
C
op

yr
ig

ht
 ©

 2
00

2 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

Mathematical Tripos 2003 : Electromagnetism O5, Mich. 2002Lecture notes by A.J.Macfarlane, DAMTPCorrections or comments by email to A.J.Macfarlane@damtp.cam.ac.uk
1 Introduction1.1 Electric ChargeThe existence of electric charge was well-known already to the ancient Greeks, from therubbing of amber with fur.Experiments show that there are charges of two kinds, positive and negative. Allstable charged matter owes its charge to a preponderance of electrons, if negative, and ofprotons, if positive. In fact, each electron and each proton carry a charge �e, wheree = 1:6� 10�19 C; (C = Coulomb); (1)a magnitude so small that total charge can be regarded as a continuous variable. Thuswe can refer to the charge density �(r) as the charge per unit volume at a point r of aspatial distribution of charge.Experiment shows also that, when we consider stationary particles P1 and P2 situatedat r1 and r2 with charges q1 and q2, then P1 experiences a forceF12 = 14��0 q1 q2r122 r12r12 = 14��0 q1 q2r122 r̂12; (2)due to P2. This expresses the inverse-square or Coulomb law. Herer12 = �r21 = r1 � r2; r12 = jr1 � r2j; r̂12 = r12=r12; (3)with r̂12 a unit vector pointing from P2 to P1.If q1 q2 is positive (same sign charges) then F12 is an repulsive force; if negative (op-posite sign charges), then it is attractive.The factor 14��0 is a dimensional quantity due to the use, discussed below in Sec. 1.7,of SI or Syst�eme Internationale units.Next we consider the force on charge q1 at r1 due to a set of charges qj at rj. This isgiven by F1 = q14��0 Xj 6=1 qjr1jr1j3 : (4)Hence, for the force on a charge q at r due to charge of density �(r0) continuously dis-tributed over a spatial volume V , we haveF(r) = q4��0 ZV (r� r0)�(r0)d� 0jr� r0j3 : (5)Now we de�ne the electric �eld E(r) of such a distribution of charge to be the force itexerts on a unit charge placed at r, i.e.E(r) = 14��0 ZV (r� r0)�(r0)d� 0jr� r0j3 : (6)1
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Similarly for a system of point charge qj at rj, and to charge of density �(r0) distributedover a surface S, we have E(r) = 14��0 Xj qj(r� rj)jr� rjj3 (7)E(r) = 14��0 ZS (r� r0)�(r0)jr� r0j3 dS 0: (8)Ex. q at the origin O gives rise to the electric �eld E(r)E = 14��0 qr2 r̂; r̂ = rr ; r = jrj; jr̂j = 1: (9)and q0 at r experiences a force (due to this �eld),F(r) = q0E(r) = 14��0 q q0r2 r̂: (10)1.2 Electric currentThe ancient greeks were well-aware too of magnetic material like lodestone, and of itse�ects. However a modern view is that the magnetic �eld B(r) and related forces aredue to charges in motion, i.e. to electric currents. So we look next at the idea of electriccurrent.There are of course very many types of electric current 
ow, but here we shall con�neourselves to getting an intuitive picture of current 
ow in a copper wire.First we recall that atoms are electrically neutral systems with central nuclei containingZ protons and Z electrons moving around it `in orbits' governed by the laws of quantummechanics.If we use a battery to apply an electric �eld to a length of copper wire or to somecrystalline material, then some of the electrons of the copper atoms are detached fromthe atoms, leaving them as positively charged ions. These ions are held in position bythe mechanical forces that describe the constitution of the material, and the detachedelectrons are moved like a gas, by the applied electric �eld, through the essentially �xedionic background. In other words the electrons constitute an electric current 
owing inthe wire (material).Describe the 
ow of charge or current density at a point r by means of a vector j = j(r).This gives the amount of charge which, in unit time, crosses a surface element �S withnormal n; (n2 = 1) to be j � n�S: (11)Suppose we have a distribution of charge carriers, here electrons of charge q, N perunit volme, whose average motion is a drift velocity v. As this passes a surface element�S with normal n, the charge �q passing the surface element in time �t is the amount of2
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charge in the oblique cylinder shown, whose height is jvj�t.
This gives �q = Nq(v � n�S)�t= j � n�S�t; (12)where j = Nqv = �v; (13)Here � = Nq is the charge density of electrons in the wire (material).Also the total charge per unit time passing through a surface S is called the electriccurrent I through S I = ZS j � ndS = ZS j � dS; dS = ndS: (14)We comment here on the generic term 
ux: The 
ux f of a vector �eld v through asurface S is de�ned by f = ZS v � dS: (15)Here S can either be closed bounding a spatial volume V , so that f is the 
ux of v outof S = @V , as in the Gauss theorem context of sec. 1.5 below, or else open and boundedby a curve C = @S, as in the de�nition just given, (14), of current I as the 
ux of currentdensity through S, or through C.1.3 MagnetismMagnetic �elds B(r) arise from bar magnets, or from electric currents in wires, coils,etc. If a particle of charge q has position vector r and velocity v = _r, and moves in thepresence of electric and magnetic �elds E(r) and B(r), it is an experimental fact that itexperiences a force (the Lorentz force)F = Fe + Fm = q(E+ v^B; (16)3
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where E = E(r) and B = B(r).

Consider the e�ect of the �eld B of the bar magnet on the wire. The current in thewire involves particles of charge q moving along the wire with velocity v. Each one feelsa (magnetic) force qv^B which, for positive q, tends to push them downwards. One cansee such a wire move upwards in experiment.In an experiment, the bar magnet can be replaced by a current carrying coil connectedto a battery. If the connection is in the correct sense, then the same outcome can beobserved.One can also give the (magnetic) force per unit volume on a medium carrying Ncharges q per unit volume each moving with velocity vf = Nqv^B = j^B: (17)1.4 Maxwell's EquationsIt was the great achievement of Maxwell to unify the separate subjects electricity andmagnetism into a single consistent formalism involving a set of equations (Maxwell'sequations) capable of describing all classical electromagnetic phenomena. For chargesand currents in a non-polarisable and nonmagnetisable medium, such as the vacuum,these are r^E+ @B@t = 0 (18)r �B = 0 (19)r �E = 1�0� (20)r^B = �0(j + �0@E@t ) (21)where � and j are the charge and current densities.These equations involve two constants �0 and �0 to be discussed below. The last termof (21) features the displacement current postulated by Maxwell in order to achieve aformalism that consistently uni�ed previous theories of electricity and magnetism.For more general media, Maxwell's equations consist of (18{19), unchanged andr �D = � (22)r^H = j+ @D@t (23)4
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where D = ��0E; H = 1��0B: (24)The latter vectors are used to describe non-trivial electrical and magnetic properties ofmedia for which � and � are callled permittivity and permeability. They are observableconstants for the media. We con�ne attention here to the case of � = � = 1.First we observe the consistency of Maxwell's equations. Since r � (r^F) = 0 for allvector �elds F, (18-19) imply@@t (r �B) =r � (�r^E) = 0: (25)So r �B = 0 is preserved in time.Similarly r � (:::) of (21) implies0 = r � j + �0 @@t (r �E)0 = r � j + @�@t : (26)Here (20) has been used. Eq. (26) expresses the conservation of charge. Integrating (26)over a �xed volume V containing total charge QQ = ZV �d�; (27)we derive dQdt = ZV @�@t d� = � ZV r � jd� = � Z@V j � dS; (28)which states that the rate of decrease of the charge contained in V is equal to the 
ux ofj into V (through the surface S = @V ). It is noted that the presence of the displacementterm in (21) is essential in this demonstration of consistency.1.5 Integral forms of Maxwell's equationsMaxwell's equations involve divs and curls. We can therefore convert them into usefulintegral forms by integrating over �xed volumes using the divergence theorem, or over�xed surfaces using Stokes's theorem.��0 =r �E) 1�0 ZV �d� = ZV r �Ed� (29)Hence 1�0Q = ZS=@V E � dS: (30)The right-hand side is the 
ux of E out of V . The statement (30) is Gauss's Law. It isof practical use.Ex. Consider a point charge q at rest at O, and let V be the sphere of radius r centredat O. By symmetry the electric �eld must be of the formE(r) = E(r)er = E(r)n; (31)5
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so that Z@V E � dS = Z@V E � ndS = E(r) Z@V dS; (32)and hence 1�0 q = E(r) 4�r2E = q4��0 1r2er: (33)Similarly (19) implies that Z@V B � dS = 0; (34)for any closed surface S = @V . This can be interpreted as the statement that there areno magnetic `charges' or magnetic monopoles.Next (20) yields ZSr^B � dS = �0 ZS j � dS+ �0�0 ZS @E@t � dS: (35)Hence, in the case of steady current (no time dependence), Stokes's theorem impliesZC B � dr = �0 ZS j � dS= �0 ( 
ux of j through open S bounded by C)= �0I; (36)where I = RS j � dS is the total current through S (or C). This is Amp�ere's Law. It toois useful in practice.Ex Consider an in�nite straight wire lying along the z-axis and carrying a current I inthe positive direction.By symmetry, expect B of the form B = B(s)e� using cylindrical polars (s; �; z).Then apply Amp�ere for C any circle centred on the z-axis and lying in a horizontal plane.On C we haver = ses(�) so that, at constant s, dr = sdes = s@es@� d� = se�d�: (37)Then Amp�ere's law implies B(s)s Z 2�0 d� = �0I (38)and hence B(s) = �0I2�s: (39)Finally (21) impliesZC E � dr = ZSr^E � dS = � ZS @B@t � dS = � ddt ZSB � dS; (40)by applying Stokes's theorem to a �xed curve C = @S bounding a �xed open surface S.If we de�ne the electromotive force (or electromotance) acting in C byE = ZC E � dr; (41)6
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and the 
ux of B through (the open surface) S by� = ZSB � dS; (42)then we get Faraday's Law of inductionE = �d�dt : (43)This will be studied later.Having seen above that Gauss's Law implies the inverse-square law (33), it is instruc-tive to give some attention to the converse. We consider a point charge q situated at theorigin O.Let S1 be a sphere of radius r centred at O. AssumeE(r) = cr2er; (44)for some c, so that n = er on S1. ThenZS1 E � dS = cr2 ZS1 er � ndS = cr2 ZS1 dS = cr24�r2 = 4�c: (45)This is the statement required by Gauss for c = q4��0 .But this has been done only for a sphere such as S1. However we can promote theresult 1�0 q = ZS1 E � dS (46)from S1 to arbitrary S enclosing the origin and some sphere, say S1. For this purpose letV be the spatial volume between S1 and S. There is no charge in this volume so that inV we have r �E = 0. Hence 0 = ZV r �E = ZS+S1 E � dS: (47)The notation here indicates that the bounding surface of V consists of two parts S, onwhich the outward normal is the obvious n, and S1, on which the normal outward fromV as the divergence theorem dictates, is �er. Thus we have0 = ZS E � ndS + ZS1 E � (�er)dS; (48)so that ZS E � dS = ZS1 E � dS: (49)7
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1.6 Electromagnetic wavesHere we consider Maxwell's equations in the absence of charges and of currents, e.g. inthe vacuum. r^E+ @B@t = 0 (50)r �B = 0 (51)r �E = 0 (52)r^B = �0�0@E@t : (53)Take r^ (:::) of (52) and user^ (r^E) =r(r �E)�r2E; (54)where the �rst term is zero by (51), and r2 =r �r. Then we have�r2E = �r^ @B@t = @@t(r^B) = ��0�0@2E@t2 : (55)Thus each (Cartesian) component of E satis�es a wave equation(r2 � 1c2 @2@t2 )E = 0; (56)where the wave speed c is given by c2 = 1�0�0 : (57)Check that (51) and (53) can be used similarly to show that each component of Bsatis�es the same wave equation. In other words, each of E(r) and B(r) are propagatedas waves of speed c.The values of the quantities �0 and �0 are �xed by experiment, and, by use of thisinformation (see Sec. 1.7), we �nd thatc = 3� 108m=s = the speed of light: (58)So Maxwell's equations with the crucial displacement current term, necessary for con-sistency, can describe electromagnetic wave phenomena across its entire frequency spec-trum: see the Table. For waves of frequency �, measured in hertz, and wavelength �,measured in metres, c = ��. Also, in quantum theory, the energy of a quantum of givenfrequency � is E = h�, where h is Planck's constant. (One hertz equals one cycle persecond). Frequency spectrumradiation � � radiation � �
 1019 10�11 infra-red 1014 10�6X-rays 1018 10�10 �-wave 1013 10�5ultra-violet 1016 10�8 mm 1011 10�3visible light 1015 10�7 radio 106 1028
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1.7 UnitsSyst�eme Internationale or MKS units, use the Metre, Kilogram, and Second as the unitsof length, mass, and time. For electromagnetism one more unit is called for, the unit ofcharge, the Coulomb C. Then F12 = q1q24��0r2 (59)tells us that �0 is measured in units C2N�1M�2, since force is measured in Newton's N ,N = KMS�2. Experiment then leads to�0 = 136� � 10�9C2N�1M�2: (60)Next F = qE tells us that jEj is measured in units NC�1. Since current I is measuredin CS�1 and (18) tells us that jBj is measured in units NC�1M�1S, it follows from (39)that �0 is measured in units NC�2S2, and experiment leads to�0 = 4� � 10�7NC�2S2: (61)Finally we see that 1p�0�0 = 3� 108MS�1, giving the value (58) for the speed of light.1.8 Discontinuity formulasHere we collect, for easy reference but without discussion at this stage, a class of formulasthat logically belong together but whose occurrences are scattered throughout severalsections of the course material.Let S be a surface with unit normal n which separates regions V� of space, with npointing from S into V+.a). Let S carry charge density � per unit area. Let E� denote the electric �elds justinside the V� sides of S. Then n �Ej+� = 1�0� (62)n^Ej+� = 0: (63)Eq. (62) is proved on the basis of Gauss's theorem in Sec. 2.5. Note eqs. (62) and (63)respectively involve the components of E normal and tangential (n � n^E = 0) to thesurface S.b). Let S carry current density s per unit length (charge crossing unit length in S inunit time). Let B� denote the magnetic �elds just inside the V� sides of S.n �Bj+� = 0 (64)n^Bj+� = �0s: (65)Eq. (64) is proved in the same way as used for (62). Eq. (65) is a consequence ofStokes's theorem, as is (63). A special case of (65) is treated in Sec. 3.3The correspondence between Maxwell's equations and the discontinuity formulas isclear: drop @@t terms, and replace r(:::) by n(:::)j+�. Thus, from (26), we expect thatn � jj+� = 0 at a surface of discontinuity, one that may carry surface density of charge.9
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Force per unit area on SIn case (a), consider only the special case when E� only have normal componentsn �E� = E�. Then the force per unit area on a surface S (carrying surface charge �) hasmagnitude 12�(E+ + E�): (66)Proof of this result is given in Sec. 2.5.In case (b), consider only the special case in whichB� only have tangential componentsB�. Then the force per unit area on a surface S (carrying surface current s) is normal toS, and has magnitude 12s(B+ +B�): (67)We do not prove this; the most convenient method of proof lies outside the scope of thiscourse.We note that each of (66) and (67) feature the arithmetic mean of the forces that onewould suppose true on either side of S on the basis of force statements like (10) and (17).2 ElectrostaticsElectrostatics is the study of time independent electromagnetic phenomena in the absenceof currents and magnetic �elds. Then Maxwell's equations arer^E = 0 (68)r �E = 1�0�: (69)Eq. (68) can be satis�ed by de�ning the (electrostatic) potential � by means ofE = �r�; (70)so that (69) yields Poisson's equationr2� = � 1�0�: (71)In this way the study of electrostatics is reduced to the study of a single equation {Poisson's equation. In regions of space where there is no electric charge � = 0, thisreduces to Laplace's equation r2� = 0: (72)2.1 Electrostatic potentialThe work done on point charge q (take q = 1 for convenience) in moving it from A to Bin an electric �eld E(r) is WAB = Z ba F � dr = Z ba E � dr: (73)This is independent of the actual path from A to B that is used. To see this consider aclosed curve C. Then IC E � dr = ZSr^E � dS = 0; (74)10
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by Stokes's theorem. Now let C = C1+C2 where C1 goes from A to B, and C2 goes fromB to A. Let C3 be the curve C2 taken in reverse sense, i.e. from A to B. Hence (74)implies ZC1 E � dr = � ZC2 E � dr = ZC3 E � dr: (75)Since the paths C1 and C2 here are arbitrary, the result follows.SoWAB depends ( as well as on E(r)) only on A and B, so that we de�ne the potential�(r) by means of � Z ra E � dr = �(r)� �(a): (76)For an in�nitesimal path (replace r by r+ �r and a by r in (76))��r �E(r) = �(r+ �r)� �(r) � �(r) + �r �r�(r)� �(r) = �r �r�(r); (77)upon use of Taylor's theorem. Hence we get (70) again:E = �r�: (78)The potential �(r) is determined by (76) only to within an additive constant. Toremove this ambiguity, we may demand that �(r0) = 0 at some point P0 with positionvector r0. Thus �(r) = � Z rr0 E � dr = Z r0r E � dr; (79)and we usually take for P0 the point at in�nity.For the case of a point charge q at the origin, let the path in (79) be C : r(s) =sr; 1 � s <1, so that r(s) = jr(s)j = sr and dr(s) = rds. Thus�(r) = Z 1r E � dr = Z 11 q4��0 s r � (rds)s3r3 = q4��0r Z 11 dss2 = q4��0r : (80)It can be seen that �! 0 as r goes to in�nity, and it is easy to check that�r� = �er @�@r = q4��0r2er = q4��0r3 r = E(r); (81)as expected. Since Poisson's equation is a linear equation for �, we can apply the super-position principle to `elementary charges' �(r0)d� 0, and infer from (81) that the potentialdue to a distribution of charge of density �(r0) is given by�(r) = 14��0 ZV �(r0)d� 0jr� r0j : (82)Since r 1jr� aj = � r� ajr� aj3 ; (83)we get�r�(r) = 14��0 ZV (�r 1jr� r0j)�(r0)d� 0 =) = 14��0 ZV (r� r0)�(r0)d� 0jr� r0j3 = E(r); (84)consistently with (6) of chapter 1. 11
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The superposition principleThe superposition principle applied above to the derivation of (82) is of importance.Since the �elds and potentials we deal with here obey linear equations { Maxwell's equa-tions { any superposition of known solutions of them is again a solution. Eq. (82) is the(continuous) superposition of solutions of Poisson's equation corresponding to `elementarycharges' �(r0)d� 0 at points r0. Eqs. (7) and (8) of Sec. 1.1 also illustrate the principle.Other examples of the principle at work will occur frequently. The chance of applying itto the solution of problems should be kept in mind: it often saves time and e�ort, andsometimes o�ers the only route to success.Field lines and equipotentialsWe mention a way of gaining some insight into the nature of the electric �eld sur-rounding a system of charges.One draws the �eld lines of E for the system. A �eld line here is a line at each ofwhose points E is tangent to the line.Also one draws on the same diagram the equipotentials of the system. These aresurfaces � =constant. As E = �r�, and r� is everywhere normal to such surfaces, itfollows that the �eld lines cut the equipotentials at right angles.

