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Mathematical Tripos Part II Prof. C. P. Caulfield
WAVES Lent 2025

Example Sheet 3: Dispersive Waves and Ray Theory

1. Finite-depth capillary—gravity waves. The dispersion relation for water waves of wavenumber
k, including the effects of surface tension, is

w? = k(g + Tk?*/p) tanh kh .

Show that for sufficiently large k the group and phase velocities ¢, and ¢ become proportional
to k'/2 and independent of ¢ and h, and that Cqg ~ %c. What is ‘sufficiently large’?

In ripple-tank experiments it is desired to keep ¢, and c as constant as possible for smallish
values of kh. By expanding w? about k& = 0, determine approximately what value of h, hg say,
should be used. *Show also that for h > hg there must exist a minimum value of the group
velocity at some finite non-zero value of k.

Comment: For water, a typical value of T/pg would be 7.5 mm?, so that hg = 4.7 mm.

2. Stationary phase. (Tripos 77126). A hypothetical physical system permits one-dimensional
wave propagation in the z-direction according to the equation

0 0% _
5 Pam = 0 (8 >0, constant) . (*)

Write down the corresponding dispersion relation and sketch graphs of frequency, phase veloc-
ity and group velocity as functions of wave number. Determine whether the shortest or the
longest waves are found at the front of a dispersing wave packet arising from a localised initial
disturbance. Do the wave crests move faster or slower than the wave packet as a whole?

Assume that 1) is real. An initial disturbance is given in the form of a Fourier integral,
© .
Y(z,0) = / A(k)e™* e dk .
— o0

Write down the corresponding solution ¢ (z,t) of (x). Use the method of stationary phase to
obtain an approximation to this solution for large ¢t with V' = x/t held constant, where V' > 0.

What can you say about % in the same large-time limit if (i) V' < 0 *(ii) V = 07

3. Stationary phase. Find a combination of gravity waves (neglecting surface tension) on deep
water travelling in the directions x increasing and x decreasing that satisfies the conditions

¢ =(pcoskxr, OC/Ot=0,

at time ¢ = 0, where ( is the upward displacement of the free surface at z = 0.

In a deep and very long channel parallel to the xz-axis, the water surface is distorted by the
action of air jets into a shape

C = —Coe_(x/a)2 )

independent of y, and then released from rest at time ¢ = 0. Obtain the subsequent shape of
the free surface as a sum of two Fourier integrals. Use the method of stationary phase to obtain
their approximate value when x and ¢ are both large and positive.

1



Copyright © 2023 University of Cambridge. Not to be quoted or reproduced without permission.

4. The steady wave pattern generated by a duck swimming on a (pseudo-)fluid. Consider
a duck swimming steadily with velocity (U,0) on a deep homogeneous ‘pseudo-fluid’. In the
duck’s frame, the dispersion relation is found to be

Q(k) = )\‘k’p - Ukl 9 k == (kla k2)
where A and p are constants, and 0 < p < 1. (For a ‘real’ fluid p = % and A = ¢g'/2)) The duck
generates a steady wave pattern. By writing (k1,k2) = |k|(cos 3,sin 3), show that the waves

satisfy

(A e
- \Ucosf ’

and that the group velocity of these waves can be expressed as

c, = U(pcos® B — 1, psin Bcos B) .
Deduce that the waves occupy a wedge of semi-angle sin™![p/(2 — p)] about the negative -
axis. Find equation(s) describing the wave crests. *Sketch, or plot numerically, the wave-crest
pattern for the case p = %

5. Trapped internal gravity waves. Two semi-infinite layers of fluid with uniform densities
po—Ap and po+Ap are separated by a layer of fluid in —H < z < H, where p(2) = po—(z/H)Ap
and Ap < pg. Write down the equation governing the vertical velocity of small-amplitude waves
and use it to explain why w and dw/0z should be expected to be continuous at z = +H.
Show that the dispersion relation for waves trapped by the stratification can be written

<if22 - 1>1/2 tan [(i]j - 1) v kH] =1 (*)

under the assumption that w is an even function of z (where N? is the middle-layer value).
Comment on the form of (*) in the double limit N — oo, H — 0 with N2H held constant.

6. Rays in a slowly varying medium. Derive the ray-tracing equations for wave propagation
through a slowly varying medium. (i) Show that for a time-independent medium the frequency
w is constant at a ‘ray point’ moving with the group velocity. (ii) If the properties of the medium
are also independent of x and y, deduce Snell’s law that along a ray

sina « ¢,

where « is the angle between the wavenumber k and the z-axis, and c(k) is the local phase
speed. (iii) For what type of dispersion relation is the direction of the ray parallel to k?

Consider the dispersion relation w = A|k|z, where A is a constant. Show that each ray
is the arc of a circle. Show also that a wave packet moving towards the plane z = 0 takes an
infinite time to reach it.

7. Reflection and absorption of internal gravity waves. Two-dimensional internal gravity waves
on a slowly varying shear flow in the atmosphere satisfy the dispersion relation

Nk
where v and N are positive constants, and k = (k,0,m). Show that, as a wave packet moves,
w and k remain constant, while

w="yzk+

m(t) = mo — vkt ,

where myg is a constant. If k,mg > 0, find the vertical motion z(¢) of a wave packet generated
at the origin. By considering the values of dz/dt (and m) near

0 (bwice) N /1 1 o N
Z = W1 Z2=—|-—-——- n =
AV R A )

or otherwise, sketch the ray path *and the orientation of the crests at points along the path.
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8. Wave breaking. (Old Tripos) Ocean surface waves propagate obliquely from x = oo towards
a straight beach at z = 0 where they break and are dissipated. The water depth h(z) is a
slowly varying, increasing function of z, with h(0) = 0 and h(z) — oo as x — 0o, and the waves
approximately satisfy the local dispersion relation

0? = grtanh kh |

where k2 = k? + k2 for the surface wavenumber (kj, k2). Show that the shorewards component
of the wavenumber increases in magnitude, with k; ~ —w[gh(z)]~'/? as z — 0.

*The amplitude A of the waves varies in such a way that the shorewards energy flux,
proportional to ¢4 A?, is constant. Show that if the waves break in a region where kh < 1 and
when the maximum wave slope Ak reaches a critical value S., then the point x at which they
break is given by

9.* The wave-crest pattern near a shore line. (Tripos 87327) Surface waves on water have a
dispersion relation w = Q(k; z,y) where x* = k% + k3, (z,y) are coordinates in the plane of the
surface, and the medium is slowly varying in the (x,y) coordinates.

Use the ray-tracing equations to show that w is constant on rays, dy/dx = ko/k;. Show
also that the wave crests at any instant are given by dy/dx = —ky /ks.

The wave motion takes place over a sloping beach so that the unperturbed water depth
h(z) = az'/?, with a a small positive constant. The dispersion relation for such waves is given
by

0% = gk tanh kh.

Far from the shore-line z = 0, the waves are plane, have frequency w, and have angle ® between
the crests and the shore-line. As the waves propagate towards the shore they become non-planar.

Obtain the parametric equations
\g° 2
x = o2t tanh” A\ |

g° A (1 — tanh? €sin? ®)1/2 d
Y—Yo
0

—-(€% tanh® €) d¢

T a2ut tanh & sin ® dg

for the wave crest that passes through the shore-line at y = yo. [Hint: consider A = kh.] Show
that near the shore-line the equation of the wave crest can be written

4
4 g°
— )t ~ 3
(v = 50) <3sin<I>> a2t




