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Dr A. Shadrin

Mathematical Tripos Part II: Michaelmas Term 2017

Numerical Analysis – Examples’ Sheet 2

11. Let a(x) > 0, x ∈ [0, 1], be a given smooth function. We solve the diffusion equation with variable
diffusion coefficient, ut = (aux)x, given with an initial condition for t = 0 and boundary conditions
at x = 0 and x = 1, t ≥ 0, with the finite-difference method

un+1
m = un

m + µ
[
am−1/2u

n
m−1 − (am−1/2 + am+1/2)u

n
m + am+1/2u

n
m+1

]
,

where as = a(sh), µ = ∆t
(∆x)2 , n ≥ 0, 1 ≤ m ≤ M and h = ∆x = 1

M+1 . Prove that the local error

is O(h4). Then, justifying carefully every step of your analysis, show (e.g. by using the eigenvalue
technique) that the method is stable for all 0 < µ < 1

2amax

, where amax = maxx∈[0,1] a(x).

[Hint: In the second half, use Gershgorin theorem to show that the matrix A occuring in the relation
un+1 = Aun satisfies ρ(A) ≤ 1.]

12. Apply the Fourier stability test to the difference equation

un+1
m =

1

2
(2− 5µ+ 6µ2)un

m +
2

3
µ(2− 3µ)(un

m−1 + un
m+1)−

1

12
µ(1− 6µ)(un

m−2 + un
m+2),

where m ∈ Z. Deduce that the test is satisfied if and only if 0 ≤ µ ≤ 2
3 .

13. A square grid is drawn on the region {(x, t) : 0 ≤ x ≤ 1, t ≥ 0} in R
2, the grid points being

(m∆x, n∆x), 0 ≤ m ≤ M + 1, n = 0, 1, 2, . . ., where ∆x = 1
M+1 and M is odd. Let u(x, t) be an

exact solution of the wave equation utt = uxx and let the boundary values u(x, 0), 0 ≤ x ≤ 1,
u(0, t), t > 0, and u(1, t), t > 0, be given. Further, an approximation to ∂u/∂t at t = 0 allows
each of the function values u(m∆x,∆x), m = 1, 2, . . . ,M , to be estimated to accuracy ǫ. Then, the
difference equation

un+1
m = un

m+1 + un
m−1 − un−1

m

is applied to estimate u at the remaining grid points. Prove that all of the moduli of the errors
|un

m − u(m∆x, n∆x)| are bounded above by 1
2ǫM , even when n is very large.

[Hint: Verify that the local error is zero. For n = 1 and 1 ≤ m ≤ M , let the error in u(m∆x,∆x) be δmkǫ,
where δmk is the Kronecker delta and where k is an arbitrary integer in (1, 2, . . . ,M). Draw a diagram that
shows the contribution from this error to un

m for every m and n > 1.]

Matlab demo: Download the Matlab GUI for Stability of 1D PDEs at http://www.damtp.cam.
ac.uk/user/naweb/ii/pde_stability/pde_stability.php. Review the stability condi-
tion from the lectures Problem 2.28 and test its sharpness empirically using the GUI.

14. A rectangular grid is drawn on R
2, with grid spacing ∆x in the x-direction and ∆t in the t-

direction. Let the difference equation

un+1
m − 2un

m + un−1
m

= µ
[
a
(
un+1
m−1 − 2un+1

m + un+1
m+1

)
+ b

(
un
m−1 − 2un

m + un
m+1

)
+ c

(
un−1
m−1 − 2un−1

m + un−1
m+1

)]
,

where µ = (∆t)2

(∆x)2 , be used to approximate solutions of the wave equation utt = uxx. Deduce that,

with constant µ, the local error is O((∆x)4) if and only if the parameters a, b and c satisfy a = c
and a + b + c = 1. Show also that, if these conditions hold, then the Fourier stability condition is
achieved for all values of µ if and only if the parameters also satisfy |b| ≤ 2a.

