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Numerical Analysis — Lecture 12

8 The Peano kernel theorem

8.1 The theorem

Our point of departure is the Taylor formula with an integral remainder term,
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which can be verified by integration by parts. Suppose that we are given an approximant (e.g. to a
function, a derivative, an integral etc.) whose error vanishes for all f € Pi[z]. The Taylor formula
produces an expression for the error that depends on f*+1). This is the basis for the Peano kernel
theorem.

Formally, let L(f) be an error of an approximant. Thus, L maps C|a,b], say, to R. We assume
that it is linear, i.e. L(af + 8g) = aL(f) + BL(g) Vo, 8 € R, and that L(f) = 0 for all f € Py[x].
Thus, (8.1) implies
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To make the range of integration independent of z, we introduce the notation

b
(z—0)k = { ém - 0)*, i i z whence  L(f) = %L {/ (x — e)if(kﬂ)(é) d6} .

Let K(0) := L|(z — 0)%] for = € [a,b]. [Note: K is independent of f.] Suppose that it is allowed
to exchange the order of action of [ and L. Because of the linearity of L, we then have

b
L) = [ KO 6. (8.2)

The Peano kernel theorem Let L be a linear functional (a linear mapping from a space of
functions to R) such that L(f) = 0 for all f € Pr[z]. Provided that f € C¥*![a,b] and the above
exchange of L with the integration sign is valid, the formula (8.2) is true. |

8.2 An example and few useful formulae
Let L(f) := f'(0) — [-2f(0) + 2f(1) — £ f(2)] — this corresponds to approximating

F10) & =3 £(0) + 27(1) = ).

Then L(f) = 0 for f € Py[z] (verify by trying f(z) = 1,z,2? and invoking linearity). Thus, for
f € C30,2] we have
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To evaluate the Peano kernel K, we fix 6. Letting g(z) := (z — 6)3, we have

K@) = L(g9)=g'(0) — [-59(0) +29(1) - 59(2)]
= 200-0); — [-3(00-0)% +2(1 - 6)7 — 5(2 - 0)]
—20+302+(0—%6) 0, 6<0,
B —2(1—0)2+§( —6)? =260 — 267, 0<6<1,
5(2_6)7 1§6§2
0, 6> 2.

[Note: It is obvious that K(0) =0 for 8 & [0,2], since then it acts on a quadratic polynomial.]

Back to the general case... Typically, L involves differentiation and integration. Since
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the exchange of L with integration is justified in these cases.

Theorem Suppose that K doesn’t change sign in (a,b) and that f € C**1[a,b]. Then
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Proof. Let (perversely!) K < 0. Then

b
< K (0) min f*+D(z)dg = 1 / K(0)df | min fH+D(2).
kl k! a z€[a,b]
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Likewise L(f) > 4 [f K dﬂ] max, e[, 5 f ¥+ (z), consequently

min f*+D () < % < max f*HD ()
z€[a,b] T fa K(g) de z€[a,b]

and the required result follows from the mean value theorem. Similar analysis pertains to the case
K > 0. |

Back to our example We have K > 0 and f02 0)do = % Consequently L(f) = % x %f”'(f) _
%f”/(f) for some ¢ € (0,2). We deduce in partlcular that |L(f)|] < %||f”’||oo, where ||g||o =
max,e[o,2] lg(x)| — the co-norm.

Likewise, generalising the definition of the co-norm to an arbitrary interval [a, b], we can easily
deduce from

r)dz <||g||oo/ ()] da,

that |L(f)] < %—j’\l( )| 6| f*+D || and that |L(f)] < %ﬂ}(nagjf\f(”+n(m)\dm.TFhm is valid
1/2
also when K changes sign. Moreover, letting || f|l2 = [fab |f(x)|? da:] — the 2-norm — the

Cauchy-Schwarz inequality x) dm‘ < |Ifll2llgll2 implies that |L(f)| < %||K||2||f(’“+1)||2.




