −H 6 z 6 H, where ρ(z) = ρ0−(z/H)∆ρ
and ∆ρ≪ ρ0. Write down the equation governing the vertical velocity of small-amplitude waves
and use it to explain why w and ∂w/∂z should be expected to be continuous at z = ±H.

Show that the dispersion relation for waves trapped by the stratification can be written
(

N2

ω2
− 1

)1/2

tan

[

(

N2

ω2
− 1

)1/2

kH

]

= 1 (∗)

under the assumption that w is an even function of z (where N2 is the middle-layer value).
Comment on the form of (∗) in the double limit N → ∞, H → 0 with N2H held constant.

6. Rays in a slowly varying medium. Derive the ray-tracing equations for wave propagation
through a slowly varying medium. (i) Show that for a time-independent medium the frequency
ω is constant at a ‘ray point’ moving with the group velocity. (ii) If the properties of the medium
are also independent of x and y, deduce Snell’s law that along a ray

sinα ∝ c ,

where α is the angle between the wavenumber k and the z-axis, and c(k) is the local phase
speed. (iii) For what type of dispersion relation is the direction of the ray parallel to k?

Consider the dispersion relation ω = A|k|z, where A is a constant. Show that each ray
is the arc of a circle. Show also that a wave packet moving towards the plane z = 0 takes an
infinite time to reach it.

7. Reflection and absorption of internal gravity waves. Two-dimensional internal gravity waves
on a slowly varying shear flow in the atmosphere satisfy the dispersion relation

ω = γzk +
Nk

(k2 +m2)1/2
,

where γ and N are positive constants, and k = (k, 0,m). Show that, as a wave packet moves,
ω and k remain constant, while

m(t) = m0 − γkt ,

where m0 is a constant. If k,m0 > 0, find the vertical motion z(t) of a wave packet generated
at the origin. By considering the values of dx/dt (and m) near

z = 0 (twice), z = −
N

γ

(

1

k
−

1

(k2 +m2
0)

1/2

)

and z =
N

γ(k2 +m2
0)

1/2
,

or otherwise, sketch the ray path *and the orientation of the crests at points along the path.
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8. Wave breaking. (Old Tripos) Ocean surface waves propagate obliquely from x = ∞ towards
a straight beach at x = 0 where they break and are dissipated. The water depth h(x) is a
slowly varying, increasing function of x, with h(0) = 0 and h(x) → ∞ as x→ ∞, and the waves
approximately satisfy the local dispersion relation

Ω2 = gκ tanhκh ,

where κ2 = k21 + k22 for the surface wavenumber (k1, k2). Show that the shorewards component
of the wavenumber increases in magnitude, with k1 ∼ −ω[gh(x)]−1/2 as x→ 0.

∗The amplitude A of the waves varies in such a way that the shorewards energy flux,
proportional to cg1A

2, is constant. Show that if the waves break in a region where κh≪ 1 and
when the maximum wave slope Aκ reaches a critical value Sc, then the point xb at which they
break is given by

A2(∞)
−k1(∞)

κ(∞)

ωg

[gh(xb)]3/2
= 2S2

c .

9.* The wave-crest pattern near a shore line. (Tripos 87327) Surface waves on water have a
dispersion relation ω = Ω(κ;x, y) where κ2 = k21 + k22, (x, y) are coordinates in the plane of the
surface, and the medium is slowly varying in the (x, y) coordinates.

Use the ray-tracing equations to show that ω is constant on rays, dy/dx = k2/k1. Show
also that the wave crests at any instant are given by dy/dx = −k1/k2.

The wave motion takes place over a sloping beach so that the unperturbed water depth
h(x) = αx1/2, with α a small positive constant. The dispersion relation for such waves is given
by

Ω2 = gκ tanhκh.

Far from the shore-line x = 0, the waves are plane, have frequency ω, and have angle Φ between
the crests and the shore-line. As the waves propagate towards the shore they become non-planar.
Obtain the parametric equations

x =
λ2g2

α2ω4
tanh2 λ ,

y − y0 =
g2

α2ω4

∫ λ

0

(1− tanh2 ξ sin2 Φ)1/2

tanh ξ sinΦ

d

dξ
(ξ2 tanh2 ξ) dξ ,

for the wave crest that passes through the shore-line at y = y0. [Hint: consider λ = κh.] Show
that near the shore-line the equation of the wave crest can be written

(y − y0)
4 ≈

(

4

3 sinΦ

)4
g2

α2ω4
x3 .
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