[Hint: In the second half, the roots of the characteristic equation satisfy x1x2 = 1. Then, |x1|, |x2| ≤ 1 if
D ≤ 0, where D is the discriminant of the equation.]

15. For a given analytic function f we consider its truncated Fourier approximation on the interval
[−1, 1], i.e.,

f(x) ≈ φN (x) =

N/2∑

n=−N/2+1

f̂ne
iπnx, where f̂n =

1

2

∫ 1

−1

f(τ)e−iπnτ dτ, n ∈ Z.

3
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Prove that, given any s = 1, 2, . . ., we have for all n ∈ Z \ {0} the equality

f̂n =
(−1)n−1

2

s−1∑

m=0

1

(πin)m+1

[
f (m)(1)− f (m)(−1)

]
+

1

(πin)s
f̂ (s)

n.

16. Unless f is analytic, the rate of decay of its Fourier harmonics can be very slow, certainly slower

than O(N−1). To explore this, let f(x) = |x|−1/2. Prove that f̂n = g(−n) + g(n), where g(n) =∫ 1

0
eiπnτ

2

dτ . Moreover, with the error function erf defined as the integral

erf(z) =
2√
π

∫ z

0

e−τ2

dτ, z ∈ C.

show that its Fourier coefficients are

f̂n =
erf(

√
iπn)

2
√
in

+
erf(

√
−iπn)

2
√
−in

,

and asymptotically for |n| ≫ 1 we have f̂n = O(n−1/2). [Hint: For the last identity use without proof
the asymptotic estimate erf(

√
ix) = 1 +O(x−1) for x ∈ R, |x| ≫ 1.]

17. Consider the solution of the two-point boundary value problem

(2− cosπx)u′′ + u = 1, −1 ≤ x ≤ 1, u(−1) = u(1),

using the spectral method. Plugging the Fourier expansion of u into this differential equation,
show that the ûn obey a three-term recurrence relation. Calculate û0 separately and using the fact
that û−n = ûn (why?), prove further that the computation of ûn for −N/2+1 ≤ n ≤ N/2 (assuming
that ûn = 0 outside this range of n) reduces to the solution of an (N/2)× (N/2) tridiagonal system
of algebraic equations.

18. Set

a(x) =

∞∑

n=−∞

âne
iπnx, (2.1)

the Fourier expansion of a. Explain why a is periodic with period 2. Further, let ñ denote some

selected value of n. Evaluate 1
2

∫ 1

−1
a(x) e−iπñx dx with a(x) given by (2.1). Doing so, you have just

computed the Fourier coefficient âñ. Now choose a(x) = cosπx and compute its corresponding
Fourier coefficients. With this, derive an explicit expression for the coefficients in the N-term
truncated Fourier approximation of the solution u of





((cosπx+ 2)ux)x = sinπx, x ∈ [−1, 1]

periodic boundary conditions and normalisation condition

∫ 1

−1

u(x) dx = 0.

19. Let u be an analytic function in [−1, 1] that can be extended analytically into the complex plane and
possesses a Chebyshev expansion u =

∑
∞

n=0 ǔnTn. Express u′ in an explicit form as a Chebyshev
expansion.

20. The two-point ODE u′′ + u = 1, u(−1) = u(1) = 0, is solved by a Chebyshev method.

(a) Show that the odd coefficients are zero and that u(x) =
∑

∞

n=0 ǔ2nT2n(x). Express the bound-
ary conditions as a linear condition of the coefficients ǔ2n.

(b) Express the differential equation as an infinite set of linear algebraic equations in the coeffi-
cients ǔ2n.

(c) Discuss how to truncate the linear system, keeping in mind the exponential convergence of
the method and the floating-point precision of your computer.

(d) While u(−1) = u(1) we cannot expect a standard spectral method to converge at spectral
speed. Why?

Matlab demo: Compare your conclusions with the online documentation for solving this ODE
at http://www.damtp.cam.ac.uk/user//naweb/ii/chebyshev/chebyshev.php. How
are the boundary conditions enforced in practice?
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