Example Sheet 1

- 1. In the following, the indices i, j, k, ℓ, m take the values 1, 2, 3, and the summation convention applies. In particular let n be a unit vector, i.e. $n_i n_i = 1$.
 - (a) Simplify the following expressions

$$\delta_{ij}a_j$$
, $\delta_{ij}\delta_{jk}$, $\delta_{ij}\delta_{ji}$, $\delta_{ij}n_in_j$, $\epsilon_{ijk}\delta_{jk}$, $\epsilon_{ijk}\epsilon_{ij\ell}$, $\epsilon_{ijk}\epsilon_{ikj}$, $\epsilon_{ijk}(\boldsymbol{a}\times\boldsymbol{b})_k$.

(b) For each of the following equations, either give the equivalent in vector or matrix notation or explain why the equation is invalid.

$$x_i = a_i b_k c_k + d_i , \quad x_i = a_j b_i + c_k d_i e_k f_j , \quad u = \epsilon_{jk\ell} v_k w_\ell x_j ,$$

$$\epsilon_{ijk} x_j y_k \epsilon_{i\ell m} x_\ell y_m = \mu , \qquad A_{ik} B_{k\ell} = T_{ik} \delta_{k\ell} , \qquad x_k = A_{ki} B_{ji} y_j .$$

(c) Write the following equations in suffix notation using the summation convention.

$$(x + \mu y) \cdot (x - \mu y) = \kappa$$
, $x = |a|^2 b - |b|^2 a$, $(2x \times y) \cdot (a + b) = \lambda$.

- (d) Given that $A_{ij} = \epsilon_{ijk} a_k$ (for all i, j), show that $2a_k = \epsilon_{kij} A_{ij}$ (for all k).
- (e) Show that $\epsilon_{ijk}s_{ij}=0$ (for all k) if and only if $s_{ij}=s_{ji}$ (for all i,j).
- (f) Given that $N_{ij} = \delta_{ij} \epsilon_{ijk} n_k + n_i n_j$ and $M_{ij} = \delta_{ij} + \epsilon_{ijk} n_k$, show that $N_{ij} M_{jk} = 2\delta_{ik}$.
- 2. A fluid flow has the constant velocity vector (in Cartesian coordinates)

$$\boldsymbol{v}(\boldsymbol{r}) = (0, 0, W).$$

Explicitly calculate the volume flux of fluid,

$$Q = \int \boldsymbol{v} \cdot d\boldsymbol{S},$$

flowing across (a) the open hemispherical surface $r = a, z \ge 0$, and (b) the disc $r \le a, z = 0$. Verify that the divergence theorem holds.

3. For a surface S enclosing a volume V, apply the divergence theorem to a vector field $\mathbf{F} = \mathbf{a}p$, where \mathbf{a} is an arbitrary constant vector and $p(\mathbf{r})$ is a scalar field. Deduce that

$$\int_{V} \boldsymbol{\nabla} p \, \mathrm{d}V = \oint_{S} p \, \mathrm{d}\boldsymbol{S} \,.$$

4. A time-independent magnetic field B(r) is given by

$$\boldsymbol{B} = \frac{\mu_0 I}{2\pi} \, \frac{\boldsymbol{e}_z \times \boldsymbol{r}}{x^2 + y^2} \,,$$

where μ_0 is the magnetic permeability and I is a constant. Using Cartesian coordinates, calculate the electric current density J given by the steady Maxwell equation $\nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{J}$. Also evaluate $\oint_C \boldsymbol{B} \cdot d\boldsymbol{r}$, where C is a circle of radius a in the plane z = 0 and centred on x = y = 0. Discuss whether Stokes's theorem applies in this situation.

5. Show that, in Cartesian coordinates,

$$abla^2 \boldsymbol{F} = \boldsymbol{\nabla} (\boldsymbol{\nabla} \cdot \boldsymbol{F}) - \boldsymbol{\nabla} \times (\boldsymbol{\nabla} \times \boldsymbol{F}).$$

This vector identity remains true for all coordinate systems; however, for non-Cartesian coordinates,

$$(\nabla^2 \mathbf{F})_i \neq \nabla^2 F_i$$
.

Why is this the case? Illustrate this point by evaluating $\nabla^2 \mathbf{F}$ for $\mathbf{F} = f(\rho) \mathbf{e}_{\phi}$ in cylindrical polar coordinates (ρ, ϕ, z) and comparing the result with $\nabla^2 f$.

6. Find the general circularly symmetric solution to the fourth-order equation

$$\nabla^4 \Psi \equiv \nabla^2 (\nabla^2 \Psi) = 0.$$

Hint: use plane polar coordinates (ρ, ϕ) , and do not be too eager to expand everything out.

Find those circularly symmetric solutions in the unit disc that are equal to unity at the centre $\rho = 0$ and vanish on the boundary $\rho = 1$. Give a further condition to render the solution unique.

7. Parabolic coordinates (u, v, ϕ) are defined in terms of Cartesian coordinates (x, y, z) by

$$x = uv\cos\phi$$
, $y = uv\sin\phi$, $z = \frac{1}{2}(u^2 - v^2)$.