2.2 Gauss's theorem and the calculation of electric �eldsIn Sec. 1.5 we proved Gauss's theorem1�0Q = ZS E � dS; (85)where Q = ZV �d�; (86)is the total charge contained in the spatial volume V , @V = S. We now employ it to incalculation of electric �elds of simple systems of charge.a) The point charge q at the origin has been treated in Sec 1.1.b) Line charge lying along the z-axis with uniform (line) density of charge � (Coulombs)per unit length. Let S be the closed surface of a right circular cylinder of unit lengthcoaxial with the line charge. By symmetry, it is clear that E is radial, so E �n = 0 on theends of S. In fact E(r) = E(s)es where s and es are the radial coordinate of cylindricalpolars and its associated unit vector. Thus Gauss givesE 2�s = 1�0 �; E(s) = �2��0 1ses: (87)12
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This corresponds to a potential given by2��0� = �� log ss0 : (88)In this example, �(s) does not go to zero as s ! 1, so we were forced to demand that� = 0 for some �xed but arbitrary value s0 of s.Check that (88) is correct via �r� = �es@�@s (89)c) Plane sheet P occupying the xy-plane, carrying uniform charge density � per unitarea.Here we use the `Gaussian pillbox': a cylinder of cross-sectional area A, with axisk = (0; 0; 1), half above and half below the xy-plane. By symmetry E is perpendicular toP . Above P we have E = Ek and below E = �Ek for some E. This time E � dS is zeroon the curved sides of the pill-box, and Gauss givesEA� (�E)A = � A�0 ; E = 12�0�: (90)

