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Dr H. Fawzi

Mathematical Tripos Part II: Michaelmas Term 2023

Numerical Analysis – Examples’ Sheet 4

30. Let An be an n × n TST matrix such that ai,i = α and ai,i+1 = ai+1,i = β. Show that the Jacobi
iteration for solving Ax = b converges if 2|β| < |α|. Moreover, prove that if convergence is required
for all An with n ≥ 1 then this inequality is necessary as well as sufficient.

31. Let A be an n×n TST matrix with ak,k = α and ak,k+1 = ak+1,k = β. Verify that α ≥ 2|β| > 0 implies
that the matrix is positive definite. Now, we precondition the conjugate gradient method for Ax = b

with the Toeplitz lower-triangular bidiagonal matrix Q,

qk,k = γ, qk,k−1 = δ, qk,ℓ = 0 otherwise.

Determine real numbers γ and δ such that QQT differs from A in just the (1, 1) coordinate. Prove
that with this choice of γ and δ the preconditioned conjugate gradient method converges in just two
iterations.

32. Let

A =

(

A1 A2

AT
2 A3

)

, S =

(

A1 O
O A3

)

,

where A1, A3 are symmetric n× n matrices and the rank of the n× n matrix A2 is r ≤ n− 1. (This is
the case for example when A is a band matrix with the bandwidth 2r + 1.) We further stipulate that
the (2n)× (2n) matrix A is positive definite (hence so are A1 and A3). Let A1 = Q1Q

T
1 , A3 = Q3Q

T
3 be

Cholesky factorizations and assume that the preconditioner Q is the lower-triangular Cholesky factor
of S (hence QQT = S).

(a) Prove that

B = Q−1AQ−T =

(

I F
FT I

)

, where F = Q−1
1 A2Q

−T
3 .

(b) Assuming that the eigenvalues of B are λ1, ..., λ2n, while the eigenvalues of FFT are µ1, ..., µn ≥
0, prove that, without loss of generality,

λk = 1−√
µk, λn+k = 1 +

√
µk, k = 1, 2, . . . , n.

[Hint: For M =
(

A
C

B
D

)

, we have detM = det(A−BD−1C) det(D).]

(c) Prove that the rank of FFT is at most r, thereby deducing that B has at most 2r + 1 distinct
eigenvalues. What does this tell you about the number of steps before the preconditioned conjugate
gradient method terminates in exact arithmetic?

33. Let A be the 3× 3 matrix

A =





λ 1 0
0 λ 1
0 0 λ



 ,

where λ is real and nonzero. Find an explicit expression for Ak, k = 1, 2, 3, . . ..

The sequence x(k+1), k = 0, 1, 2, . . ., is generated by the power method x(k+1) = Ax(k)/‖Ax(k)‖,
where x(0) is a nonzero vector in R

3. Deduce from your expression for Ak that the second and third
components of x(k+1) tend to zero as k → ∞. Further, show that this remark implies Ax(k+1) −
λx(k+1) → 0, so the power method tends to provide a solution to the eigenvalue equation.
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34. Let A be a symmetric 2 × 2 matrix with distinct eigenvalues and normalized eigenvectors v1 and v2.
Given x(0) ∈ R

2, consider the sequence x(k+1), k = 0, 1, 2, . . ., generated by the Rayleigh quotient
iteration:

{

λk = x(k)TAx(k)/‖x(k)‖2

y = (A− λkI)
−1x(k), and we set x(k+1) = y/‖y‖.

Show that, if x(k) = (v1 + ǫkv2)/(1 + ǫ2k)
1/2, where |ǫk| is small, then |ǫk+1| is of magnitude |ǫk|3. In

other words, the method enjoys a third order rate of convergence.

35. The symmetric matrix

A =





9 −8 2
−8 9 −2
2 −2 10



 has the eigenvector v =





2
−2
1



 .

Calculate an orthogonal matrix Ω by a Householder transformation such that Ωv is a multiple of the
first coordinate vector e1. Then, form the product ΩTAΩ. You should find that this matrix is suitable
for deflation. Hence, identify all the eigenvalues and eigenvectors of A.

36. Show that the vectors x, Ax and A2x are linearly dependent in the case

A =









4 5 2 0
−26 −14 1 4
−2 2 3 1

−43 −8 13 9









and x =









1
0
1
5









.

Hence, calculate two of the eigenvalues of A. Obtain by deflation a 2 × 2 matrix whose eigenvalues
are the remaining eigenvalues of A. Then, find the other eigenvalues of A.

37. Use Householder transformations to generate a tridiagonal matrix that is similar to the matrix

A =









9 −1 2 2
−1 3 4 2
2 4 14 −3
2 2 −3 4









.

Your final matrix should be symmetric and should have the same trace as A.

38. Let A be an n × n symmetric tridiagonal matrix that is not deflatable (i.e., all the elements of A that
are adjacent to the diagonal are nonzero). Prove that A has n distinct eigenvalues. Prove also that, if
A has a zero eigenvalue and a single iteration of the QR algorithm is applied to A, then the resultant
tridiagonal matrix is deflatable. [Hint: In the first part show that for each eigenvalue λ there is a unique
solution to Aw = λw. In the second part deduce that a diagonal element of R is zero.]

39. Let A be a 2×2 symmetric matrix whose trace does not vanish, let A0 = A, and let the sequence of ma-
trices {Ak : k = 1, 2, . . .} be calculated by applying the QR algorithm to A0 (without any origin shifts).
Express the matrix element (Ak+1)1,1 in terms of the elements of Ak. Show that, except in the special
case when A is already diagonal, the sequence {(Ak)1,1 : k = 0, 1, . . .} converges monotonically to the
eigenvalue of A of larger modulus. [Hint: The sign of this eigenvalue is the same as the sign of the trace of
A. Also, for any symmetric matrix B, we have B1,1 = eT

1 Be1 and λmin‖x‖2 ≤ xTBx ≤ λmax‖x‖2.]

40. Apply a single step of the QR method to the matrix

A =





4 3 0
3 1 ǫ
0 ǫ 0



 ,

where ǫ > 0. You should find that the (2, 3) element of the new matrix is O(ǫ3) and that the new
matrix has exactly the same trace as A.

41. (For those who like analysis). Let A be a real 4 × 4 upper Hessenberg matrix whose eigenvalues all
have nonzero imaginary parts, where the moduli of the two complex pairs of eigenvalues are different.
Prove that, if the matrices Ak, k = 0, 1, 2, . . ., are calculated from A by the QR algorithm, then the
subdiagonal elements (Ak)2,1 and (Ak)4,3 stay bounded away from zero, but (Ak)3,2 converges to
zero as k → ∞.
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