Show that the surfaces of constant u, and those of constant v, are surfaces obtained by rotating parabolae about the z-axis. What are the surfaces of constant ϕ ? Show that the coordinate surfaces intersect at right angles and hence that these coordinates are orthogonal. Find the scale factors (h_u, h_v, h_ϕ) defined by

$$|\mathrm{d} \bm{r}|^2 = h_u^2 \, \mathrm{d} u^2 + h_v^2 \, \mathrm{d} v^2 + h_\phi^2 \, \mathrm{d} \phi^2 \, .$$

Hence obtain the Laplacian in these coordinates using the formula

$$\nabla^2 = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial q_1} \left(\frac{h_2 h_3}{h_1} \frac{\partial}{\partial q_1} \right) + \frac{\partial}{\partial q_2} \left(\frac{h_3 h_1}{h_2} \frac{\partial}{\partial q_2} \right) + \frac{\partial}{\partial q_3} \left(\frac{h_1 h_2}{h_3} \frac{\partial}{\partial q_3} \right) \right] .$$

8. Consider the two-stage transformation of Cartesian coordinates (x, y, z) given by

$$x = ax'$$
, $y = by'$, $z = cz'$,
 $x' = r' \sin \theta' \cos \phi'$, $y' = r' \sin \theta' \sin \phi'$, $z' = r' \cos \theta'$.

where a, b and c are positive constants. Calculate the Jacobian matrices of the transformations $(x, y, z) \mapsto (x', y', z')$ and $(x', y', z') \mapsto (r', \theta', \phi')$ and verify explicitly that

$$\frac{\partial(x,y,z)}{\partial(r',\theta',\phi')} = \frac{\partial(x,y,z)}{\partial(x',y',z')} \frac{\partial(x',y',z')}{\partial(r',\theta',\phi')}.$$

Are the coordinates (r', θ', ϕ') orthogonal? What range of these coordinates is required to cover the interior of the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1?$$

Express the volume element in coordinates (r', θ', ϕ') and hence calculate the volume of the ellipsoid.

9. In a Cartesian coordinate system (x_1, x_2, x_3) , A is the point (0, 0, -1), B is the point (0, 0, 1) and P is an arbitrary point (x_1, x_2, x_3) . In a curvilinear coordinate system, the coordinates of P are specified by

$$u_1 = \frac{1}{2}(r_1 + r_2)$$
 $u_2 = \frac{1}{2}(r_1 - r_2)$ $u_3 = \phi$

where r_1 and r_2 are the distances AP and BP respectively and ϕ is the angle between the planes ABP and $x_2 = 0$. Show that $x_3 = u_1u_2$ and that the distance ρ from P to the x_3 -axis is equal to $\sqrt{(u_1^2 - 1)(1 - u_2^2)}$. Next evaluate $\partial x_i/\partial u_j$ (with i, j = 1,2,3). Deduce that the curvilinear coordinates are orthogonal and sketch the coordinate surfaces. Show that the metric coefficients are

$$h_1 = \sqrt{\frac{u_1^2 - u_2^2}{u_1^2 - 1}}, \quad h_2 = \sqrt{\frac{u_1^2 - u_2^2}{1 - u_2^2}}, \quad h_3 = \sqrt{(u_1^2 - 1)(1 - u_2^2)}.$$

Show that if the function Ψ satisfies Laplace's equation and is independent of u_2 and u_3 then it has the form

$$\Psi = a + b \ln \left(\frac{u_1 - 1}{u_1 + 1} \right)$$

for constant a and b.

10. A uniform stretched string of length L, mass per unit length ρ and tension $T = \rho c^2$ is fixed at both ends. The motion of the string is resisted by the surrounding medium, the resistive force per unit length being $-2\mu\rho\dot{y}$, where y(x,t) is the transverse displacement and $\dot{y} = \partial y/\partial t$. Generalize the argument given in lectures to show that the equation of motion of the string is

$$\frac{\partial^2 y}{\partial t^2} + 2\mu \frac{\partial y}{\partial t} = c^2 \frac{\partial^2 y}{\partial x^2}.$$

Find y(x,t) if $\mu = \pi c/L$, $y(x,0) = d\sin(\pi x/L)$ and $\dot{y}(x,0) = 0$.

If an extra transverse force $F \sin(\pi x/L) \cos(\pi ct/L)$ per unit length acts on the string, find the resulting forced oscillation.

11. Show that the solution of Laplace's equation, $\nabla^2 \Phi = 0$, in the region 0 < x < a, 0 < y < b, 0 < z < c, with $\Phi = 1$ on the surface z = 0 and $\Phi = 0$ on the other surfaces, is

$$\Phi = \frac{16}{\pi^2} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\sin[(2m-1)\pi x/a] \sin[(2n-1)\pi y/b] \sinh[k(c-z)]}{(2m-1)(2n-1) \sinh(kc)},$$

where
$$k^2 = (2m-1)^2 \pi^2 / a^2 + (2n-1)^2 \pi^2 / b^2$$
.

12. The temperature distribution $\theta(x,t)$ along a thin bar of length L satisfies the one-dimensional diffusion equation

$$\frac{\partial \theta}{\partial t} = \nu \frac{\partial^2 \theta}{\partial x^2} \,,$$

where the diffusivity ν is a constant, t denotes time and x is the distance from one of the ends. Find $\theta(x,t)$ if the bar is insulated at each end (i.e. if $\partial\theta/\partial x=0$ at each end), and if the initial temperature distribution is given by

$$\theta(x,0) = 2\theta_0 \cos^2\left(\frac{\pi x}{L}\right)$$
,

where θ_0 is a constant. For large times what is the temperature distribution in the bar? Comment.

This example sheet is available at http://www.damtp.cam.ac.uk/user/examples/ Hints and answers will be posted to CamTools. Supervisors may request these early. Comments/corrections to M.Wingate@damtp.cam.ac.uk.