Example Sheet 2

1. Define $\delta_{\epsilon}(x)$ for $\epsilon > 0$ by

$$\delta_{\epsilon}(x) = \begin{cases} (x+\epsilon)/\epsilon^2 & -\epsilon < x < 0\\ (\epsilon-x)/\epsilon^2 & 0 \leqslant x < \epsilon\\ 0 & \text{otherwise.} \end{cases}$$

(a) Evaluate

$$\int_{-\infty}^{\infty} \delta_{\epsilon}(x) \, \mathrm{d}x$$

(b) Argue that for a 'good' function f and a constant ξ

$$\lim_{\epsilon \to 0+} \int_{-\infty}^{\infty} \delta_{\epsilon}(x-\xi) f(x) \, \mathrm{d}x = f(\xi).$$

Hint: Consider the substitution $x - \xi = \epsilon t$.

- (c) Sketch $\delta_{\epsilon}(x)$ and comment.
- 2. (a) Starting from the definition that $\delta(x)$ is the generalized function such that for all 'good' functions f(x)

$$\int_{-\infty}^{\infty} \delta(x-\xi) f(x) \, \mathrm{d}x = f(\xi) \,,$$

show that, for constant $a \neq 0$,

$$\delta(ax) = \frac{1}{|a|}\delta(x) \,.$$

(b) Evaluate

$$\int_{-\infty}^{\infty} |x| \delta(x^2 - a^2) \,\mathrm{d}x \,,$$

where a is a non-zero constant. *Hint: the answer is not 2a. Consider a substitution such as* $t = x^2$ *or one similar.*

3. Show that the equation

$$y'' + py' + qy = f(x) ,$$

where p and q are constants, can be written in the form

$$z' - az = f, \qquad y' - by = z,$$

for suitable choices of the constants a and b. Solve these first-order equations using integrating factors, subject to the initial conditions y(0) = y'(0) = 0, to obtain the solution

$$y(x) = e^{bx} \int_0^x \int_0^\eta f(\xi) e^{-a\xi} e^{(a-b)\eta} d\xi d\eta$$

By changing the order of integration and carrying out the integration with respect to η , show that

$$y(x) = \frac{1}{a-b} \int_0^x f(\xi) \left[e^{a(x-\xi)} - e^{b(x-\xi)} \right] d\xi$$

and interpret this result.

4. The differential equation

$$y'' + y = H(x) - H(x - \epsilon)$$

where H is the Heaviside step function and ϵ is a positive parameter, represents a simple harmonic oscillator subject to a constant force for a finite time. By solving the equation in the three intervals of x separately and applying appropriate matching conditions, show that the solution that vanishes for x < 0 is

$$y = \begin{cases} 0, & x < 0, \\ 1 - \cos x, & 0 < x < \epsilon, \\ \cos(x - \epsilon) - \cos x, & x > \epsilon. \end{cases}$$

Hence show that the solution of

$$y'' + y = \frac{H(x) - H(x - \epsilon)}{\epsilon}$$

that vanishes for x < 0 agrees, in the limit $\epsilon \to 0$, with the appropriate solution of $y'' + y = \delta(x)$, namely $y = H(x) \sin x$.

5. The function $G(x,\xi)$ is defined by

$$G(x,\xi) = \begin{cases} x(\xi-1), & 0 \leq x \leq \xi, \\ \xi(x-1), & \xi \leq x \leq 1. \end{cases}$$

If f(x) is continuous for $0 \le x \le 1$, and

$$y(x) = \int_0^1 f(\xi) G(x,\xi) \,\mathrm{d}\xi \,,$$

show by direct calculation that y''(x) = f(x) and find y(0) and y(1).

Hint: use the definition of $G(x,\xi)$ to write y(x) as the sum of two integrals, one with $\xi \leq x$ and the other with $x \leq \xi$.

6. Use the method of Green's function to solve

(a) $y'' - y = x^2$ with y(0) = y(1) = 0, (b) $y'' + \omega^2 y = x$ with $y'(0) = y(\pi/\omega) = 0$, (c) $y'' + \alpha y' = e^{-\beta x}$ with $x \ge 0$ and y(0) = y'(0) = 0

$$y'' + \alpha y' = e^{-\beta x}$$
 with $x \ge 0$ and $y(0) = y'(0)$

(d)

$$y'''' = f(x)$$
 with $y(0) = y'(0) = y''(0) = y'''(0) = 0$

- 7. Let α and β be positive constants, and let H(x) denote the Heaviside step function. Find the Fourier transforms of
 - (a) the odd function $f_{o}(x)$, where f_{o} is defined for x > 0 by

$$f_{\rm o}(x) = \begin{cases} 1 \,, & 0 < x \leqslant 1 \,, \\ 0 \,, & x > 1 \,. \end{cases}$$

- (b) the even function $f_{e}(x) = e^{-|x|}$.
- (c) the even function g(x), where

$$g(x) = \begin{cases} 1, & |x| < \alpha, \\ 0, & |x| \ge \alpha. \end{cases}$$

(d) the function

$$h(x) = H(x) \sinh(\alpha x) e^{-\beta x}$$
, where $\alpha < \beta$.

8. (a) Use Parseval's theorem and the result of question 7a to show that

$$\int_{-\infty}^{\infty} \left(\frac{1-\cos x}{x}\right)^2 \mathrm{d}x = \pi \,.$$

(b) Use Parseval's theorem and the result of question 7b to evaluate the integral

$$\int_0^\infty \frac{\mathrm{d}k}{(1+k^2)^2}$$

9. For g(x) as given in question 7c define

$$G(x) = \int_{-\infty}^{\infty} g(x - \xi) g(\xi) \,\mathrm{d}\xi$$

Find an expression for G(x). Explicitly demonstrate that the Fourier transforms of G(x) and g(x) satisfy the convolution theorem.

- 10. Show that, if a function f and its Fourier transform \tilde{f} are both real, then f is even. Show also that, if a function f is real and its Fourier transform \tilde{f} is purely imaginary, then f is odd.
- 11. By taking the Fourier transform of the equation

$$\frac{\mathrm{d}^2\phi}{\mathrm{d}x^2} - m^2\phi = f(x)$$

show that its solution $\phi(x)$ can be written as

$$\phi(x) = -\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{ikx} \tilde{f}(k)}{k^2 + m^2} dk$$

where $\tilde{f}(k)$ is the Fourier transform of f(x).

This example sheet is available at http://www.damtp.cam.ac.uk/user/examples/ Please send any comments and corrections to M.Wingate@damtp.cam.ac.uk