Example Sheet 4: Nonlinear Waves

Parts of the old Tripos questions 6 and 9 overlap with earlier questions on this sheet. Where this is the case, you may simply quote the earlier results rather than rederive them.

1. Shock formation. At time \(t = 0 \) the velocity \(u(x, t) \) in a one-dimensional simple wave, propagating in the positive \(x \) direction through a perfect gas, has the form \(u = u_m \sin kx \), where \(u_m \) and \(k \) are positive constants. Find the time \(t^* \) at which shocks form. Sketch \(u(x) \) at times \(t = 0, t = \frac{1}{2} t^* \) and \(t = t^* \). Show that in the time interval \((0, t^*)\) a single wave-crest (i.e. a local maximum of \(u(x, t) \)) travels a distance

\[
\frac{1}{k} \left(\frac{2c_0}{(\gamma + 1)u_m} + 1 \right).
\]

Comment: When \(k = 2\pi \times (1\text{kHz})/c_0, c_0 = 340\text{ms}^{-1}, \gamma = 1.4, \) and \(u_m = 0.05\text{ms}^{-1} \) (equivalent to 120dB, the pain threshold for the ear), the distance is about 320m.

2. Shock formation. A perfect gas, initially at rest, occupies the region to the right of a piston whose position is \(X(t) = \frac{1}{2}at^2 \) for \(t > 0 \). Find the time and position where a shock first forms.

3. Blood flow. An artery is modelled as a long straight tube with elastic walls and cross-sectional area \(A(x, t) \), which contains incompressible, inviscid blood of density \(\rho \). On the assumption that the fluid velocity \(U \) and pressure \(p \) do not vary across the artery, conservation of mass and momentum imply that

\[
\frac{A}{t} + (uA)_x = 0 \quad \text{and} \quad \rho u_t + \rho uu_x = -p_x.
\]

The area \(A \) is related to the fluid pressure \(p \) by an elastic ‘tube law’ of the form \(p = P(A) \), where \(P(A) \) is some given, strictly increasing function. Find the Riemann invariants and their corresponding propagation speeds.

Now suppose that

\[
P(A) = p_0 + \frac{\kappa c_0^2}{2\kappa} \left(\frac{A}{A_0} \right)^{2\kappa},
\]

where \(p_0, A_0, c_0 \) and \(\kappa \) are positive constants. For \(t < 0 \) the artery has uniform area \(A_0 \) and there is no flow. Blood is then pumped into the artery \((x > 0)\) with velocity \(U(t) \) at \(x = 0 \), where

\[
U(t) = \begin{cases} U_0 \frac{t}{t_1} \left(\frac{2 - t}{t_1} \right) & (0 \leq t \leq 2t_1), \\ 0 & (t > 2t_1), \end{cases}
\]

and \(U_0(1 - \kappa) < c_0 \). Calculate the time and place at which a ‘shock’ first forms.

Comment: In an adult human, typical values are \(A_0 = 5 \times 10^{-4} \text{m}^2, U_0 = 1.2 \text{ms}^{-1}, \kappa = 1, c_0 = 5 \text{m} \text{s}^{-1}, p_0 = 10^4 \text{N} \text{m}^{-2}, \rho = 10^3 \text{kg} \text{m}^{-3}, t_1 = 0.35 \text{s} \). Do you expect shocks to form?

4. A general expansion fan. A piston confines an inviscid compressible fluid (not necessarily a perfect gas) to the right-hand half, \(x > 0 \), of an infinite tube. The fluid is initially at rest, \(u = 0 \), with uniform density \(\rho_0 \) and sound speed \(c_0 \). For \(t > 0 \) the piston moves with constant speed \(V \) away from the fluid. Assuming that the fluid can keep up with the piston, show that there is a region \(R_2 \) in the \((x, t)\)-plane, in which the local sound speed \(c \) takes a constant value \(c_2 \), which differs from the value \(c_0 \) in the undisturbed region \(R_0 \). Find an equation that determines \(c_2 \) in terms of \(V \) and the function \(c(\rho) \). Deduce the condition on \(V \) for the fluid to keep up with the piston.

Show by \textit{reductio ad absurdum}, or otherwise, that all the \(C_+ \) characteristics lying outside both \(R_2 \) and \(R_0 \) must pass through the origin. Deduce that for \(t > 0 \)

\[
u + c = \begin{cases} c_2 - V, & -Vt \leq x \leq (c_2 - V)t \\
xt^{-1}, & (c_2 - V)t \leq x \leq c_0t \\
c_0, & x \geq c_0t \end{cases}
\]

Sketch the forms of \(u \) and \(c \) as functions of \(x \) at two different times.
5. **Expansion fan and escape velocity.** Consider the situation in question 4 for the case of a perfect gas with specific-heat ratio γ. Find the equations in regions R_0, R_1 and R_2 of
 (i) the C_- characteristic that originates at $x = \xi$ and $t = 0$
 (ii) the trajectory of the gas particle which is at $x = \xi$ when $t = 0$.

Sketch the C_+ and C_- characteristics and the particle trajectories in the (x, t)-plane. Hence explain what happens when $V > 2(\gamma - 1)^{-1}c_0$.

6. **Two expansion fans (Tripos 75425).** A perfect gas, with constant specific heats in the ratio γ, is initially at rest with uniform sound speed c_0. It is confined by two pistons to the region $0 < x < 2\ell$ of a long cylindrical tube. At time $t = 0$, both pistons are set into impulsive motion away from the gas with constant velocities $u = -V < 0$ and $u = U > 0$.