d) Parallel plane sheets in the planes z = 0 and z = a, carrying uniform distributionsof charge respectively of charge with surface densities �� (Coulombs) per unit area. Usingthe result of c) twice and the principle of superposition, we �nd thatE = ��0k; k = (0; 0; 1); (91)in the spatial region between the plates and zero outside.e) Spherical shell, centre at O, radius r0, uniform charge density � per unit area,and thus total charge Q = 4�r02�. By symmetry, as for a point charge at O, we haveE = E(r)er.To apply Gauss's theorem, take spheres of radius r, concentric with the shell. Letthese have surfaces S1 and S2, in the cases (i) r > r0 and (ii) r < r0In case (i): ZS1 E � dS = ZS1 E(r)er � erdS = 1�0Q4�r2E(r) = 1�0Q; E(r) = ��0 r02r2 : (92)13
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For case (ii), we have E(r) = 0, since there is no charge in the volume V2.It is to be noted that the result (87) is the same (for r > r0) as applies to a pointcharge Q situated at the origin.Check that E = E � er the normal component of E has discontinuity1�0 � (93)at r = r0.f) Sphere of radius R carrying uniform charge of density � (Coulombs) per unit volume,and thus total charge Q = 4�3 R3�.For r > R by superposition of shells and the result of e), we learn that the potentialis the same as it would be if we had a point charge Q at the origin.E(r) = E1(r)er; E1(r) = Q4��0 1r2 : (94)For r < R, applying Gauss to a sphere S2 centre the origin of radius r, only the chargeinside S2 is relevant, and we haveE(r) = E2(r)er; E2(r) 4�r2 = 1�0� 4�3 r3; (95)so that inside the charge distributionE2(r) = Qr4��0R3 : (96)We have obtained (96) by direct application of Gauss, but we could otherwise have foundit from e) by a suitable application of the superposition principle.Note that E(r), the normal (and here only) component of E, is continuous at r = R.We can use E = �r� = �er @�@r to determine the potentials �1 outside, and �2 inside,the charge distribution.�@�1@r = Q4��0 1r2 ) �1 = Q4��0 1r + A�@�2@r = Qr4��0R3 ) �2 = � Qr28��0R3 +B: (97)Here A and B are constants of integration. Demanding that � ! 0 as r ! 1, we lookat �1 and require A = 0. To �nd B, we use the fact that � is continuous at r = R. Thisleads to �2 = Q8��0R3 (3R2 � r2): (98)g) The discontinuity law at a surface carrying surface charge.Suppose a surface S with normal n carrying charge of uniform charge density � perunit area, separates regions 1 and 2 of empty space, with n pointing into 2. Let E1 andE2 be the electric �elds in regions 1 and 2.Use Gauss with a Gaussian pillbox of very small height, and cross sectional area A,with the end with normal n just inside 2 and the other end with normal �n, just inside 1.14
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In fact we take the height so small that the curved sides of the box contribute negligiblyto the surface integral of the theorem. Then[n �E2 + (�n) �E1]A = �A�0 ; n �Ej+� = 1�0�; (99)as stated in Sec. 1.8.See that examples c), d), e), and f) conform to this, there being no surface chargepresent in f).2.3 Dipoles and the multipole expansion of the potentialConsider asystem of two point charges �q, �q at O and +q at d. The superpositionprinciple implies that 4��0�(r) = q(�1r + 1jr� dj): (100)For all examples like the present, by far the easiest method of expansion involves thevector statement of Taylor's theorem:f(r+ h) = f(r) + h �rf(r) + 12(h �r)2f(r) + : : : : (101)Here 1jr� dj = 1r � d �r1r + 12(d �r)2 1r + : : : : (102)So for d = jdj small we have 4��0� = �qd �r1r : (103)The electric dipole arises by taking the limits q ! 1; d ! 0 in such a way that qdremains constant, at a �nite value qd = p. Then p = qd de�nes the dipole moment of theelectrical dipole, and 4��0� = �p �r1r = p � rr3 = p � err2 : (104)We can go further to the linear quadrupole with charges �q at �d and 2q at theorigin, so that the system has zero total charge and also zero dipole moment. (It lookslike a pair of dipoles pointing in oppposite directions.)4��0q � = 2r � 1jr+ dj � 1jr� dj= 2r � [1r + d �r1r + 12(d �r)2 1r ]� [1r � d �r1r + 12(d �r)21r ]= �(d �r)21r : (105)Note that this approach gets the cancellation of terms to happen ahead of their evaluation.Employ spherical polars and take d = dk = (0; 0; 1) in the z-direction. Then (104)reads as 4��0� = p cos �r2 : (106)15
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Otherwise ( but towards the same end) in Cartesians, we have p �r = p @@z , and, forthe dipole and the linear quadrupole, we have4��0� = �p @@z 1r = �p(� 1r2 zr ) = pzr3 (= p cos �r2 ) (107)4��0� = �q(d �r)21r = �qd2 @2@z2 1r = �qd2 @@z (� zr3 )= qd2( 1r3 � 3z2r5 ): (108)Using spherical polars as above, with z = r cos �, we have, for the linear quadrupole4��0� = qd21� 3 cos2 �r3 : (109)We note that as r ! 1 , the potentials of the point charge, the dipole, and the linearquadrupole go to zero like 1r ; 1r2 and 1r3 .We next consider a general �nite charge distribution of density �(r0). Taking an originnear to or within it, we want to see how its potential behaves at large distances r. Wewill follow the same procedure as above, using Taylor's theorem (101). We �nd�(r) = 14��0 ZV �(r0)d� 0jr� r0j= 14��0 ZV �1r � r0 �r1r + 12(r0 �r)21r : : :� �(r0)d� 0: (110)The leading term of 4��0� (going like 1r ) is the total charge term, namelyQr ; Q = ZV �(r0)d� 0; (111)unless Q = 0. In the latter case the leading term (going like 1r2 ) is the dipole term��ZV r0�(r0)d� 0� �r1r = �P �r1r ; (112)where the dipole moment of the distribution isP = ZV r0�(r0)d� 0: (113)If Q = 0 and P = 0, the leading term is a quadrupole term18��0 ZV rj 0rk 0�(r0)d� 0Tjk; (114)16
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where the quadrupole tensor Tjk is given byTjk = @j@k 1r = @j(�rkr3 ) = � 1r3 �jk + 3rjrkr5 : (115)In the case of (108), only a 33-tensor component is present.In fact, the linear axisymmetric quadrupole of (108) is not the most general quadrupolepossible.The above discussion can be generalised to cover multipoles of higher orders withpotentials going to zero like higher powers of 1r , and this can be described well under theheading: Solutions of Laplace's equationsIn spherical polars (r; �; �), the general solution of Laplace's equations with sphericalsymmetry (with no dependence on � and �) is� = a+ br : (116)Next we have solutions, like the dipole potential, / cos �,� = �Er cos � + cr2 cos �: (117)What E does the �rst term give? In cylindrical polars (s; �; z), the general solution ofLaplace's equations with cylindrical symmetry is� = a+ b ln s: (118)2.4 Potential TheoryWe have seen that electrostatics is governed by the single equation, Poisson's equation(71). From the theory of partial di�erential equations then we quote a result.Consider a charge distribution �(r) speci�ed throughout a �xed spatial volume andsuitable boundary conditions (BC) on S = @V . Poisson's equation has a unique solutionfor (i) (Dirichlet BC): �(r) speci�ed for all r 2 S,(ii) (Neumann BC): @�@n = n �r�(r) = �n �E(r) speci�ed for all r 2 S.The latter correspond to specifying the density of charge on S.We shall assume the existence of solutions, prove their uniqueness, and consider meth-ods of solution.To prove the uniqueness in case (i), we need a lemma: Let  and � be scalar �elds.Then the divergence theorem impliesZV r � (�r )d� = ZV [(r�) � (r ) + �r2 ]d�= ZS=@V n � (�r )dS: (119)We assume � is given throughout V , and the potential is speci�ed by the function �0on S. Suppose that are two functions �1 and �2 which each satisfy Poisson's equation forthe given �, and are each equal to �0 on S.17
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Apply the lemma with  = � = �1 � �2. Since r2 = 0 within V , and � =  = 0 onS, we get, from (119), ZV jr j2d� = 0; (120)in V . It follows that r = 0 and that  = c in V , c constant. But  = 0 on S, so wehave c = 0. Hence  = 0, and �1 = �2, uniqueness.Case (ii) can be handled similarly, with the end result that �1 = �2 to within anundetermined constant.Next we consider the example of (i) with V all space and S a surface at in�nity. Weassume �(r0) given for all r0 2 V , but actually non-zero only for a �nite sized subsetV̂ � V , `near' the origin. The BC is then � = 0 on S. The work of Sec. 2.3 indicatesthat this makes sense.We believe we know a solution:�(r) = 14��0 ZV �(r0)d� 0jr� r0j : (121)This is well-de�ned, and can be shown to satisfy Poisson's equation (71), and we nowknow that it is unique. Since r2 1jr�r0j = 0 provided that r 6= r0, (121) obeys Laplace'sequation at points r where there is no charge. For points r 2 V̂ , an explicit proof that(121) satis�es Poisson's equation is non-trivial. Although the proof is a traditional partof potential theory, based on Green's theorem and identities, we omit it, arguing that itis enough to know we have a solution, from our method of construction of it.2.5 Perfect conductorsIn electrostatics, we deal only with the idealised case of perfect conductors in whichelectrons are free to move without resistance.Consider then a perfect conductor C with surface S, with perfectly non-conductingempty space (the vacuum) outside.We shall see in Sec. 3.1 that inside C we must have E = 0, and hence � = 0. Thusit follows that all charges must reside on the surface S of C. Further E = En on S, elsecharges would be able to move along S. Thus S is an equipotential of constant �, sinceE = �r� is normal to it. Also, because E = 0 inside S, � is constant throughout there,with a value equal to the surface equipotential value. Finally the charge � per unit areaon S follows from g) of Sec. 1.2. This gives1�0� = n �Ej+� = n �E = E (122)This follows E = 0 inside (the minus side).The Force on a charged conductorConsider a surface element of S of C of area A, small enough to be considered planewith n = (0; 0; 1) and for E to be constant on it. Suppose the surface charge to be18
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contained in a thin layer of thickness d
At z, r �E = dEdz = 1�0�, the charge on a plane element at z of thickness dz is � dz A,and it feels a force dF = E�dzA = E(�0dEdz )dzA = 12�0AdE2dz dz: (123)So the force per unit area of the surface layer of C isF = Z d0 dF = �02 E2 = 12�0�2: (124)From (124), it is obvious that a more general result obtains in the context (cf. Sec.1.8) of a surface S of electric charge density � per unit area, with �elds E� = E�n normalto it, just on the �n side of S. Eq. (124) impliesF = �02 (E+2 � E�2) = 12�(E+ + E�): (125)This is the arithmetic mean of the `charge (per unit area) times �eld' expressions for theforce (per unit area) on the two sides of S. Eq. (125) is quoted above as eq. (66) of Sec.1.8.2.6 Solution using image chargesWe illustrate the method by doing examples.a) Point charge q at d = (0; 0; d) in presence of a perfect conductor C, lying the planez = 0, which is held at potential � = 0. To �nd the solution of Laplace's equation inV : z � 0.V is the physical region of the problem, the region in which the solution is sought,subject to the boundary conditions on its surface S, which consists of the plane z = 0and the surface at in�nity in z � 0. These are � = 0 on S.Consider replacing C by an image charge �q not in the physical region but at �d.Then the potential due to the given charge and the image charge is4��0� = qjr� dj � qjr+ dj (126)= qpx2 + y2 + (z � d)2 � qpx2 + y2 + (z + d)2 :This potential satis�es Laplace's equation in V , and is zero on S. It follows from theuniqueness theorem that this potential satis�es the problem initially posed.19
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Despite the fact that the image charge is not a physical charge in the physical regionof the problem, if one were to calculate, from (126) the total charge on C one would �ndthe answer �q. Moreover, if one were to calculate the force felt by the point charge q dueto the conductor, one would �nd it equals the Coulomb force due to the image charge,namely an attractive force of magnitude 14��0 q24d2 : (127)We con�ne ourselves to the easier calculation. The charge density on C is � = �0E whereE = � @�@z ����z=0 = �2qd4��0 (x2 + y2 + d2)�3=2: (128)Hence the total charge on C is�2qd4� Z (x2 + y2 + d2)�3=2dx dy = �qd Z 10 s(s2 + d2)�3=2ds = �q: (129)Here plane polars have been used, with the polar angle integration providing a factor 2�.The integral should be checked.

a) Spherical conductor centre O and radius r = a, plus a point charge q at (0; 0; b),b > a. The physical region of the problem is V , all space outside the conductor. S consistsof the conductor plus the surface at in�nity. The boundary conditions are � = 0 on S.We replace the conductor by an image charge outside the physical region of the prob-lem, using an image charge �aqb at (0; 0; a2b ). The potential of the point charges is4��0� = q(r2 + b2 � 2br cos �)�1=2 � aqb (r2 + a4b2 � 2a2rb cos �)�1=2: (130)This potential satis�es Laplace in V and the boundary conditions on S, and so, by unique-ness, is the solution of the problem posed. [Note that for r = a the second denominatorfactors is a2b2 times the �rst, so that � = 0 on r = a holds for all �.]Again we could use the solution to the problem to calculate the total charge on C andthe total force felt by the original point charge due to the conductor. The �rst answer is�aqb , and the second calculation yields an attractive force of magnitude14��0 abq2(b2 � a2)2 ; (131)just as the Coulomb force due to the image charge would suggest.20
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It is more interesting instead to consider the solution of some variants of the originalproblem. Suppose the boundary condition on C is changed so that we require it to bemaintained at potential �0. To accommodate this, it is su�cient to add to the previousimage a suitable point charge Q at O, also outside the physical region of the problem.This gives a contribution Qr to the right side of (130), and potential as now required onC if Q = 4��0a�0.Finally, as a second variant, we require of C only that it carry zero charge. Clearlythis requires a point charge Q at O such that Q� aqb = 0, so that we �nd that C is nowat potential q4��0b .2.7 Electrostatic energyThe potential energy (PE) of a point charge q at r in an electric �eld of potential �(r) isthe work that must be done on q to bring it from in�nity (where � = 0) to rPE = q�(r) = � Z r1 F � dr; F = qE: (132)Consider a system of point charges qi; i = 1; 2; : : : ; n, bringing them from in�nity totheir �nal positions in order, doing workon q1; W1 = 0on q2; W2 = q24��0 q1r12on q3; W3 = q34��0 ( q1r13 + q2r23 )on qi; Wi = qi4��0 Xj<i qjrjiW = nXi=1 Wi = 12 nXi=1 Xj 6=i 14��0 qi qjrji : (133)Here rji = ri � rj; rji = jrjij, and Pni=1Pj<i = 12 Pni=1Pj 6=i. Thus W by constructiongives the electrostatic energy of the system.But the potential at qi due to all the other charges is�i = 14��0 Xj 6=i qjrij ; (134)so that W = 12 nXi=1 qi�i: (135)The corresponding result for a continuous distribution of charge of charge density �(r)in volume V then is W = 12 ZV �(r)�(r)d�= 12 14��0 ZV ZV �(r)�(r0)jr� r0j d� d� 0: (136)21
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If there are conductors Ci with charges Qi at potentials �i then they contribute to W12Xi ZSi �i�idSi = 12Xi �i ZSi �idSi = 12Xi �iQi: (137)(Recall that the potential is constant on a conductor).Field energy in electrostaticsGiven a charge distribution �(r0) distributed over a �nite volume V̂ and a set ofconductors all in some �nite region of space in which an origin is taken. Let V be allspace bounded by a sphere S at in�nity, but excluding the interiors of the conductors.Then W = 12 ZV ��d� + 12Xi Qi�i: (138)Use �� = �0�r �E= �0[r � (�E)� E �r�]= �0r � (�E) + �0E2: (139)Then W is given by12�0[ ZV E2d� + ZS �E � dS+Xi ZC i �E � dSi] + 12Xi Qi�i: (140)We justify (see Sec. 6.1) setting the second term of (140) to zero. In the third term of(140), the divergence theorem dictates that dSi = �ndSi points into Ci, and we have��0 ZCi �n �EdSi = ��0�i ZCi n �EdSi = ��i ZC i �idSi = ��iQi: (141)It follows that the third and the fourth terms of (140) cancel. And so, for the energy ofthe electrostatic �eld, we have the important resultW = 12�0 ZV E2d�: (142)We note this involves an integral over all of V , including the regions unoccupied bycharge, whereas the �rst term of (138) is really an integral over the region V̂ � V occupiedby charge.2.8 Capacitors and capacitanceA pair of conductors carrying charges �Q constitute a capacitor (or a condenser). Sincetheir potentials are proportional to Q, the same applies to their potential di�erence V =�1 � �2.Therefore we de�ne the capacitance C of the capacitor byV = 1C Q: (143)22
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It turns out always to be a constant that depends on the con�guration of the two con-ductors.a) Parallel-plate capacitor.

