30. Let \(A_n \) be an \(n \times n \) TST matrix such that \(a_{i,i} = \alpha \) and \(a_{i,i+1} = a_{i+1,i} = \beta \). Show that the Jacobi iteration for solving \(Ax = b \) converges if \(2|\beta| < |\alpha| \). Moreover, prove that if convergence is required for all \(A_n \) with \(n \geq 1 \) then this inequality is necessary as well as sufficient.

31. Let \(A \) be an \(n \times n \) TST matrix with \(a_{k,k} = \alpha \) and \(a_{k,k+1} = a_{k+1,k} = \beta \). Verify that \(\alpha \geq 2|\beta| > 0 \) implies that the matrix is positive definite. Now, we precondition the conjugate gradient method for \(Ax = b \) with the Toeplitz lower-triangular bidiagonal matrix \(Q \).

Determine real numbers \(\gamma \) and \(\delta \) such that \(QQ^T \) differs from \(A \) in just the \((1,1)\) coordinate. Prove that with this choice of \(\gamma \) and \(\delta \) the preconditioned conjugate gradient method converges in just two iterations.

32. Let

\[
A = \begin{pmatrix}
A_1 & A_2 \\
A_2^T & A_3
\end{pmatrix}, \quad S = \begin{pmatrix}
A_1 & O \\
O & A_3
\end{pmatrix},
\]

where \(A_1, A_3 \) are symmetric \(n \times n \) matrices and the rank of the \(n \times n \) matrix \(A_2 \) is \(r \leq n - 1 \). We further stipulate that the \((2n) \times (2n)\) matrix \(A \) is positive definite. Let \(A_1 = Q_1 Q_1^T, A_3 = Q_3 Q_3^T \) be Cholesky factorizations and assume that the preconditioner \(Q \) is the lower-triangular Cholesky factor of \(S \) (hence \(QQ^T = S \)). Prove that

\[
B = Q^{-1} A Q^{-T} = \begin{pmatrix}
I & F \\
F^T & I
\end{pmatrix}, \quad \text{where} \quad F = Q_1^{-1} A_2 Q_3^{-T}.
\]

Supposing that the eigenvalues of \(B \) are \(\lambda_1, \ldots, \lambda_{2n} \), while the eigenvalues of \(FF^T \) are \(\mu_1, \ldots, \mu_n \geq 0 \), prove that, without loss of generality,

\[
\lambda_k = 1 - \sqrt{\mu_k}, \quad \lambda_{n+k} = 1 + \sqrt{\mu_k}, \quad k = 1, 2, \ldots, n.
\]

Prove that the rank of \(FF^T \) is at most \(r \) thereby deducing that \(B \) has at most \(2r + 1 \) distinct eigenvalues. What does this tell you about the number of steps before the preconditioned conjugate gradient method terminates in exact arithmetic?

Matlab demo: Download the Matlab GUI for Preconditioning of Conjugate Gradient from http://www.damtp.cam.ac.uk/user/naweb/ii/pressure/precond.precond.php. Setup an example for a system matrix \(A \) of the type just discussed and use the GUI to compute the eigenvalues of \(A^T A \) and of the preconditioned matrix. How does the number of iterations the CG method needs changes? How robust is the CG method to perturbations of \(A \) or \(b \) by a small random matrix or vector respectively?

33. Let \(A \) be the \(3 \times 3 \) matrix

\[
A = \begin{pmatrix}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{pmatrix},
\]

where \(\lambda \) is real and nonzero. Find an explicit expression for \(A^k, k = 1, 2, 3, \ldots \).

The sequence \(x^{(k+1)}, k = 0, 1, 2, \ldots, \) is generated by the power method \(x^{(k+1)} = A x^{(k)}/\|A x^{(k)}\| \), where \(x^{(0)} \) is a nonzero vector in \(\mathbb{R}^3 \). Deduce from your expression for \(A^k \) that the second and third components of \(x^{(k+1)} \) tend to zero as \(k \to \infty \). Further, show that this remark implies \(A x^{(k+1)} = \lambda x^{(k+1)} \to 0 \), so the power method tends to provide a solution to the eigenvalue equation.

Matlab demo: Reproduce your findings using the Matlab GUI for Computing eigenvalues and eigenvectors from http://www.damtp.cam.ac.uk/user/naweb/ii/eigenstuff/eigenstuff.php. How does the situation change when you change one of the \(\lambda \)-entries in \(A \) to another value?

34. Let \(A \) be a symmetric \(2 \times 2 \) matrix with distinct eigenvalues and normalized eigenvectors \(v_1 \) and \(v_2 \).

