Examples Sheet 4

1. Consider the graph for each of the maps $F: \mathbb{R} \to \mathbb{R}$,

(a)
$$F(x) = -x$$
, (b) $F(x) = x - x^3$, (c) $F(x) = x + x^3$, (d) $F(x) = x + x^2$.

State whether the non-hyperbolic fixed point at the origin is Liapunov stable, asymptotically stable or neither. In case (d) what set of points are attracted to the origin?

- 2. Find and analyse the successive bifurcations in the one-dimensional map $F(x,\nu)=\nu-\frac{1}{4}x^2$ as ν increases from $-\infty$ to 5.
- 3. Consider the logistic map F and a quadratic map G on \mathbb{R} , as given by

$$F(x,\mu) = \mu x(1-x),$$
 $G(x,\nu) = \nu - \frac{1}{4}x^2.$

Show that for appropriate values of μ and ν , which should be determined, F and G are topologically conjugate, i.e., there exists a map $h: \mathbb{R} \to \mathbb{R}$ such that $h \circ F = G \circ h$. [Hint: look for a linear map.] In the light of this result comment on your answer to Q2.

4. Consider the following generalised sawtooth maps on [0,1): $S_n(x) = nx \, [\text{mod } 1]$. By considering the binary representation, determine explicitly the 3-cycles of S_2 and express them as fractions.

How many 3-cycles does S_3 have?

- 5^* . Construct an aperiodic orbit of the sawtooth map (S_2 of question 4) that is dense in [0,1).
- 6. Let F be a continuous map on $\mathbb R$ and let $x_0 < x_1 < x_2 < x_3$ be the members of a 4-cycle with $F(x_n) = x_{n+1 [\operatorname{mod} 4]}$. Prove (formally, using the IVT etc.) that F has a fixed point, a 2-cycle and a 3-cycle. Explain (informally, using a directed graph) why F has at least one 4-cycle in addition to (x_0, \dots, x_3) and at least two 3-cycles.
- 7. Let F be a continuous map on $\mathbb R$ and let $x_4 < x_2 < x_0 < x_6 < x_1 < x_3 < x_5$ be the members of a 7-cycle with $F(x_n) = x_{n+1 [\bmod 7]}$. Show that F has N-cycles for N=1,2,4 and all $N \geq 6$.

[Hint: Use a directed graph and work informally. Note that we cannot deduce whether or not F has a 3-cycle or a 5-cycle.]

8. Consider the skewed tent map

$$F(x) = \begin{cases} \mu x & x \in [0, x_m], \\ (\mu/s)(1-x) & x \in [x_m, 1], \end{cases}$$

where $x_m=1/(1+s)$, and $s\in(0,\infty)$ parametrises the skewness. When is F a map of [0,1] into itself? When is there a nontrivial (orientation-reversing) fixed point x_0 , and when is it stable? Sketch F and F^2 together for each of the cases $\mu<1$, $1<\mu< s$ and $\mu>1$, s. For $\mu>1$ show that F^2 acts like a skewed tent map on two intervals $[x_{-1},x_0]$ and $[x_0,x_{-2}]$ with x_0 as above, and the remaining x_i and parameters μ' and s' to be determined.

Now consider the case $\mu>1,s$. Deduce the value $\mu_1(s)$ (with $\mu_1(1)=\sqrt{2}$) such that F^2 has a horseshoe for $\mu\geqslant\mu_1$. Deduce also that F^2 has nontrivial fixed points, that they are unstable, and then that F has 2^k -cycles for all $k=1,2,\ldots$ and that F is chaotic. *Sketch in the (μ,s) -plane the regions where $F^n(x)$ is generically attracted to $-\infty$, to 0, to x_0 , to one interval, and to more than one interval. **Find values $\mu_k(s)$, with $\mu_k(1)=2^{2^{-k}}$ such that the chaotic attractor consists of 2^k intervals for $\mu_{k+1}\leqslant\mu<\mu_k$.

9. (i) For the logistic map $F(x,\mu)=\mu x(1-x)$ show that when $2<\mu<\mu_c$ there is exactly one point for n=0 and exactly two points for each $n\geq 1$ such that

$$F^{n+1}(x,\mu) = 1 - \mu^{-1}, \qquad F^n(x,\mu) \neq 1 - \mu^{-1},$$

where $\mu_c = 3.678...$ is a root of $\mu^4 - 4\mu^3 + 16 = 0$. Show further that the set of all such points as n varies has 0 and 1 as its only points of accumulation.

- (ii) What can you say about the domain of attraction of the 2-cycle in $3 < \mu < 1 + \sqrt{6}$?
- 10*. In the bifurcation diagram for the logistic map there are several smooth dark tracks running through the chaotic part of the diagram. What are they? [Hint Think about $F(\frac{1}{2}, \mu)$.]

These tracks all intersect at the tip of the "white wedge" at $\mu \approx 3.68$. Can you obtain a more precise value of μ ?

11*. The bifurcation diagram for the logistic map $F(x,\mu)=\mu x(1-x)$ shows a broad window around $\mu\approx 3.83$, because of the creation of a stable 3-cycle. Investigate the appearance of the 3-cycle as μ increases using the following approach.

A 3-cycle may be represented by

$$x_n = \alpha + \beta \omega^n + \beta^* \omega^{*n}$$

where $\omega=e^{2\pi i/3}$ and * denotes complex conjugate. Show from the logistic map that

$$\alpha = \mu \alpha (1 - \alpha) - 2\mu |\beta|^2$$

$$\mu \beta^{*2} = [\mu (1 - 2\alpha) - \omega] \beta$$

$$\mu \beta^2 = [\mu (1 - 2\alpha) - \omega^*] \beta^*.$$

Hence by eliminating β show that

$$9\mu^2\alpha^2 - (9\mu^2 + 3\mu)\alpha + 2(\mu^2 + \mu + 1) = 0.$$

2

Deduce that the 3-cycle appears at $\mu = 1 + \sqrt{8} \approx 3.8284$.