The �eld lines are mainly straight lines perepndicular to the plates. We assume thedistance a between the plates is small on a scale set by the area A of the plates. Thus wemay neglect so called edge e�ects, which cause the lines near to the edges of the plates tobulge out from between the plates.From d) of Sec. 2.2, we know that E = Ek; E = ��0 between the plates, with E = 0elsewhere. Here k = (0; 0; 1). Hence�d�dz = E ) � = �Ez + c: (144)If � = �1 at z = 0, then c = �1, and then � = �2 at z = a gives�2 = �Ea + �1; and V = �1 � �2 = aE = a��0 = aQ�0A: (145)So C = A�0a : (146)The energy of the capacitor is given now by (135), so thatW = 12Xi qi�i = 12QV = 12Q2C : (147)But the energy can also be calculated from the �eld energy expression (142), which givesW = �02 Z E2d� = A�02 Z a0 ( ��0 )2dz = �2Aa2�0 = 12Q2C : (148)b) Concentric spheres S1 and S2 of radii a and b > a, carrying charges Q and �Q.Take � = 0 at r = b and � = V at r = a. From previous studies we know that forr 2 fa � r � bg (outside S1 and inside S2) we have4��0E = �4��0@�@r = Qr2 ; (149)and 4��0� = Qr � Qb : (150)23
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Hence 4��0V = Q(1a � 1b ) (151)and C = 4��0a b(b� a) : (152)3 Steady electric currents and magnetism3.1 Steady current 
owHere we study steady current 
ow in conducting material. This is governed by Maxwell'sequations without @@t terms, so that we haver^B = �0j; r^E = 0; (153)together with the experimental law, valid for simple sonductors, but not, for example, fornon-isotropic materials such as crystalline material,j = �E; (154)where � is the conductivity of the material.(Both conductivity and surface charge are normally denoted by the same symbol �.We seldom have contexts in which both arise.)Note that (153) implies r � j = 0: (155)This agrees the continuity equation, eq. (26) of chapter one, as @�@t = 0 applies here. Eq.(154) also implies r �E = 0; (156)and hence also � = 0 within the material. This makes sense in contexts such as current
owing in copper wires in which electrons 
ow through a background of positively chargeions, so that it is reasonable to suppose that � = 0 for the total charge density of thematerial, electrons plus ions.We have a remark here promised in Sec. 2.5 which talks about perfect conductors forwhich the conductivity � goes to in�nity. In order for �nite currents (jjj �nite) to 
ow insuch material, it is necessary that jEj and hence � go to zero.In this section, we are concerned only with current 
ow. In later sections of thischapter, we study the magnetic �elds that arise from the (time-independent) 
ow ofelectric currents.Consider steady current 
ow in regions of conducting material, outside of batteries.This is governed by the equationsr �E = 0; r^E = 0; (157)together with the experimental law (154).If we set E = �r� then the 
ow is governed by the single equation, Laplace's equation,plus (154). We might ask: can we obtain an understanding of the elementary formV = IR (158)24
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of Ohm's law, relating the potential di�erence across the ends of a conductor to the currentthat 
ows within it?We do this here for a simple example; there are two others in Problem Set 2.

Uniform current enters the plate of uniform thickness � shown in the diagram. Incylindrical polars, (with polar angle called � since � is reserved here for the potential), wehave the solution � = �c�; c constant; (159)of Laplace's equation, so that the potential di�erence (PD) between AB and CD is V = c�.Hence E = �1s @�@� e� = cse�; (160)and the lines of E and of j are arcs of circles centred on O, as shown. Alsoj = �E = �cs e� = �V�s e� (161)so that the total current entering at AB (which of course equals the current leaving atCD) is I = ZAB j � dS = �V �� Z s2s1 1sds = �V �� ln s2s1 ; (162)where we used dS = e�ds� , and (161). This is indeed of the form (158) of Ohm's law,with R = ��� ln(s2=s1) : (163)So resistance is inversely proportional to conductivity �, and, like capacitance, dependson the geometry of the current 
ow set-up.Generation of heat by steady current 
owConsider the tube of 
ow shown, i.e. the cylinder whose sides are lines of E and jand whose ends are equipotentials. Current of density j enters at the end A where thepotential is �A and leaves at B where the potential is �B < �A. The potential di�erenceis V = �A � �B = ��r �r� = �r E: (164)In unit time charge j�S enters the tube at A in unit time and leaves at B. The work doneon this charge moving it through the potential di�erence V in unit time is(j�S)V = (j�S)(E�r) = jE(�S �r) = (j �E)��: (165)25
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This work done corresponds to the conversion of electrical energy into heat, i.e. to theloss of electrical energy. The energy loss per unit time in volume � , with surface S isW = Z� j �Ed� = � Z� j �r�d�: (166)We use j �r� =r � (�j)� �(r � j); (167)where the second term is zero owing to (155), and the �rst term allows us to apply thedivergence theorem to (166). We obtainW = � ZS �n � jdS; (168)where n is the unit normal on S pointing out of � .Consider a conductor with current entering it and leaving it at ends S1 and S2, whichare equipotentials of potentials �1 and �2. Then, remembering that the n of (168) for S1is the negative of n1 in the diagram, we have from (168)W = (�1 � �2)I; I = ZS1 n1 � jdS = ZS2 n2 � jdS= V I; (169)where V is the potential di�erence between the ends. Using the elementary form (158)of Ohm's law, we have shown that the energy generation per unit time in a conductor ofresistance R through which 
ows a current I isW = RI2: (170)This is a formula familiar from elementary studies for the energy dissipated in unit timeas heat.3.2 MagnetostaticsThis deals with steady currents and the associated (time independent) magnetic �elds. Itis governed by the equationsr^B = �0 j; ()r � j = 0) (171)r �B = 0: (172)Eq. (172) is automatically satis�ed when the vector potential A is introduced viaB =r^A; (173)since r � (r^A) = @i�ijk@jAk =r^r �A = 0: (174)For given B however (173) does not determine A uniquely, because we can transformthe vector potential according to A0 = A+r�; (175)26



C
op

yr
ig

ht
 ©

 2
00

2 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

where � is an arbitrary scalar �eld. Sincer^A0 =r^A+r^r� =r^A = B; (176)the transformed vector potential serves our needs just as well as does A.In fact we can make use of (175) to impose a simplifying condition on the vectorpotentials we use in practice. Suppose we have found some A which yields the required Bvia (173), and is such that r �A =  , where  is a scalar �eld, calculable, as is obvious,from A. We shall pass by means of (175) to a vector potential A0 such thatr �A0 = 0: (177)This can always be done, since (177) implies0 = r �A+r2�= � +r2�; (178)which is an equation of Poisson type for which a (particular integral) solution for � interms of  can always be found.In what follows, we therefore assume that we can deal with vector potentials A whichobey r �A = 0: (179)[ Some language: Eq. (175) is called a gauge transformation, the condition (179) iscalled a gauge condition, and the physical theory is said to be gauge-invariant, because itdepends only on B.]Return now to (171). Sincer^ (r^A) =r(r �A)�r2A; (180)(171) reduces, with the aid crucially of our gauge condition (179), tor2A = ��0 j: (181)In Cartesian coordinates this reads asr2Ak = ��0jk (k = 1; 2; 3); (182)which, for each k, is of Poisson type, so that as in electrostatics, we can write down thesolution Ak(r) = �04� ZV jk(r0)jr� r0jd� 0A(r) = �04� ZV j(r0)jr� r0jd� 0: (183)Since it is not obvious that the expression (183) for A satis�es (179), we must provethat in fact it does. When this is done, it follows thatB(r) =r^A = �04� ZV j(r0)^ (r� r0)jr� r0j3 d� 0; (184)27
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satis�es (171). In calculating B, note that r^ acts only on the r variable, found only inthe denominator factor of expression (183) for A, and then eq. (16) of Sec. 2.1 is all thatis needed to produce (184).Consider a current of density j 
owing in an element �r of a very thin wire of cross-sectional area A. Then j�V = j (A�r) = (jA) �r = I�r. Neglecting the thickness of thewire, we can write, for the vector-potential and the magnetic �eld due to a wire whichcarries a current I and takes the form of a simple curve C, the expressionsA(r) = �0I4� ZC dr0jr� r0j (185)B(r) = ��0I4� ZC (r� r0)^dr0jr� r0j3 : (186)The results (184) and (186) for B are each often referred to the Biot-Savart law.Before turning to the calculation of magnetic �elds produced by simple current distri-butions, we have two minor tasks to attend to.Proof that (183) satis�es (179).r �A = �04� ZV r � � j(r0)jr� r0j� d� 0 (r acts on r and not on r0)= �04� ZV j(r0) �r 1jr� r0jd� 0= ��04� ZV j(r0) �r0 1jr� r0jd� 0= ��04� ZV �r0 � � 1jr� r0jj(r0)�� 1jr� r0jr0 � j(r0)� d� 0= ��04� ZS 1jr� r0jn0 � j(r0)dS 0: (187)Here V is all space, but if we suppose that a physical current distribution occupies a �nitevolume V̂ � V near the origin, then j(r0) = 0 on S and the proof is complete.Note the use of a now well-known identity for r � (�F) in the third line, r0 � j(r0) = 0in the fourth line, and �nally the ubiquitous divergence theorem.[A warning: care withr2F for a vector �eld F may be needed. There is no problemin Cartesians, and hence probably not in the material of this course:(r2F)k = (@j@j)Fk (188)where r2 = @j@j is the usual expression used in Laplace's equation. In other coordinatesystems, where the unit basis vectors are themselves coordinate dependent, (r2F)�, thecomponent of the vector r2F along the unit vector e�, is no longer given by (r2)F�.The correct result however follows from use of r2F = �r^ (r^F) +r(r � F) whereeach of the two terms on the right is calculable by two well-de�ned steps in any systemof orthogonal curvilinear co-ordinates. ]3.3 Magnetic �elds of simple current distributionsTo calculate these one may use Amp�ere's law, the Biot-Savart law or perhaps �rst calculateA from (183) or (185). 28
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a) In�nite straight wire carrying current I

