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Dr H. Fawzi

Mathematical Tripos Part II: Michaelmas Term 2023

Numerical Analysis – Examples’ Sheet 3

21. As discussed in the Lectures periodicity is necessary for spectral convergence. Suppose that an
analytic function f on [−1, 1] is not periodic, yet f(−1) = f(+1) and f ′(−1) = f ′(1). Integrating

by parts the Fourier coefficients f̂n show that f̂n = O(n−3). Show that the rate of convergence of
the N -terms truncated Fourier expansion of f is hence O(N−2).

Now, suppose f(−1) 6= f(1). We can force the values at the endpoints to be equal. Set f(x) =
1
2 (1−x)f(−1)+ 1

2 (1+x)f(+1)+ g(x), where g(x) = f(x)− 1
2 (1−x)f(−1)− 1

2 (1+x)f(+1). Verify
that g(±1) = 0 and that if f is analytic then so is g. The idea is now to represent f as a linear
function plus the Fourier expansion of g, i.e.,

f(x) =
1

2
(1− x)f(−1) +

1

2
(1 + x)f(+1) +

∞
∑

n=−∞

ĝn eiπnx.

We can iterate this idea: To do so, construct a function h for which h(±1) = h′(±1) = 0 and verify

that ĥn = O(n−3). [Hint: In the second construction the function f will be represented as a cubic function
plus the Fourier expansion of h.]

22. Consider the following boundary value problem for the heat equation











ut = uxx, − 1 ≤ x ≤ 1, t > 0

u(−1, t) = u(1, t), ux(−1, t) = ux(1, t), t > 0

u(x, 0) = eiπMx, − 1 ≤ x ≤ 1.

,

where M ∈ Z. By separation of variables one can compute the exact solution and get

u(x, t) = e−π2M2t eiπMx.

Now, approximate the solution u by its N -term truncated Fourier series and solve the spectral
approximation for the heat equation, i.e.,

N/2
∑

n=−N/2+1

dûn

dt
(t)eiπnx =

N/2
∑

n=−N/2+1

ûn(t)
d2

dx2
eiπnx.

What do you receive? What is the error of this method with the correct choice of N?

23. By Theorem 4.12, the Gauss-Seidel method for the solution of Ax = b converges whenever the
matrix A is symmetric and positive definite. Show, however, by a 3 × 3 counterexample, that the
Jacobi method for such an A need not converge. [Warning: For Jacobi, it is not enough to construct a
positive definite A such that 2D−A is not positive definite, because we did not prove that the Householder-
John theorem gives a criterion. So, you need also to prove that ρ(D−1(A−D)) > 1.]

24. Let the Gauss-Seidel method be applied to the equations Ax = b when A is the nonsymmetric
2× 2 matrix

A =

[

10 −3
3 1

]

.

Find the spectral radius of the iteration matrix. Then show that the relaxation method, described
in Lecture 17, can reduce the spectral radius by a factor of 2.9. Further, show that iterating twice
with Gauss-Seidel with this relaxation decreases the error ‖x(k) − x

(∞)‖ by more than a factor of
ten. Estimate the number of iterations of the original Gauss-Seidel method that would be required
to achieve this decrease in the error.
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25. The function u(x) = x (x − 1), 0 ≤ x ≤ 1, is defined by the equations u′′(x) = 2, 0 ≤ x ≤ 1, and
u(0) = u(1) = 0. A difference approximation to the differential equation provides the estimates
um ≈ u(mh), m = 1, 2, . . . ,M − 1, through the system of equations

{

um−1 − 2um + um+1 = 2h2, m = 1, 2, . . . ,M − 1

u0 = uM = 0,

where h = 1/M , and M is a large positive integer. Show that the exact solution of the system is
just um = u(mh), m = 1, 2, . . . ,M − 1.

We employ the notation u
(∞)
m = u(mh), because we let the system be solved by the Jacobi iteration,

using the starting values u
(0)
m = 0, m = 1, 2, . . . ,M − 1. Prove that the iteration matrix H has the

spectral radius ρ(H) = cos(π/M). Further, by regarding the initial error vector u
(0) − u

(∞) as a
linear combination of the eigenvectors of H , show that the largest component of u(k) − u

(∞) for
large k is approximately (8/π3) cosk(π/M). Hence deduce that the Jacobi method requires about
2.5M2 iterations to achieve ‖u(k+1) − u

(∞)‖∞ ≤ 10−6.

26. Implement using your favourite language (Matlab, Python, Julia, etc.) the multigrid method as
seen in lecture to solve the 1D Poisson equation u′′ = f on [0, 1] with zero Dirichlet boundary
conditions u(0) = u(1) = 0. Try your method on a grid of size m = 210 − 1, with a forcing term
containing high and low frequencies. Try changing the parameters of the algorithm (Jacobi vs.
Gauss-Seidel, etc.) and comment.

27. Apply the standard form of the conjugate gradient method to the linear system





1 0 0
0 2 0
0 0 3



x =





1
1
1



 ,

starting as usual with x
(0) = 0. Verify that the residuals r(0), r(1) and r

(2) are mutually orthogonal,
that the search directions d

(0),d(1) and d
(2) are mutually conjugate, and that x

(3) satisfies the
equations.

28. Let the standard form of the conjugate gradient method be applied when A is positive definite.
Express d

(k) in terms of r(i) and β(i) > 0, i = 0, 1, . . . , k. Then deduce in a few lines from the

formula x
(k+1) =

∑k
i=0 ω

(i)
d
(i), from ω(i) > 0, and from the fact that r(i) are orthogonal, that the

sequence {‖x(k)‖ : k = 0, 1, . . .} increases monotonically.

29. The polynomial p(x) = xm +
∑m−1

i=0 cix
i is the minimal polynomial of the n × n matrix A if it is

the polynomial of lowest degree that satisfies p(A) = 0. Note that m ≤ n holds because of the
Cayley-Hamilton theorem.
Give an example of a 3 × 3 symmetric positive definite matrix with a quadratic minimal polyno-
mial.
Prove that (in exact arithmetic) the conjugate gradient method requires at most m iterations to
calculate the exact solution of Av = b, where m is the degree of the minimal polynomial of A.
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