Given \(x^{(0)} \in \mathbb{R}^2 \), the sequence \(x^{(k+1)}, k = 0, 1, 2, \ldots, \) is generated in the following way. The Rayleigh
38. Let $A = \frac{x^{(k)}}{\|x^{(k)}\|^2}$ be an estimate for an eigenvalue of A, the vector norm being Euclidean. Then, inverse iteration gives

$$y = (A - \lambda_k I)^{-1}x^{(k)},$$

and we set $x^{(k+1)} = y/\|y\|$. Show that, if $x^{(k)} = (v_1 + \epsilon_k v_2)/(1 + \epsilon_k^2)^{1/2}$, where $|\epsilon_k|$ is small, then $|\epsilon_{k+1}|$ is of magnitude $|\epsilon_k|^3$. In other words, the method enjoys a third order rate of convergence.

35. The symmetric matrix

$$A = \begin{pmatrix} 9 & -8 & 2 \\ -8 & 9 & -2 \\ 2 & -2 & 10 \end{pmatrix}$$

has the eigenvector $v = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$.

Calculate an orthogonal matrix Ω by a Householder transformation such that Ωx is a multiple of the first coordinate vector e_1. Then, form the product $\Omega^T A \Omega$. You should find that this matrix is suitable for deflation. Hence, identify all the eigenvalues and eigenvectors of A.

36. Show that the vectors x, Ax and A^2x are linearly dependent in the case

$$A = \begin{pmatrix} 4 & 5 & 2 & 0 \\ -26 & -14 & 1 & 4 \\ -2 & 2 & 3 & 1 \\ -43 & -8 & 13 & 9 \end{pmatrix}$$

and $x = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 5 \end{pmatrix}$.

Hence, calculate two of the eigenvalues of A. Obtain by deflation a 2×2 matrix whose eigenvalues are the remaining eigenvalues of A. Then, find the other eigenvalues of A.

37. Use Householder transformations to generate a tridiagonal matrix that is similar to the matrix

$$A = \begin{pmatrix} 9 & -1 & 2 & 2 \\ -1 & 3 & 4 & 2 \\ 2 & 4 & 14 & -3 \\ 2 & 2 & -3 & 4 \end{pmatrix}.$$

Your final matrix should be symmetric and should have the same trace as A.

38. Let A be an $n \times n$ symmetric tridiagonal matrix that is not deflatable (i.e., all the elements of A that are adjacent to the diagonal are nonzero). Prove that A has n distinct eigenvalues. Prove also that, if A has a zero eigenvalue and a single iteration of the QR algorithm is applied to A, then the resultant tridiagonal matrix is deflatable. [Hint: In the first part show that for each eigenvalue λ there is a unique solution to $A w = \lambda w$. In the second part deduce that a diagonal element of R is zero.]

39. Let A be a 2×2 symmetric matrix whose trace does not vanish, let $A_0 = A$, and let the sequence of matrices $\{A_k : k = 1, 2, \ldots\}$ be calculated by applying the QR algorithm to A_0 (without any origin shifts). Express the matrix element $(A_{k+1})_{1,1}$ in terms of the elements of A_k. Show that, except in the special case when A is already diagonal, the sequence $\{(A_k)_{1,1} : k = 0, 1, \ldots\}$ converges monotonically to the eigenvalue of A of larger modulus. [Hint: The sign of this eigenvalue is the same as the sign of the trace of A. Also, for any symmetric matrix B, we have $B_{1,1} = e_1^T B e_1$ and $\lambda_{\min} \|x\|^2 \leq x^T B x \leq \lambda_{\max} \|x\|^2$.]

40. Apply a single step of the QR method to the matrix

$$A = \begin{pmatrix} 4 & 3 & 0 \\ 3 & 1 & \epsilon \\ 0 & \epsilon & 0 \end{pmatrix},$$

where $\epsilon > 0$. You should find that the $(2,3)$ element of the new matrix is $O(\epsilon^3)$ and that the new matrix has exactly the same trace as A.

Matlab demo: Download the Matlab GUI for Visual QR from http://www.damtp.cam.ac.uk/user/naweb/ii/qr_hex/qr_hex.php and let the QR method run for the matrix A above. Try it with your own choice of a square matrices A and see what the QR method is doing to the entries of A. What happens if you choose a symmetric matrix A, what if A is upper Hessenberg?

41. (For those who like analysis.) Let A be a real 4×4 upper Hessenberg matrix whose eigenvalues all have nonzero imaginary parts, where the moduli of the two complex pairs of eigenvalues are different. Prove that, if the matrices A_k, $k = 0, 1, 2, \ldots$, are calculated from A by the QR algorithm, then the subdiagonal elements $(A_k)_{2,1}$ and $(A_k)_{4,3}$ stay bounded away from zero, but $(A_k)_{3,2}$ converges to zero as $k \to \infty$.

4