Take the z-axis along the wire, take O in the xy-plane throught the point P, andcalculate B at P, r = ~OP using Biot-Savart. Using cylindrical polars, (s; �; z), we haver = ses; r0 = z0k; dr0 = dz0k; jr� r0j = (s2 + z02)1=2: (189)Now �(r� r0)^dr0 = s dz0e� so that we have proved that B is everywhere in the directionof e�. Hence, from (186)B = �0I4� Z 1�1 s dz0(s2 + z02)3=2e�= �0I4�s Z �=2��=2 cos� d� e�; (z0 = s tan�)= �0I2�se�: (190)We got the same answer in Sec. 1.4, arguing there that B = B(s)e� by `symmetryconsiderations'.b) Long solenoidThis is a continuous wire carrying current I wound round a very long right circularcylinder, so long that end e�ects can be ignored. Assume there are N turns of wire perunit length, with N large, wound in a spiral of very small pitch, so that we can regardthe cylindrical surface as carrying a surface current. Use cylindrical polars (r; �; z), withz-axis at the axis of the cylinder. Then s = NIe� gives the current density, i.e. thecurrent per unit length, measuring the charge crossing unit length in unit time. Note thatwe called the radial coordinate of cylindrical polars r here because the symbol sdenotes the magnitude of the surface current.B is clearly independent of both z and �. We take B of the form (see later)B = Bz(r)k; k = (0; 0; 1): (191)Check that r^B = 0, true where there is no (volume) density of current, implies@Bz@r = 0; so that Bz = constant: (192)Outside the cylinder this constant is zero, because jBj = 0 for in�nite r. To �nd jBjinside the cylinder use the rectangular contour C shown in the diagram. Only the vertical29
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line inside the solenoid contributes to H dr �B, so that Amp�ere leads toBz z = �0NIz; Bz = �0NI; B = �0NIk: (193)The answers here obtained illustrate the discontinuity law, stated previously as eq.(65) of Sec. 1.8, n^Bj+� = �0 s; (194)at a surface of discontinuity carrying a surface current density s per unit length. We haven^Bj+ = 0, and n^Bj� = (�)er^ (�0NIk) = �0NIe� = �0s: (195)The result (194) is to be noted for use in chapter 5.c) Long cylindrical conductorConsider current, 
owing in a long right circular cylinder and distributed uniformlyover its circular cross-section, of area A = �a2, so thatj = jk; �a2j = I; k = (0; 0; 1): (196)Assume that magnetic �elds can be calculated within the conducting material by thesame formulas as apply in the vacuum or free-space. This is a good approximation forgood conductors, which do have similar magnetic properties to free-space.Use cylindrical polars (s; �; z) with z-axis along the axis of the conductor. By sym-metry B = B(s)e�, and we apply Amp�ere to horizontal circles centred on the z-axis for(i) s > a and s < a.outside 2�sB = �0I; B = �0I2�s (197)intside 2�sB = �0�s2j; B = �0Is2�a2 = �0js2 : (198)Note that outside the conductor the magnetic �eld is the same as for a very thin wire,as in example a).Note also that here there is no surface current, and hence we expectn^Bj+� = 0: (199)Here n^B = es^B(s)e� = B(s)k and continuity of the tangential component of B ats = a follows (197) and (198).3.4 Large distance expansion of the vector potentialLet V be all-space with surface S `at in�nity'. Dealing with a distribution of currentdensity con�ned to a �nite volume V̂ � V situated `near' the origin, we could inA(r) = �04� ZV j(r0)d� 0jr� r0j (200)replace V by V̂ .We are here interested in the leading approximation to (200) for large r, and so, farfrom V̂ . 30
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Let c be an arbitrary constant vector, and treat c �A, using1jr� r0j = 1r � r0 �r1r (201)for large r.Look �rst at the term �04� 1r ZV c � j0d� 0: (202)This term is zero:Proof. Dropping the primes for the evaluation of the integral in (202), we start out fromZV r � (� j)d� = ZS � (n � j)dS = 0; � = c � r (203)since j = 0 on S. But we also have, for the same integral,ZV r � (� j)d� = ZV [(r�) � j + �r � j] d�: (204)But r� =r(c � r) = c; and r � j = 0: (205)So, using (204) and then (203), we haveZV c � jd� = ZV r � (� j)d� = 0; (206)as was to be proved.As will become clear we are approaching a result of major importance for understand-ing the physical origins of magnetism. So detailed proofs are needed wherein the aimshould be to understand the vector calculus detail, given the starting points of the proofs,although these are certainly not intuitively obvious.To �nd the leading term of A(r) it is necessary to consider��04� (r 1r ) � ZV r0 [c � j(r0)] d� 0: (207)To treat this, write (without primes where possible without causing misunderstanding)r(c � j) = 12 [r(c � j) + j(c � r)] + 12 [r(c � j)� j(c � r)] : (208)We show below that the �rst square bracketed piece gives zero contribution to (207). Thesecond one equals c^ (r^ j): (209)It follows that the leading contribution to c �A is�04� rr3 � c^ 12 ZV r0^ j(r0)d� 0 = �04� 1r3 r � c^m = �04� 1r3c �m^r; (210)where we have de�ned the magnetic moment of the distribution bym = 12 ZV r0^ j(r0)d� 0; (211)31
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from which the primes may be dropped. We no longer need the arbitrary constant vectorc in completing the identi�cation, using (210), of the leading contribution, for large r, tothe vector potential A(r). This is A(r) = �04� 1r3m ^r; (212)which goes to zero like 1r2 for large r.It remains to prove that the �rst square bracket of (208) gives zero contribution. Theproof is similar in spirit to the one that showed the 1r term of A vanishes.Proof: Using a second arbitrary constant vector b, set out fromZV r � (�j)d�; where now � = (b � r)(c � r); (213)an integral which obviously vanishes by the divergence theorem, since j is zero on S. Butr � (�j) = (r�) � j + �(r � j); (214)and the second term is zero. Alsor� = b(c � r) + (b � r)c; (215)so that 0 = ZV r � (�j)d� = ZV [(c � r)(b � j) + (b � r)(c � j)]d�: (216)Detaching b which has served its purpose, we have0 = ZV [(c � r)j+ r(c � j)] d�: (217)Thus shows that the contribution in question is zero as was desired.3.5 Dipole view of mWe indicate in this section that there is some analogy between the magnetic moment mof (211) and the electric dipole of dipole moment p of electroststatics.Given the vector potential (212), we now calculate the magnetic �eld B. First evaluater^ (m^rr3 ) = �r^ (m^r1r ) = �r^ (m^v); (218)with a temporary abbreviation v =r1r . We use[r^(m^v)]k = �kij@i�jpqmpvq = (�kp�iq � �kq�ip)@impvq= @imkvi � @imivk = mkr � v �m �rvk= [mr2 1r � (m �r)r 1r ]k: (219)Since we are dealing with non-zero r, we can certainly use r2 1r = 0, so thatB(r) = �04� (m �r)r1r = �04�r(m �r)1r = �r ���04� (m �r)1r� ; (220)32
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in a form that is immediately suggestive.At points where there is no charge density j = 0, the magnetic �eld B obeysr^B = 0: (221)At such points, we can introduce a magnetic scalar potential 
 viaB = �r
: (222)As r �B = 0, we have, as in electrostatics,r2
 = 0; (223)Laplace's equation, of which we know various solutions. The one of relevance here is theanalogue of the one for the potential of the electric dipole of moment p given as (36) ofSec. 2.3, namely 
 = ��04�m �r1r : (224)From (220), it follows that it yields exactly the �eld B in focus here.We have found the limited analogy of the magnetic dipole momentm that determinesthe leading large r behaviour of the vector potentialA(r) of a current distribution localisednear the origin of space, and the electric dipole. Since it is the leading contribution toA(r), this underlines the fact that magnetism has no analogue of the point charge: asfar as is known at present magnetic monopoles do not exist. The next section provides aphysical realisation of m.3.6 The current loopHere we look at the vector potential A (185) of a current loop, i.e. a wire of negligiblecross-section shaped in the form of a closed contour C, carrying a current I.Chose an origin near the loop and seek the vector potential of its magnetic �eld, atdistances large on a scale set by the physical dimensions of the loop. (Or, consider A(r)due to a small loop.)Let S be a surface such that @S = C. Let c be an arbitrary constant vector, and workon c �A c �A = �0I4� IC 1jr� r0jc � dr0= �0I4� ZS n0 �r0^( 1jr� r0jc) dS 0 (Stokes)= �0I4� �ZS dS0^r0 1jr� r0j� � c: (225)Hence A(r) = �0I4� ZS dS0^r0 1jr� r0j = �0I4� ZS dS0^ � r� r0jr� r0j3� : (226)Now, in striking contrast to what we needed to do in Sec. 3.4, we get the leading approx-imation to A(r) simply by dropping r0 from the integrand of (226). So we haveA(r) = �04� 1r3 �I ZS dS0� ^r = �04� 1r3 m^r: (227)33
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This coincides with (212). In the case of special interest of a plane current loop of areaS = Sn, the de�nition of m implicit in (227) ism = ISn: (228)We have obtained a result crucial to the understanding of magnetism at all levels: asmall current loop gives, via (228), a physical realisation of a magnetic moment.[ A brief informal asideIf one considers atoms which possess spin about some axis, one can see roughly thatthe motion of their electrons approximate to current loops with moments parallel to thisaxis. If the spin axes of all the atoms, in some material made up of such atoms, canbe made to line up parallel, then the material acquires a macroscopic magnetic moment.This o�ers a little insight into the origin of permanent or (ferro-)magnetism. ]3.7 Forces and couplesFrom (17) of Sec. 1.3, we �nd that the force, felt by an element of volume �V of mediumin which the current density is j(r), because of a given magnetic �eld B(r) is�F(r) = [j(r)�V ] ^B(r) or= I�r ^B(r): (229)for an element �r of thin conducting wire carrying current I.For a loop C1, carrying current I1, in a given �eld B, the total force and couple feltare F = IC1 I1dr1 ^B(r1) (230)G = IC1 r1^ [I1dr1 ^B(r1)] : (231)If B2(r) is the �eld due to a current loop C2 carrying current I2B2(r) = �04� IC2 I2dr2^ (r� r2)jr� r2j3 ; (232)then the force F12, exerted on loop C1 by (the magnetic �eld due to the current in) theloop C2, is F12 = IC1 I1dr1 ^B2(r1) = �04� I1I2 IC1 IC2 dr1^ (dr2^ r1 � r2jr1 � r2j3 ): (233)We should ask if there is agreement here with Newton's third law; it is not obviousfrom (233). Writing R12 = r1 � r2, we havedr1^ (dr2^R12) = (dr1 �R12)dr2 � (dr1 � dr2)R12: (234)The �rst term of (234) gives zero contribution to F12, using Stokes's theorem. InsideHC2 dr2(: : :) to be taken second we haveIC1 dr1 � R12R123 = � IC1 dr1 �r1 1R12 = � ZS1 n1 �r1^r1 1R12dS1 = 0: (235)34
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Hence F12 = ��04� I1I2 IC1 IC2(dr1 � dr2)R12R123 = �F21: (236)It can be shown that the force and couple exerted on a small current loop of momentm = ISn due to a uniform magnetic �eld B areF = 0; G =m ^B: (237)This can be compared with the results for an electric dipole of moment p in a uniformelectric �eld E. F = 0; G = p ^E: (238)This gives a little more substance to the analogy mentioned earlier.Example: parallel wiresSuppose C1;2 are in�nite wires carrying currents I1;2, the former along the x-axis, thelatter parallel to it and through (0; 0; a). Use Cartesian coordinates.

Consider the element I1dr1 = I1 dxi at the origin. The force exerted on it by C2 isdF1 = I1 dxi^B2(0); B2(0) = �0I22�a j= �02�aI1I2kdx: (239)This uses the result (190) derived in example a) of Sec. 3.3. It follows that the force perunit length felt by C1 due to C2 is F = �02�aI1I2k: (240)This is a force of attraction.3.8 The pinch e�ectConsider a cylindrical conductor of radius a carrying a current I of uniform current densityj = jk; I = �a2j, and situated in a vacuum.Take the axis of the cylinder as the z-axis, as in example c) of Sec. 3.3 Then (198)tells us that the �eld inside the cylinder isB = Be�; B = 12�0js: (241)35
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The force per unit volume of the conducting medium isF = j ^B = 12�0j2 s(�)es: (242)The force per unit volume outside the conductor is zero because j = 0 there.If the conducting medium is a plasma (gaseous conductor) then it is held in hydrostaticequilibrium by means of forces of magnetic nature.If the pressure in the plasma is p = p(s) then in equilibrium�rp+ F = 0; �dpds � 12�0j2 s = 0; (243)so that p = c� 14�0j2 s2: (244)Outside the conductor there is no magnetic force so the pressure is constant, equal to itsvalue at s =1, i.e. zero. So p = 0 at s = a. Hencep = 14�0j2 (a2 � s2): (245)4 Electromagnetic inductionRecall the paragraph from Sec. 1.5, repeated here: The Maxwell equationr^E+ @B@t = 0 (246)implies ZC E � dr = ZSr^E � dS = � ZS @B@t � dS = � ddt ZSB � dS; (247)by applying Stokes's theorem to a �xed curve C = @S bounding a �xed open surface S.If we de�ne the electromotive force (or electromotance) acting in C byE = ZC E � dr; (248)and the 
ux of B through (the open) surface S by� = ZSB � dS; (249)then we get Faraday's Law of inductionE = �d�dt : (250)This will be studied now.In chapter two we studied electric �elds E such thatr^E = 0; ZC E � dr = 0; (251)36
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called conservative, since there exists the electrostatic potential � such that E = �r�. Inchapter two it was assumed implicitly that there were no magnetic �elds in the discussion,but it could equally have been assumed that we were dealing with non-conducting material(e.g. the vacuum or free space) and time-independent magnetic �elds, since the latterwould then be entirely uncoupled from the electrostatics.Here we study time-dependent magnetic �elds and the the non-conservative electric�elds that accompany them. The latter may give rise to non-zero electromotive forces (orelectromotances, or EMFs for short), and hence cause current 
ow.We �rst make this study in the (pre-Maxwellian) approximation to the full Maxwelltheory, in which r^E+ @B@t = 0; r^B = �0j: (252)In other words, we omit the (so-called) displacement current, seen in Sec. 1.5 to be anessential ingredient of a consistent theory. In Sec. 5.5, we develop a criterion, in thecontext of (alternating) current 
ow in material of high conductivity, under which it isreasonable to neglect the displacement curent.We look �rst at simple situations wherein it can be seen how time-dependent magnetic�elds can produce non-zero EMFs and cause current 
ow.
4.1 Simple examplesIf we talk about a bar magnet, we mean a piece of material in which the atomic spins, es-sentially small current loops, are all lined up, to produce a macroscopic magnetic moment,as in the left hand diagram.

