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Mathematical Tripos Part II Prof. C. P. Caulfield
WAVES Lent 2025

Example Sheet 4: Nonlinear Waves

Parts of the old Tripos questions 6 and 9 overlap with earlier questions on this sheet. Where
this is the case, you may simply quote the earlier results rather than rederive them.

1. Shock formation. At time t = 0 the velocity u(x,t) in a one-dimensional simple wave,
propagating in the positive x direction through a perfect gas, has the form v = wu,, sinkz ,
where u,, and k are positive constants. Find the time ¢* at which shocks form. Sketch u(x) at
times ¢ = 0,¢ = 1¢* and ¢ = t*. Show that in the time interval (0,¢*) a single wave-crest (i.e. a
local maximum of u(x,t)) travels a distance
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Comment: When k = 27 x (1kHz)/co, co = 340ms™!, v = 1.4, and u,, = 0.05ms™! (equivalent
to 120dB, the pain threshold for the ear), the distance is about 320m.

2. Shock formation. A perfect gas, initially at rest, occupies the region to the right of a piston
whose position is X (t) = $at? for ¢ > 0. Find the time and position where a shock first forms.

3. Blood flow. An artery is modelled as a long straight tube with elastic walls and cross-sectional
area A(x,t), which contains incompressible, inviscid blood of density p. On the assumption
that the fluid velocity v and pressure p do not vary across the artery, conservation of mass and
momentum imply that

A+ (uA), =0 and PUs + pully = —Py.
The area A is related to the fluid pressure p by an elastic ‘tube law’ of the form p = P(A),

where P(A) is some given, strictly increasing function. Find the Riemann invariants and their
corresponding propagation speeds.

Now suppose that PA) = o + ch A 2k
N 2K AO ’
where pg, Ag, cop and k are positive constants. For t < 0 the artery has uniform area Ag and
there is no flow. Blood is then pumped into the artery (z > 0) with velocity U(t) at = = 0,

where ; ;
Z(2- = <t<
U(t):{U°t1(2 tl) O<st<2h),
0 (t > 2t1) ,

and Up(1 — k) < ¢g. Calculate the time and place at which a ‘shock’ first forms.

Comment: In an adult human, typical values are Ay = 5 x 107*m?, Uy = 1.2ms™ !, k = 1,

co=>5ms™ !, pg=10*Nm=2, p=103kgm3, t; = 0.35s. Do you expect shocks to form?

4. A general expansion fan. A piston confines an inviscid compressible fluid (not necessarily a
perfect gas) to the right-hand half, z > 0, of an infinite tube. The fluid is initially at rest, u = 0,
with uniform density py and sound speed cqg. For ¢ > 0 the piston moves with constant speed V'
away from the fluid. Assuming that the fluid can keep up with the piston, show that there is a
region Ry in the (z,t)-plane, in which the local sound speed ¢ takes a constant value ¢y, which
differs from the value c¢g in the undisturbed region Ry. Find an equation that determines cs in
terms of V' and the function ¢(p). Deduce the condition on V' for the fluid to keep up with the
piston.

Show by reductio ad absurdum, or otherwise, that all the C characteristics lying outside
both Rs and Ry must pass through the origin. Deduce that for ¢ > 0

-V, —Vt<z<(ca— V)t
utc=<Q xt71, (co = V)t <z <ot
co , T = cot

Sketch the forms of u and ¢ as functions of x at two different times.
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5. Expansion fan and escape velocity. Consider the situation in question 4 for the case of a
perfect gas with specific-heat ratio 7. Find the equations in regions Ry, Ry and Ry of

(i) the C_ characteristic that originates at z = ¢ and t =0

(ii) the trajectory of the gas particle which is at x = £ when ¢ = 0.
Sketch the C} and C_ characteristics and the particle trajectories in the (z,t)-plane. Hence
explain what happens when V > 2(y — 1) Lc.

