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Dr H. Fawzi

Mathematical Tripos Part II: Michaelmas Term 2023
Numerical Analysis — Examples” Sheet 3

As discussed in the Lectures periodicity is necessary for spectral convergence. Suppose that an
analytic function f on [—1, 1] is not periodic, yet f(—1) = f(+1) and f'(—1) = f’(1). Integrating
by parts the Fourier coefficients f,, show that f,, = O(n~3). Show that the rate of convergence of
the N-terms truncated Fourier expansion of f is hence O(N~2).

Now, suppose f(—1) # f(1). We can force the values at the endpoints to be equal. Set f(z) =
11-2)f(-1)+3(1+2)f(+1) + g(z), where g(z) = f(z) — 1 (1 —2)f(—1) — L (1 + ) f(+1). Verify
that g(£1) = 0 and that if f is analytic then so is g. The idea is now to represent f as a linear
function plus the Fourier expansion of g, i.e.,

o

fz) = %(1 —z)f(—=1) + %(1 ) f(H) + S G

n—=—oo

We can iterate this idea: To do so, construct a function h for which h(£1) = h’(£1) = 0 and verify
that h,, = O(n~3). [Hint: In the second construction the function f will be represented as a cubic function
plus the Fourier expansion of h.]

Consider the following boundary value problem for the heat equation

Up = Ugy, —1<z<1,t>0
u(=1,t) = u(l,t), uy(—1,¢) = u,(1,t), t¢>0 ,
u(z,0) = e™M2, —1<z< 1.

where M € Z. By separation of variables one can compute the exact solution and get

u(x,t) — e—ﬂ2A12t eiﬂMI.

Now, approximate the solution u by its N-term truncated Fourier series and solve the spectral
approximation for the heat equation, i.e.,

N/2 N/2 9

dﬁ‘“ ITNT ~ d ITNT
Z 7 (t)e = Z U (t)@e .

n=—N/2+1 n=—N/2+1

What do you receive? What is the error of this method with the correct choice of N?

By Theorem 4.12, the Gauss-Seidel method for the solution of Az = b converges whenever the
matrix A is symmetric and positive definite. Show, however, by a 3 x 3 counterexample, that the
Jacobi method for such an A need not converge. [Warning: For Jacobi, it is not enough to construct a
positive definite A such that 2D — A is not positive definite, because we did not prove that the Householder-
John theorem gives a criterion. So, you need also to prove that p(D~'(A — D)) > 1.]

Let the Gauss-Seidel method be applied to the equations Ax = b when A is the nonsymmetric

2 X 2 matrix
10 -3
A[ 0 }

Find the spectral radius of the iteration matrix. Then show that the relaxation method, described
in Lecture 17, can reduce the spectral radius by a factor of 2.9. Further, show that iterating twice
with Gauss-Seidel with this relaxation decreases the error [|(*) — (°°)|| by more than a factor of
ten. Estimate the number of iterations of the original Gauss-Seidel method that would be required
to achieve this decrease in the error.
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The function u(z) = z(z — 1), 0 < z < 1, is defined by the equations u”(z) = 2,0 < z < 1, and
u(0) = u(1) = 0. A difference approximation to the differential equation provides the estimates
Um = u(mh), m=1,2,..., M — 1, through the system of equations

{um_12um+um+1 =2h%, m=1,2...,.M—1

ug = upr = 0,

where h = 1/M, and M is a large positive integer. Show that the exact solution of the system is
just w,, = u(mh),m=1,2,...,M — 1.

1(730)

We employ the notation u,, © = u(mh), because we let the system be solved by the Jacobi iteration,

using the starting values u£2> =0,m=1,2,...,M — 1. Prove that the iteration matrix H has the
spectral radius p(H) = cos(r/M). Further, by regarding the initial error vector u(®) — u(>) as a
linear combination of the eigenvectors of H, show that the largest component of u*) — 4(>) for
large k is approximately (8/7) cos®(m/M). Hence deduce that the Jacobi method requires about
2.5M? iterations to achieve [|[u*+1) — ()|, <1076,

Implement using your favourite language (Matlab, Python, Julia, etc.) the multigrid method as
seen in lecture to solve the 1D Poisson equation v’ = f on [0,1] with zero Dirichlet boundary
conditions u(0) = u(1) = 0. Try your method on a grid of size m = 2!° — 1, with a forcing term
containing high and low frequencies. Try changing the parameters of the algorithm (Jacobi vs.
Gauss-Seidel, etc.) and comment.

Apply the standard form of the conjugate gradient method to the linear system
1 00 1
020 |xz=|1]1,
0 0 3 1

starting as usual with z(®) = 0. Verify that the residuals r(?), (1) and r() are mutually orthogonal,
that the search directions d®,d") and d(® are mutually conjugate, and that z(%) satisfies the
equations.

Let the standard form of the conjugate gradient method be applied when A is positive definite.

Express d(®) in terms of #() and (V) > 0,4 = 0,1,...,k. Then deduce in a few lines from the
formula z(*+1) = Z?:o w®d®, from w® > 0, and from the fact that () are orthogonal, that the

sequence {||z*|| : k = 0,1,...} increases monotonically.

The polynomial p(z) = 2™ + Z?:Ol c;x® is the minimal polynomial of the n x n matrix A if it is
the polynomial of lowest degree that satisfies p(4) = 0. Note that m < n holds because of the
Cayley-Hamilton theorem.

Give an example of a 3 x 3 symmetric positive definite matrix with a quadratic minimal polyno-
mial.

Prove that (in exact arithmetic) the conjugate gradient method requires at most m iterations to
calculate the exact solution of Av = b, where m is the degree of the minimal polynomial of A.