A bar magnet moved relative to a �xed circuit, with a galvanometer, causes a currentto 
ow in the circuit, as motion of the galvanometer needle indicates. There is current
ow i� there bar magnet moves.Suppose the bar magnet in this context is replaced by a second circuit, with a battery,and a current 
owing, and with a movable part. I� there is motion of the latter relativeto the �rst circuit, then will the galvanometer record a current 
ow. (The magnetic �eld37
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of the current in the second circuit does the business just as well as did the bar magnet.)

The permanent magnet set-up in the diagram produces magnetic �elds in the curvedslots in which the loop of a circuit can rotate. If the loop is made to rotate steadily, thenan alternating current 
ows in the circuit. This is the principle of the (AC) generator.The same set-up can be used to illustrate the principle of the electric motor. Acrosseach slot there is a north and a south pole. Suppose the coil is lying with one side in eachslot. When a current is passed through the coil, it 
ows in opposite directions on the twosides, so these feel equal and opposite forces. In other words a couple is being applied tothe coil. If the shaft of the coil is free to rotate, the system can be coupled to pulleys orgears and do work.4.2 Faraday's law of inductionLet C be either(a) a �xed closed geometrical curve, or(b) a physical, possibly moving circuit.Let S be a surface bounded by C = @S.De�ne the 
ux, of a possibly time-dependent magnetic �eld B, through S by� = ZSB � dS: (253)Then Faraday's experimental law, valid in both the contexts (a) and (b), with anappropriate de�nition in each case of the EMF E in C, isE = �d�dt : (254)In case (a) E = ZC E � dr = ZSr^E � dS (255)and d�dt = ddt ZS B � dS = ZS @B@t � dS: (256)38
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Consistency of (254 {256) is now assured by means of the Maxwell equation (246), assumedtrue in general.For case (b), consider the case of a physical circuit moving rigidly with velocity v,v � c, in a time-dependent magnetic �eld B.The force on a particle of charge q moving with velocity v in the magnetic �eld B,and therefore also in its accompanying electric �eld E, is given by eq. (16) of Sec. 1.3:F = q(E+ v^B): (257)Hence we de�ne the electromotance or EMF in C asE = 1q IC F � dr = IC(E+ v^B) � dr: (258)

We must show that, in context (b), (254) and (258) are compatable with the Maxwellequation (246).To achieve this, we set out from an expression for d�dtd�dt = lim�t!0 � 1�t �ZS0 B(r0; t+ �t) � dS0 � ZS B(r; t) � dS�� : (259)Then we apply the divergence theorem at time (t+ �t) to the spatial volume V boundedby S, S 0 and the curved surface � swept out by the circuit C as it moved from positionS at time t to position S 0 at (t + �t).0 = ZV r �Bd�= ZS0 B(r0; t+ �t) � dS0 � ZS B(r; t+ �t) � dS+ IC B(r; t+ �t) � (dr^v�t): (260)Here, as the right-hand diagram purports to justify, we have useddS � dr^v�t; (261)on �. Since the third term of (260) is proportional to �t and hence already small, weneglect the �t in the argument of B in it, having already neglected the variation of Bacross �.The second integral in (260) has the Taylor expansionZS B(r; t) � dS+ �t ZS @B(r; t)@t � dS: (262)39
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These remarks allow us to write (260) as0 = ZS0 B(r0; t+�t) �dS0�ZSB(r; t) �dS��t ZS @B(r; t)@t �dS+�t IC dr �v^B(r; t): (263)Dividing by �t, we see the �rst two terms in (263) allow us to bring in d�dt using (259).So we get 0 = d�dt � ZS @B(r; t)@t � dS+ IC dr � v^B(r; t): (264)The �rst term here is related by (254) to E, which is de�ned in the present context by(258). Hence 0 = IC E � dr+ ZS @B(r; t)@t � dS; (265)the v-dependent terms having cancelled, so that consistency is assured by the Maxwellequation (246), just as in case (a).The signi�cance of the minus sign in the de�nition (250) of the EMF remains to beaddressed, under the heading Lenz's law.4.3 The Faraday experiment

In the set-up shown the crossbar LM can slide with negligible friction parallel to ON .The uniform time independent magnetic �eld B = (0; 0; B) points upwards from theplane of the page. We neglect the resistance of the wire QMNOLP. Then the circuit C=(battery)OLMN has resistance R; (266)i.e. LM has resistance R. Also, for large B and R, we neglect magnetic �elds arisingfrom any current 
owing in the system. The initial conditions arex = x0; _x = 0; I = I0 = E0R at t = 0: (267)The Biot-Savart law tells us that the force �F acting on the element �r = �yj =�y(0; 1; 0) of LM is given by�F = I�r^B = I�y Bj^k = I�y Bi: (268)40
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So the total force on LM is F = IaBi: (269)By Newton's second law, we have m�x = IaB: (270)We cannot assume that I is independent of t, so that we are not yet ready to try to solve(270).When LM is at x, the 
ux of B through C = @S is� = ZS B � dS = constant + B(ax); (271)so that the EMF induced in C in the circuit isE = �d�dt = �Ba _x: (272)It follows now that the total EMF in the circuit at time t isE0 + E = E0 � Ba _x; (273)and that E0 � Ba _x = IR: (274)Eqs. (270) and (274) enable the time dependence of I and _x to be calculated. In view ofour neglect of various e�ects, we have a reasonably simple di�erential equation for x(t)m�xR = aB(E0 �Ba _x); (275)indeed soluble quite nicely for small t. This solution exhibits what is expected in general,that the induced EMF opposes the battery EMF, and the current in C is reduced. Theseare two aspects of Lenz's law.Lenz's law is a special case of more general belief: le Châtelier's principle. This canbe stated as follows: a physical system in a steady state reacts by opposing any changeimposed on it from outside.We neglected the magnetic �eld due to the current induced in C, which opposesthe battery produced I0. But the �eld due to the induced current in LM e.g. pointsdownwards on the plane of the diagram, and opposes B. This too exempli�es a Lenzview: 
ux change of one sign produces currents which create 
ux of the the opposite sign.4.4 Coil rotating in a �xed magnetic �eldLet C be a closed rectangular curve PQRS of area A. Very thin conducting wire iswrapped N times around the curve C with free ends connected to some external circuit.Suppose C can rotate rigidly about a �xed axis j = (0; 1; 0) with angular velocity !
41



C
op

yr
ig

ht
 ©

 2
00

2 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

in the presence of a uniform time-independent magnetic �eld B = (0; 0; B).