 (i) For $0 \leq t \leq \ell/c_0$ show that in the part $x \leq \ell$ of the tube (which cannot have been reached by any signal from the piston initially at $x = 2\ell$), every C_+ characteristic is a straight line. Show that the fluid velocity u takes the value
 \[
 u = \frac{2}{\gamma + 1} \left(\frac{x}{t} - c_0 \right) \quad \text{for} \quad \left(c_0 - \frac{\gamma + 1}{2} V \right) t < x < c_0 t .
 \]

 Give the corresponding value of c. Find the shape of the C_- characteristics when u and c take these values.

 (ii) Deduce that, when $t > \ell/c_0$, the equation
 \[
 u = \frac{2}{\gamma + 1} \left(\frac{x}{t} - c_0 \right)
 \]
 is satisfied only in the smaller interval
 \[
 \left(c_0 - \frac{\gamma + 1}{2} V \right) t < x < \frac{\ell}{\gamma - 1} \left((\gamma + 1) \left(c_0 t / \ell \right)^{(3-\gamma)/(\gamma+1)} - 2 \left(c_0 t / \ell \right) \right) .
 \]

 (iii) For a case with V/c_0 about $\frac{1}{2}$ and U/c_0 about $\frac{1}{4}$, give a rough sketch indicating four areas of the (x, t) plane throughout each of which u takes a different constant value, to be specified.

7. **A piston-generated shock.** A piston moves with constant positive velocity u_1 into a perfect gas of specific heat ratio $\gamma > 1$, generating a shock wave which moves ahead of the piston. Show that a possible solution of all the relevant equations is one in which the gas is at rest beyond the shock, at pressure p_0, and is moving with constant velocity u_1 in the region between the piston and the shock, throughout which region the density and pressure also take constant values ρ_1, p_1 which are determined by
 \[
 \frac{\rho_1}{\rho_0} = \frac{2\gamma + (\gamma + 1)\beta}{2\gamma + (\gamma - 1)\beta} , \quad \frac{1}{\beta^2} + \frac{\gamma + 1}{2\beta^2} = \frac{c_0^2}{\gamma^2 u_1^2} ,
 \]
 where β is the shock strength defined as $(p_1 - p_0)/p_0 > 0$, and p_0 and c_0 are the density and sound speed of the undisturbed gas. Show also that the shock speed $V = c_0(1 + \gamma + 1/\gamma)1/2$.

8. **Traffic flow.** Assume that the speed of cars down a long straight (one-way) road is a known, monotonically decreasing function $u(\rho)$ of the local density ρ of traffic. The flux of cars is thus given by $q(\rho) = \rho u$. From conservation of cars deduce that ρ is constant on characteristics $dx/dt = c(\rho)$, where $c = dq/d\rho$. Deduce also that if a shock develops between regions of density ρ_1 and ρ_2 then it propagates with speed $[q(\rho_1) - q(\rho_2)]/[(\rho_1 - \rho_2)$.

Consider the case $u(\rho) = U(1 - \rho/\rho_0)$ where U is (10%) faster than the speed limit and ρ_0 is the density of a nose-to-tail traffic jam. Sketch the functions $q(\rho)$ and $c(\rho)$. Explain why shocks only form when light traffic is behind heavy traffic, and why the shocks can travel either forwards or backwards depending on the density of traffic.

A queue of cars with density ρ_0 is waiting in $-L < x < 0$ behind a red traffic light at $x = 0$. There are no other cars on the road. The light turns green at $t = 0$. Find the time T when the last car starts to move, and determine the velocity of the last car for $t > T$. [Hint: The solution involves both a shock and an expansion fan.]
A method to generate shock waves in a ‘shock tube’ (Tripos 85427). An infinitely long uniform tube contains two perfect gases separated by a membrane at \(x = 0 \). The gas in \(x > 0 \) has pressure \(p_1 \), density \(\rho_1 \) and specific heat ratio \(\gamma_1 \); the corresponding values for the gas in \(x < 0 \) are \(p_2, \rho_2, \gamma_2 \) where \(p_2 > p_1 \). At \(t = 0 \) the membrane is burst. Assuming that the interface between the two gases remains plane and moves with constant speed \(V \), use the one-dimensional equations of motion to show that there are three regions in the tube in which the pressure is uniform,

\[
p = p_2 \quad \text{for} \quad x < -\left(\frac{\gamma_2 p_2}{\rho_2}\right)^{1/2} t ,
\]

\[
p = p_1 \quad \text{for} \quad x > Ut ,
\]

\[
p = p_m \quad \text{for} \quad -\left(\frac{\gamma_2 p_2}{\rho_2}\right)^{1/2} - \frac{\gamma_2 + 1}{2} V t < x < Ut ,
\]

where \(p_m \) is as yet unknown, and the shock velocity, \(U \), is a constant to be found in terms of \(p_m, p_1, \rho_1, \gamma_1 \).

Show that \(V \) is related to \(p_m \) by the following two equations:

\[
V = (p_m - p_1) \left(\frac{1}{2} \rho_1 [(\gamma_1 + 1)p_m + (\gamma_1 - 1)p_1]\right)^{-1/2} ,
\]

\[
V = \frac{2}{\gamma_2 - 1} \left(\frac{\gamma_2 p_2}{\rho_2}\right)^{1/2} \left[1 - \left(\frac{p_m}{p_2}\right)^{(\gamma_2 - 1)/2\gamma_2} \right] ,
\]

and hence show that there is a unique solution for \(p_m \) and \(V \).