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Mathematical Methods II Dr J. Gutowski
Natural Sciences Tripos Part IB Lent 2008

Example Sheet 4:

Complex Analysis, Contour Integration and Fourier Transforms

1 Establish the following general methods for calculating residues. [Note: These are all

very useful in practice, and the student is advised to memorise them.]

(i) If f(z) has a simple pole, then the residue of f(z) at z = z0 is limz→z0
{(z−z0)f(z)}.

(ii) If f(z) is analytic, then the residue of f(z)/(z − z0) at z = z0 is f(z0).

(iii) If 1/f(z) has a simple pole at z = z0, then its residue at z = z0 is 1/f ′(z0).

(iv) If h(z) has a simple zero at z = z0 and g(z) is analytic and non-zero, the residue
of g(z)/h(z) at z = z0 is g(z0)/h

′(z0).

(v) If f(z) has a pole of order N at z = z0, then the residue of f(z) at z = z0 is

lim
z→z0

{

1

(N − 1)!

dN−1

dzN−1

(

(z − z0)
Nf(z)

)

}

.

2 Find the poles of the following functions and calculate the residues at each pole:

z + 1

z2
;

e−z

z3
;

sin2 z

z5
; cot z;

z2

(1 + z2)2
.

3 (i) State and prove Cauchy’s Theorem.

(ii) Suppose that the simple contour C encloses z = z0 in a positive sense and that f
is an analytic function. Show that

∮

C

(z − z0)
n dz =

{

2πi if n = −1
0 if n is any other integer

and
∮

C

f ′(z) dz

z − z0
=

∮

C

f(z) dz

(z − z0)2
.

4 Suppose that f(z) is analytic in and on the circle |z − z0| = r. Show that for n > 0,

∣

∣f (n)(z0)
∣

∣ 6
n!

rn
max

|z−z0|=r
|f(z)|.

Hence prove Liouville’s Theorem: if f(z) is analytic and bounded for all z then f is a
constant.

Deduce that any polynomial p(z) of degree at least one has at least one zero. [Hint:

consider 1/p(z).]
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5 Describe the method of the calculus of residues.

By integrating the function zn(z−a)−1(z−a−1)−1 around the unit circle in the z-plane
(where a is real, a > 1, and n is a non-negative integer), evaluate

∫ 2π

0

cos nθ

1 − 2a cos θ + a2
dθ.

6 By considering the integral
∮

(z2 + 1)−1eikz dz taken around a large semicircle, show
that for real positive k,

∫ ∞

−∞

cos kx

x2 + 1
dx = πe−k.

What is the value for k 6 0?

7 By integrating round a rectangular contour with vertices at ±R and iπ ± R, where R
is a large real constant, or otherwise, show that

∫ ∞

0
sech xdx = π/2.

8 Verify the following results, where a is a non-zero real constant.

(i)

∫ ∞

0

x−a dx

x + 1
=

π

sin πa
(0 < a < 1).

(ii)

∫ π

0

adθ

a2 + sin2 θ
=

π√
1 + a2

(a > 1).

(iii)

∫ ∞

0

x4

1 + x8
dx =

π

4

√

1 − 1
/
√

2 .

[Although this can be done with the standard semicircle, you might like to consider

instead using a sector of a circle of angle π/4.]

(iv)

∫ ∞

0

cos( 1
2ax2) dx =

√

π

4|a| .

[Hint: in this case you must use a sector of a circle.]

(v)

∫ ∞

0

(log x)2 dx

1 + x2
=

π3

8
.

[Hint: use a semicircular contour with an appropriate branch cut.]

9 Sketch possible arrangements of branch cuts for the following, giving the values on
either side of each cut:

(z2 + 1)
1/2; (z2 + 1)

1/3; log

(

z − i

z + i

)2

.
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10 Show that the two-dimensional function Φ defined by

Φ(x, y) = Im

{

2

π
log tanh z

}

,

where z = x + iy, satisfies Laplace’s equation in x > 0; and that Φ = 0 on both y = 0
and y = π

2 , while on x = 0, Φ = 1 for 0 < y < π
2 . Deduce the steady-state temperature

distribution in a semi-infinite two-dimensional bar of width L, with the (infinitely) long
sides held at zero temperature and the short side held at temperature T0.

11 Find the function whose Fourier transform is (1 + k4)−1.

12 An overdamped harmonic oscillator (γ > p) subject to an impulsive force is described
by the equation

ẍ + 2γẋ + p2x = δ(t) .

Given that x = 0 for t < 0, show by Fourier transform methods (and the result of
question 9d from Example Sheet 2 last term, or otherwise), that for t > 0,

x(t) =
1

√

γ2 − p2
sinh

(

√

γ2 − p2t
)

e−γt

13 For t ≥ 0 the function u(x, t) is defined for all x and satisfies the diffusion equation

∂u

∂t
= λ

∂2u

∂x2

subject to the boundary conditions u(x, t) → 0 as |x| → ∞, and the initial condition

u(x, 0) =







−ex , x < 0
0 , x = 0
e−x , x > 0 .

Show using Fourier transform methods that for t > 0

u(x, t) =
2

π

∫ ∞

0

ke−λk2t sin(kx)

1 + k2
dk .

Suppose instead that u(x, t) is only defined in the half-space x ≥ 0, that u(0, t) = 0 for
t ≥ 0, that u(x, t) → 0 as x → ∞, and that u(x, 0) = e−x for x > 0. Write down the
solution of this modified problem.

Comments on or corrections to this problem sheet are very welcome and may be sent to

me at J.B.Gutowski@damtp.cam.ac.uk