When the normal to the coil makes an angle � = !t to B as shown, so that n =cos �k + sin �i, then the 
ux of B through the coil isZ B � dS = NB � nA = NB cos �A: (276)Hence the EMF induced in the circuit isE = �d�dt = NBA! sin!t: (277)If the coil has resistance R, then the current induced in the coil isI = NBA!R sin!t: (278)The couple exerted on the circuit by the magnetic �eld then isG = N IC r^ (Idr^B: (279)It can be shown, see Sec. 6.3, by doing vector calculus manipulations, thatG = �IANB sin �j =m^B: (280)This, in the spirit of Lenz's law, tends to counter the torque that applies the angularvelocity to the coil.It is not a nice calculation, but the integral (279) can be evaluated directly, con�rmingthe result given.4.5 InductanceConsider �xed circuits Ck; k = 1; 2; : : : ; carrying currents Ik dependent on time, e.g.alternating currents.The total EMF Ek induced in Ck is Ek = �d�kdt , where �k = Pl �kl and �kl is the
ux through Ck due to the magnetic �eld Bl(r) of the current Il in Cl.�kl = ZSk Bl(rk) � dSk= ICk Al(rk) � drk by Stokes42
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= ICk drk � ��04� ICl Ildrljrk � rlj�= Il�ICk ICl �04� drk � drljrk � rlj�= IlMkl: (281)The last two lines of (281) de�ne the geometrical coe�cientMkl =Mlk = @�kl@Il ; (282)called the mutual inductance of the circuits Ck and Cl. Hence�k =Xl MklIl; Ek = �Xl Mkl _Il: (283)For one circuit C which carries current I, one can evaluate the 
ux �(I) of its ownmagnetic �eld through it, and then obtain the (self-)inductance L = �I of C, and theEMF induced in C �L _I; (284)which acts in addition to the EMF due to batteries in C.The inductance of a long solenoidRecall the treatment and results obtained under example b) of Sec. 3.3. The solenoidhas N turns of wire per unit length and length l very large so that end e�ects can beneglected. It carries current I. It is cylindrical with axis k = (0; 0; 1), and cross-sectionalarea A. The magnetic �eld due to the current 
ow is (see also Sec. 6.2)B = �0NIk (285)inside the solenoid and zero outside. The 
ux of B through one turn of the solenoid is�0NIA (286)and through all Nl turns is � = �0N2lIA: (287)As expected this is proportional to I and de�nes the (self)-inductance of the coil to beL = �0N2lA = �0N2V; (288)where V = Al is the volume of the solenoid. We shall use this for energy considerationsin Sec. 4.74.6 Magnetic energyConsider a circuit with battery E0, and induced EMF E given by (284). Then Ohm's lawtells us that E0 = IR + d�dt : (289)Then, as in sec. 3.1, the work �W done by the battery in time �t is given by�W = E0I�t = RI2�t+ I��: (290)43
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The �rst term is Ohmic heat generation, the second a magnetic energy term, to be treated.For simplicity consider a system of �xed circuits Ck of negligible resistance. Then�W =Xk Ik��k =Xkl MklIk�Il = 12Xkl Mkl�(IkIl): (291)Assuming that, at t = 0, the current and hence the magnetic energy are zero, we getW = 12Xkl MklIkIl = 12Xk Ik�k: (292)For a single circuit W = 12LI2: (293)For two circuits W = 12 �L1I12 + L2I22 + 2MI1I2�= 12 "L1 �I1 + M I2L1 �2 + I22�L2 � M2L1 �# : (294)Now W � 0 for all I1; I2. Hence, chosing them so that I1L1 + I2M = 0 , we infer thatL1L2 �M2 � 0: (295)4.7 Energy of the magnetic �eldTo evaluate (292), we have, using the second line of (281),�k =Xl �kl =Xl ICk Al(rk) � drk) = ICk A(rk) � drk; (296)where the total vector potential of all the circuits has been introducedA(r) =Xl Al(r): (297)Hence W = 12Xk Ik�k = 12(Xk ICk)A(rk) � (Ikdrk): (298)From this, we may infer the result for a continuous distribution of current of density joccupying a �nite volume V̂ of space near the origin:W = 12 ZV j �Ad�; (299)where the integral has been extended trivially to cover all space. HenceW = 12�0 ZV A �r^Bd�= 12�0 ZV [�r � (A^B) +B �r^A] d�: (300)44
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The divergence theorem can be applied to the �rst term on the right of (300). This givesa surface integral over a surface S at in�nity whose contribution goes to zero with thedistance r from the origin, see Sec. 6.1. The de�nition of the vector potential is then usedon the second term of (300), giving rise to the �nal answerW = 12�0 ZV B2d�: (301)The long solenoid of Sec. 4.5We can calculate the energy stored in the solenoid in two ways. First, (293) of Sec.4.6 gives us W = 12LI2 = 12�0N2I2V: (302)Second, we use the magnetic �eld energy expression (301) andB = �0NIk (303)to get W = 12�0 ZV B2d� = 12�0 (�0NI)2 ZV d� = 12�0N2I2V; (304)again.5 Maxwell's equations5.1 A historical paradoxIn magnetostatics, the equation r^B = �0j; (305)implies r � j = 0. As � = 0 in magnetostatics, this is compatable with the continuityequation r � j+ @�@t = 0. However application of the integral form of (305)IC B � dr = �0 ZS j � dS; (306)naively to the following situation produced a contradiction, one that Maxwell resolved bygeneralising (305).
The direction of I has been changed relative to that displayed in the original diagramThe `capacitor' paradox arises by applying (306) to the two surfaces S1 and S2 thatare bounded by the same curve C. There is a unique answer for the left-side of (306), butthe right-side gives di�erent answers �0I for S1 and 0 for S2.45
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Maxwell proposed that (305) be changed by addition to a term that made it compat-able with r � j+ @�@t = 0. This gives rise (in free space or the vacuum) tor^B = �0(j+ �0@E@t ); (307)as was shown in Sec. 1.4 to be su�cient to achieve consistency.How does the use of (307) provide resolution of the paradox? There is an electric �eldonly between the plates, so that on S1, lying outside the plates, we still haveIC B � dr = �0 ZS1 j � dS = �0I: (308)Between the plates, assuming that E is uniform, we have E = ��0k, and hence1�0 IC B � dr = ZS2 j � dS+ �0 ZS2 @E@t � dS = 0 + �0 ddt ZS2 E � dS= ddt(�A) = dQdt = I; (309)as expected. Here � is the charge density and A is the plate area.See Sec. 5.8, where it is not assumed that E is uniform.5.2 Maxwell's equations in terms of potentialsMaxwell's equations, given previously in Sec. 1.4, for charges and currents in a non-polarisable and non-magnetisable medium, such as the vacuum, arer^E+ @B@t = 0 (310)r �B = 0 (311)r �E = 1�0� (312)r^B = �0(j + �0@E@t ) (313)where � and j are the charge and current densities.In view of (311) there is no need to change the de�nition already used of the vectorpotential A, namely B =r^A; (314)but the freedom present in this de�nition will be reconsidered.To de�ne the electric potential, we combine (310) and (314) gettingr^E+ @@tr^A = 0; and r^ (E+ @A@t ) = 0: (315)Thus we de�ne the electric potential viaE = �@A@t �r�: (316)46
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The de�nitions (314) and (316) of �elds in terms of potentials possess `gauge invari-ance'. Verify that the gauge transformationA0 = A+r�; �0 = �� @�@t ; (317)yields potential that give the same electric �eld E and magnetic �eld B as did A and �.We shall take advantage of this to simplify the equations for A and � that follow fromMaxwell's equations.Using (316) we see (312) implies�r2�� @@t(r �A) = ��0 : (318)Using (316) and (314), we �nd that (313) leads tor^ (r^A) = �0j+ �0�0(�@2A@t2 �r@�@t ); and (319)�r2A+ �0�0@2A@t2 = �0j�r(r �A+ �0�0@�@t ): (320)Here we used r^ (r^A) =r(r �A)�r2A: (321)Now we use the arbitrariness present in the de�ntions of A and � to impose the `gaugecondition' (called the Lorentz condition)r �A+ �0�0@�@t = 0: (322)Hence (�0�0 @2@t2 �r2)� = ��0 (323)(�0�0 @2@t2 �r2)A = �0j; �0�0 = 1c2 : (324)Thus we have found that � and the components of A obey wave equations linked onlythrough the Lorentz condition.In the absence of spatial distributions of charge, these equations are in fact waveequations with wave speed c given by c�2 = �0�0. Maxwell conjectured that c is the speedof light in advance of possessing data that con�rms it. In Sec. 1.6 it was shown that, inthe same context, the components of E and B obey the same wave equation. The sameconclusion follows (323) and (324), for � = 0; j = 0.5.3 Energy and energy transportRecall the �eld energy formulasWel = �02 ZV E2d�; Wmag = 12�0 ZV B2d�; (325)47
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and the expression for the rate of Ohmic heat loss i.e. the rate of dissipation of electro-magnetic energy as heat Z j �Ed�: (326)The Maxwell equation (313) implies1�0E �r^B = E � j+ �0E � @E@t : (327)Now E �r^B = �r � (E^B) +B �r^E and= �r � (E^B)�B � @B@t : (328)Hence ��0E � @E@t � 1�0B � @B@t = j �E+ 1�0r �E^B� ddt ��02 ZV E2d� + 12�0 ZV B2d�� = ZV j �Ed� + 1�0 ZS n �E^BdS: (329)For the last term the divergence theorem has been applied to a �xed volume V of spacebounded by a surface S. The left side here is the rate of decrease of the total �eld energyW = Wel +Wmag. The �rst term on the right side of (329) represents the rate of loss ofenergy as Ohmic heat, while the second term there is the rate of energy transport out ofV through the surface S.For the latter, de�ne the Poynting vector SS = 1�0E^B: (330)The 
ux of S through a closed surface S, with outward unit normal n, isZS S � ndS: (331)This is the 
ux of electromagnetic energy being transported through S out of V .Eq. (329) thus gives a generally applicable account of energy changes in a conductingmedium.5.4 Plane wave solutions of Maxwell's equationsWe here deal with the vacuum or free-space, i.e. � = 0; j = 0. We begin as simply aspossible by seeking a solution describing a wave propagating in the z-direction with �eldsthat do not depend on x or y.Looking at r �E = 0, we �nd that Ez is constant. Looking for solutions of wave type,we put Ez = 0. Next we chose axes so thatE = (E; 0; 0): (332)Since the components of E each satisfy a wave equation, this gives us@2E@z2 = 1c2 @2E@t2 : (333)48
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The solution of such a wave equation can be written asE(z; t) = f(z � ct) + g(z + ct): (334)The f and g terms here describe waves moving respectively in the positive and negativez-directions with speed c. In particular, we can consider a monochromatic wave, one witha �xed angular frequency !, in whichE = E0 exp i!(zc � t) = E0 exp i(kz � !t) (335)where we have de�ned the wave-number k byk = !c = 2�� ; : (336)Here �� = !2�� = c relates the wavelength � and frequency of the wave in a standardway to other wave variables. Finally, note that the use of complex exponentials is veryconvenient, but the physical �elds must always be identi�ed by taking real parts.What about the magnetic �elds? Looking at r �B = 0, we �nd that Bz is constant,and take it to be zero. It is natural to assume that B is of the formB = B0 exp i(kz � !t): (337)Then in r^E the only no-zero entry is @Ex@z so that we have B0 = (0; B0; 0), and hence,from r^E+ @B@t = 0 (338)we get ikE0 � i!B0 = 0; B0 = E0c : (339)So our wave solution of Maxwell's equations isE = (E0; 0; 0) exp i(kz � !t); B = 1c (0; E0; 0) exp i(kz � !t): (340)It should be checked that (340) satis�es also (the zero current density version of) thefourth Maxwell equation (313), although our use of the fact that each component of Esatis�es a wave equation guarantees it.We could have chosen our coordinate axis in the xy-plane initially so that E = (0; E; 0),and reached, as above, the solutionE = (0; E0; 0) exp i(kz � !t); B = (�1cE0; 0; 0) exp i(kz � !t): (341)The solutions (340) and (341) are linearly independent, and the general monochromaticwave obtained as a linear superposition of them, has �elds E and B that are transverseto the direction of propagation of the wave. Also E �B = 0.The solutions (340) and (341) are said to be linearly polarised, with polarisationvectors i = (1; 0; 0) and j = (0; 1; 0), giving the directions of their electric �elds.The transport of energy by the wave (340) obtained above, requires the real partsE = (E0; 0; 0) cos(kz � !t); B = (0; 1cE0; 0) cos(kz � !t); (342)49
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so that S = 1�0 E02c cos2(kz � !t) (0; 0; 1): (343)Thus the 
ux of energy transported across unit area normal to the direction of propagationof the wave (say at z = 0) is jSj = 1�0 E02c cos2 !t: (344)Averaging over one period, 2�! , of the wave motion, we get for the average rate of energytransport hjSji = R T0 jSj(t)dtR T0 dt = 12�0 E02c : (345)The same result holds for the wave (341).Circularly polarised wavesTake a solution that is (340) minus i times (341), with E0 real. This has physical �eldsE = Re(E0;�iE0; 0) exp i(kz � !t); B = Re1c (iE0; E0; 0) exp i(kz � !t) or (346)E = E0(cos(kz � !t); sin(kz � !t); 0) ; B = E0c (� sin(kz � !t); cos(kz � !t); 0)E = E0es(kz � !t) ; B = E0c e�(kz � !t; (347)where es(�) and e�(�) are the unit vectors of cylindrical polar coordinates (s; �; z) with thez-axis in the direction of propagation of the wave. The wave (347) is said to be (positively)circularly polarised. A wave of negative circular polarisation linearly independent of thiscan be constructed, using (340) plus i-times (341) with E0 real. It is immediate to writedown the corresponding �elds.If we consider a wave with �elds (of constant E0 and B0)E(r) = E0 exp i(k � r� !t); B(r) = B0 exp i(k � r� !t); (348)where k the wave-vector, with jkj = k, gives the direction of propagation of the wave,(i.e. here k 6= ez and the wave number k 6= 1). Then r � E = 0 implies E0 � k = 0,and likewise r �B = 0 implies B0 � k = 0, so that both these �elds are transverse to thedirection of propagation. Also (338) impliesik^E0 � i!B0 = 0; (349)which gives B0 in terms of E0. Further the remaining Maxwell equation r^B = 1c2 @E@timplies ik^B0 = �i 1c2!E0; (350)compatably with (349) i� k2 = !2c2 ; giving k = !c : (351)We have merely reproduced our previous wave in an arbitrary Cartesian basis.50