6. Two expansion fans (Tripos 75425). A perfect gas, with constant specific heats in the ratio
v, is initially at rest with uniform sound speed cy. It is confined by two pistons to the region
0 < z < 2{ of a long cylindrical tube. At time ¢t = 0, both pistons are set into impulsive motion
away from the gas with constant velocities u = =V < 0 and u = U > 0.

(i) For 0 < t < £/co show that in the part z < £ of the tube (which cannot have been
reached by any signal from the piston initially at 2 = 2¢), every C'y characteristic is a straight
line. Show that the fluid velocity u takes the value

u = 2 (z—c()) for (co—mv>t<x<cot.
y+1\t 2
Give the corresponding value of c. Find the shape of the C'_ characteristics when u and ¢ take
these values.
(ii) Deduce that, when ¢t > ¢/cy, the equation

2 T
uzi(——c0>
vy+11\t

is satisfied only in the smaller interval

B=7)/(v+1)
v+1 ¢ cot B cot
<CO s V>t<x<7_1<(7+1)(€> 2<€>).

(iii) For a case with V//co about 4 and U/co about %, give a rough sketch indicating four
areas of the (z,t) plane throughout each of which u takes a different constant value, to be
specified.

7. A piston-generated shock. A piston moves with constant positive velocity u; into a perfect
gas of specific heat ratio v > 1, generating a shock wave which moves ahead of the piston.
Show that a possible solution of all the relevant equations is one in which the gas is at rest
beyond the shock, at pressure pg, and is moving with constant velocity u; in the region between
the piston and the shock, throughout which region the density and pressure also take constant
values p1,p1 which are determined by

2y +(y+1)B 1 v+l
po 2y+(y=18" B2 298 Aui’
where f is the shock strength defined as (p1 — po)/po > 0, and py and ¢y are the density and
sound speed of the undisturbed gas. Show also that the shock speed V = ¢((1 + WTJ;l B2,

8. Traffic flow. Assume that the speed of cars down a long straight (one-way) road is a known,
monotonically decreasing function u(p) of the local density p of traffic. The flux of cars is thus
given by ¢(p) = pu. From conservation of cars deduce that p is constant on characteristics
dx/dt = c(p), where ¢ = dq/dp. Deduce also that if a shock develops between regions of density
p1 and po then it propagates with speed [q(p1) — q(p2)]/(p1 — p2).

Consider the case u(p) = U(1 — p/po) where U is (10% faster than) the speed limit and
po is the density of a nose-to-tail traffic jam. Sketch the functions ¢(p) and ¢(p). Explain why
shocks only form when light traffic is behind heavy traffic, and why the shocks can travel either
forwards or backwards depending on the density of traffic.

A queue of cars with density pg is waiting in —L < x < 0 behind a red traffic light at
z = 0. There are no other cars on the road. The light turns green at ¢ = 0. Find the time T
when the last car starts to move, and determine the velocity of the last car for ¢t > T'. [Hint:
The solution involves both a shock and an expansion fan.]
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9.* A method to generate shock waves in a ‘shock tube’ (Tripos 85427). An infinitely long
uniform tube contains two perfect gases separated by a membrane at © = 0. The gas in x > 0
has pressure p;1, density p; and specific heat ratio v;; the corresponding values for the gas in
x < 0 are pa, p2, ¥2 where po > p1. At t = 0 the membrane is burst. Assuming that the interface
between the two gases remains plane and moves with constant speed V', use the one-dimensional
equations of motion to show that there are three regions in the tube in which the pressure is

uniform,
1/2
p =py for x<—<m> t,
P2

p=p; for x>Ut,

1/2
1
p=pm for — [(72}72) —%V

t<z<Ut,
P2

where p,,, is as yet unknown, and the shock velocity, U, is a constant to be found in terms of

Pm, P15 P1, V1
Show that V is related to p,, by the following two equations:

V = (pm — p1) (31 (11 + Dpm + (1 — pr]) 2,

V—2<W>1/2 . <pm>(72—1)/272
Y2 =1\ p2 P2 ’

and hence show that there is a unique solution for p,, and V.