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5.5 Maxwell's equations in a conducting mediuma) Decay of charge in a good conductorPreviously, in Sec. 4.1, we used the approximation to full Maxwell theory, whichneglects (was historically unaware of) the displacement current, and is governed by theequations r^B = �0j; r^E+ @E@t = 0; (352)so that r � j = 0 and � = 0. Now we consider the full theory withr^B = �0j+ �0@E@t ; (353)together with the experimental law j = �E; (354)and the continuity equation (cf. eq. (26) of Sec. 1.4).r � j + @�@t = 0: (355)Throughout Sec. 5.5, � is the conductivity of the medium. Thus we have1�0r^B = �E+ �0@E@t and hence0 = �r �E+ �0 @@tr �E= � ��0 + @�@t : (356)We de�ne the so-called relaxation time � = �0� : (357)For copper or silver � � 10�18s. So, if � = �0 at time t = 0, then we have� = �0 exp(� t� ); (358)so that any charge density present at any time, for whatever reason, very quickly goesto zero in material of high conductivity. Inside the material of a perfect conductor (�in�nite), we recover our previous statement � = 0.b) Criterion for neglect of displacement current in AC problemsIf E(r; t) = E(r)e�i!t, then the ratio the magnitudes of the displacement current �0@E@tand the physical current j is given byj�0@E@t j=jjj = �0!� = !�: (359)So neglect the displacement current requires !� � 1, and is justi�ed for current 
ow incopper up to optical frequencies (1015 hertz).c) Waves in conducting medium: see Sec. 5.751
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5.6 Re
ection at the surface of a perfect conductorWe consider a monochromatic wave (340) propagating in the z-direction from the half-space z < 0, towards perfectly conducting material in z > 0, whose surface is the planez = 0. In fact the solution of Maxwell's equations plus the boundary conditions (BC)on z = 0 will comprise not only an incident wave but also (at least) a suitably matchedre
ected wave. The �elds of the former will have argument (kz�!t), where kc = !, whilethose of the latter (moving in the negative z-direction) are (�kz � !t). All �elds in theproblem have the same t-dependence / e�i!t.We know that the �elds E and B are zero inside perfectly conducting media, it there-fore follows the BC are: tangential E and normal B are zero at z = 0. For the wave (340)this just means that Ex = 0 at z = 0. Thus for the electric �elds of the incident andre
ected parts of our total wave solution of Maxwell's equations, we takeEinc = (E0; 0; 0) exp i(kz � !t); Eref = (�E0; 0; 0) exp i(�kz � !t); (360)since their superposition E = Einc + Eref ; (361)by construction gives Ex = 0 at z = 0. The corresponding magnetic �elds are B =Binc +Bref withBinc = 1c (0; E0; 0) exp i(kz � !t); Bref = 1c (0; E0; 0) exp i(�kz � !t): (362)We see from this that B does have a non-zero tangential component at z = 0, namelyB = 21c (0; E0; 0) e�i!t: (363)But this just tells us that a surface current s necessarily accompanies the �elds E and Bin a consistent solution of Maxwell's equations and boundary conditions.Recalling the formula (65) of chapter one for sn^Bj+� = �0s; (364)we obtain �0s = n^Bj� = 21cE0e�i!t (1; 0; 0): (365)5.7 Plane waves incident on conducting materialIn Sec. 5.6, we solved the problem of an incident and a re
ected wave in the half-spacez < 0 of free-space in the presence of a perfectly conducting medium C in z > 0 withplane surface z = 0. It is known that E = 0 within C and it follows the Maxwell equation(310) that B = 0 there too.If however the medium in z > 0 is of high but not in�nite conductivity �, is it possiblethat there can be propagation of �elds into z > 0? We consider this now.If the conducting material of C is of �nite conductivity �, we use the equationsr^B = �0(j+ �0@E@t ); r^E+ @B@t = 0; j = �E: (366)These give �r^(r^E) = �0�@E@t + �0�0@2E@t2 ; (367)52
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an equation for E in C.We consider a wave with transverse electric �eld propagating in the z-direction in C,with no �eld dependence on x and y. Hence, if we use�r^(r^E) =r2E�r(r �E); (368)we can drop the second term because we here have r � E = 0. Thus, taking E to havetime dependence / e�i!t, (367) gives@2Ex@z2 = (�i�0�! � �0�0!2)Ex: (369)Try a solution of the form Ex = E0epz. This solves (369) ifp2 = �i�0�! � �0�0!2: (370)To handle this (which is awkward) we set p = � + i�, eliminate � and solve a quadraticfor �2 getting 2�2 = �0�0!2 ��1�r1 + ( ��0! )2� ; (371)and get � from � = ��0�!2� : (372)We take the plus sign in (371) to make �2 > 0 and hence � real. Now for a very goodconductor, the work of Sec. 5.5 b) tells us that(!� =) �0!� � 1; or ��0! � 1: (373)It follows that the ones in (371) can be neglected, so that2�2 = �0!�; (374)and hence � = �r�0!�2 = ��: (375)So the transverse electric �eld isEx = E0 exp ��r�0!�2 (1� i)z� : (376)In the case we are envisaging of a plane wave entering z > 0 at z = 0 where jEzj = E0,we clearly take the minus sign. So, in C, we have the electric �eldE = (E0; 0; 0) exp ��r�0!�2 (1� i)z� ei!t: (377)We can see that the magnitude of the this �eld changes by a factor 1e � 13 betweenz = 0 and z = d such that dr�0!�2 = 1: (378)The distance d =p2=(�0!�) (379)is called the skin depth, being a measure of how far �elds penetrate into the interior of avery good conductor. For copper at ! = 1010Hz, where one hertz is one cycle per second,d � 10�6m, so that the �elds hardly penetrate at all into C. But to the extent that theydo, there is dissipation of electromagnetic energy as heat. Also jEj ! 0 as � ! 1 inz > 0. 53
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5.8 Towards wave guidesFirst consider brie
y wave propagation in the z-direction, still with �elds independent ofx and y, between perfectly conducting plates z = 0 and z = a.The BC are again tangential E and normal B zero at z = 0 and z = a, i.e. Ex =Ey = Bz = 0 there . Again we use �elds with time-dependence / e�i!t. Again we choseaxes such that E = (Ex; 0; 0). TryEx = E0 sin kze�i!t; (380)which is zero at z = 0 for all k and zero at z = a, i�k = kn; kn = n�a ; n = 1; 2; : : : : (381)Further Ex must satisfy the wave equation. This requires ! = !n = ckn for n = 1; 2; : : :The magnetic �elds can easily be calculated, and the currents in the conducting sur-faces.Next consider wave propagation in the z-direction, say, between the conducting plates,y = 0; y = b. This will involve transverse electric and magnetic �elds with dependence ony as well as on z. See example 6 of problem set four.So we reach the case of propagation of waves in a wave-guide: for example, wavepropagation in the z-direction inside a tube of rectangular cross-section with perfectlyconducting planes x = 0; x = a; y = 0; y = b. But this is beyond the syllabus. SeeFeynmann's chapter on wave-guides, and perhaps also the related topic of radiation in acavity of free-space in perfectly conducting material.5.9 The historical paradox revisitedWe return to the topic of Sec. 5.1, to provide a treatment which does not make the(crude) assumption that the the electric �eld E beteween the plates is uniform. Assumethe plates are circular of radius a, and neglect edge e�ects. Use cylindrical polars (s; �; z).We shall treat the case in whichE = Ez(s)k exp(�i!t); B = B�(s)e� exp(�i!t): (382)The Maxwell equation r^E + @B@t = 0 has only got a non-trivial e� component, whichgives �@Ez@s + (�i!)B� = 0: (383)The Maxwell equation r^B = �0j+ �0�0@E@t ; (384)between the plates, where j = 0, has only got a non-trivial z component1s @@s(sB�) = �i !c2Ez (�0�0 = c�2): (385)Substituting for B� from (383) into (385), we �nd1s @@s(s@Ez@s ) + !2c2 Ez = 0: (386)54
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We set k = !c , and recognize (386) as the equation satis�ed by the Bessel function J0(ks).Hence, we write Ez = �J0(ks); B� = i 1! @Ez@s = i�! @J0(ks)@s ; (387)where � is a constant.The surface charge density on the the lower plate is� = �0k �Ej+� = �0�J0(ks) exp(�i!t); 0 � s � a: (388)We now show that the integral form of (384) can be applied consistently to HC B � drwhether or not the surface S; @C = S, chosen passes between the plates or not. Let C bethe circumference of the lower plate, S2 the lower plate itself, and S1 a surface bounded byC but lying entirely outside the region between the plates and so pierced by the currentI. As before, for S1, HC B � dr = �0I. For S2, on the other hand, we have�0I = �0dQdt = �0 ddt ZS2 �dS= 2��0 ddt Z a0 s�ds= 2��0(�i!) exp(�i!t) Z a0 s�0�J0(ks)ds= �2�i 1! !2c2 exp(�i!t) Z a0 s�J0(ks)ds= 2�i�! exp(�i!t) Z a0 (�k2sJ0(ks))ds= 2�i�! exp(�i!t) Z a0 @@s(s@J0(ks)@s )ds= 2�i�! exp(�i!t)a@J0(ks)@s js=a= 2�aB�(a) exp(�i!t) = IC B � dr; (389)as required. The third line here uses (388), the fourth �0�0 = c�2, the �fth k = !=c, thesixth Bessel's equation, the seventh (387) for B�.6 Added Notes6.1 Note 1Refer to Sec. 2.8 and Field energy in electrostatics, and the vanishing ofZS �n �EdS; (390)in the context of a �nite distribution of electric charge density sitting near the origin. Tojustify this, let S be a sphere of radius R and consider the limit as R ! 1. From Sec.2.3, we know that � goes at least as fast as 1R , jEj at least as fast as 1R2 , and dS goes likeR2 as R!1. The overall behaviour of (390) is thus like 1R , justifying putting it to zeroin the limit. 55
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Refer to Sec. 4.7 and Energy of the magnetic �eld , andZS n �A^B dS; (391)in the context of a �nite distribution of electric current density sitting near the origin.Again let let S be a sphere of radius R and consider the limit as R ! 1. The integralvanishes because, from the work of Sec. 3.4, jAj; jBj go to zero as R!1 at least as fastas 1R2 ; 1R3 , and dS goes like R2.6.2 Note 2Refer to Sec. 3.3b) and The long solenoid. The result that the magnetic �eld B =Bz(r)k; k = (0; 0; 1) needs careful justi�cation. It is indeed clear by symmetry that jBjand the components of B are independent of the coordinates �; z of cylindrical polars(r; �; z), and that B = B0; B0 constant on the axis. This allows us to suggest a result ofthe form B = Br(r)er +Bz(r)k: (392)This certainly describes a �eld B(r) that `looks the same' whatever the values of � andz. To make progress, we use r �B = 0. This tells us that@@r (r Br(r)) = 0; (393)so that Br(r) = c=r; c constant. Clearly we must have c = 0 inside the solenoid, and sincen �B is continuous at the surface of the solenoid, the same is true outside it. The rest ofthe discussion (191) of Sec.3.3 then follows.Suppose, perversely(?), one wanted to justify the exclusion of a contribution to (392)of the form B�(r)e�. We can do so by applying Amp�ere's law to a circle, centred on theaxis and lying in a horizontal plane, since there is no current through such a circle.6.3 Note 3Refer to Sec. 3.7, Force and couples, and supply the proof that the couple exerted bya uniform magnetic �eld B on a plane current loop, of area A, unit normal n, carryingcurrent I, is given by G =m^B; m = IAn: (394)Letting c be an arbitrary constant vector, we havec �G = c � IC r^ (Idr^B) = I IC c � (r �B dr� r � dr B)= I IC [c � (r �Bdr)� (c �B)(r � dr)] : (395)We now apply Stokes's theorem to each of the terms of (395). For the second term wehave IC r � dr = ZS n � (r^r)dS = 0: (396)For the �rst termI IC(r �B c) � dr = I ZS n �r^ (r �B c) dS = I ZS n �B^c dS = I(ZS dS)^B � c: (397)56
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Here we have used the elementary result r(r �B) = B, for constant B. We may �nallydetach c from (397), and get the required resultG = I(ZS dS)^B = (IAn)^B =m^B: (398)6.4 Note 4Refer to Sec. 4.5 and the Self-Inductance L of a current loop. The de�nition of L thatfollows from the general de�nition of Mkl in (281) of sec. 4.5, reads asL = IC �IC dr1jr1 � r2j� � dr2: (399)Here the two integrals are independent line integrals over the curve C that deines thecurrent loop in question, and the jr1 � r2j is the distance between arbitrary points of theindependent integrations. A diagram, as was shown in lectures, clari�es this.It is necesaary to point out that (399) diverges. Since an in�nite value for L or forthe 
ux through C makes no sense, it is plain that, for the purposes of calculating theself-inductance of a current loop, the idealised view that the wire is of negligible thicknessis not tenable. One has to replace the concept of a very thin wire by a wire of �nitecross-section with current distributed over it, in which it is to be expected that a �niteanswer will emerge.6.5 Note 5Consider a standard AC circuit shown formally with a battery of electromotance (EMF)E, a resistance R, a capacitance C and an inductance L. For E = E0 cos!t, with realE; !, one writes E = E0 exp i!t, solves for the current I = I0 exp i!t, �nally taking thereal part to get the physical solution.Working in each case from �rst principles, i.e. Maxwell's equations, we have learnedthat the potential di�erence drops across the three circuit elements are IR; QC ; L _I,where I = _Q. Then Ohm's law gives the well known resultE = RI + QC + L _I; (400)and the corresponding second order di�erential equation_E = R _I + 1C I + L�I: (401)Setting I = E=Z, which de�nes the (complex) impedance of the circuit, we �ndZ = R + i(!L� 1!C ): (402)Discussion of such circuits, of networks and of Kirchho�'s laws, is not on the coursesyllabus of O5. 57
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6.6 Note 6In the lectures there was time for some extra comment for Sec. 5.6 Re
ection at thesurface of a perfect conductor.The �elds E = Einc +Eref = 2iE0 sin kz exp(�i!t)B = Binc +Bref = 2E0c cos kz exp(�i!t) (403)describe a standing wave. AlsoEphys = Re E = 2E0 sin kz sin!tBphys = Re B = 2E0c cos kz cos!t: (404)Hence the Poynting vector S = 1�0Ephys^Bphys is proportional to cos!t sin!t, so that,taking the average over one period 2�=!, we havehjSji = 0; (405)as expected for a standing wave. In fact, the incident and re
ected waves transport energyin the �z directions at the same rate, given by (345).Finally, we calculate the force F per unit area (the pressure) on the surface z = 0 ofthe perfect conductor in z > 0. We use (67) of Sec. 1.8F = jFj = 12s(B+ +B�); (406)where s is the magnitude of the physical surface current and B� are the magnitudes ofthe physical magnetic �elds on the � sides of z = 0. We haves = 2E0�0c cos!t; B+ = 0; B� = 2E0c cos!t; (407)using (365) and (363). Hence, taking the average over one period 2�=!, we �ndhF i = E20�0c2 = �0E20 ; (408)which can be checked to be of the correct dimension.
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