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1. Validity of a fluid approach

The Coulomb cross-section for ‘collisions’ (i.e. large-angle scatterings) between electrons
and protons is σ ≈ 1 × 10−4(T/K)−2 cm2. Why does it depend on the inverse square of
the temperature?

Using the numbers quoted in lectures (or elsewhere), estimate the order of magnitude
of the mean free path and the collision frequency in (i) the centre of the Sun, (ii) the
solar corona, (iii) a molecular cloud and (iv) the hot phase of the interstellar medium.
Comment on your answers.

2. Vorticity equation

Show that the vorticity ω = ∇×u of an ideal fluid without a magnetic field satisfies the
equation

∂ω

∂t
= ∇× (u× ω) +∇p×∇v,

where v = 1/ρ is the specific volume. Explain why the last term, which acts as a source of
vorticity, can also be written as ∇T ×∇s. Under what conditions does this ‘baroclinic’
source term vanish, and in what sense(s) can the vorticity then be said to be ‘conserved’?

Show that the (Rossby–Ertel) potential vorticity 1

ρ
ω · ∇s is conserved, as a material

invariant, even when the baroclinic term is present.

3. Homogeneous expansion or contraction

(This question explores a very simple fluid flow in which compressibility and self-gravity
are important.)

A homogeneous perfect gas of density ρ = ρ0(t) occupies the region |x| < R(t), surrounded
by a vacuum. The pressure is p = p0(t)(1− |x|2/R2) and the velocity field is u = A(t)x,
where A = Ṙ/R.

Using either Cartesian or spherical polar coordinates, show that the equations of Newto-
nian gas dynamics and the boundary conditions are satisfied provided that

ρ0 ∝ R−3, p0 ∝ R−3γ , R̈ = −
4πGρ0R

3
+

2p0
ρ0R

.

Deduce the related energy equation

1

2
Ṙ2 −

4πGρ0R
2

3
+

2p0
3(γ − 1)ρ0

= constant,

1



and interpret the three contributions. Discuss the dynamics qualitatively in the two cases
γ > 4/3 and 1 < γ < 4/3.1

4. Dynamics of ellipsoidal bodies

(This question uses Cartesian tensor notation and the summation convention.)

A fluid body occupies a time-dependent ellipsoidal volume centred on the origin. Let
f(x, t) = 1 − Sijxixj , where Sij(t) is a symmetric tensor with positive eigenvalues, such
that the body occupies the region 0 < f 6 1 with a free surface at f = 0. The velocity
field is ui = Aijxj , where Aij(t) is a tensor that is not symmetric in general. Assume that
the gravitational potential inside the body has the form Φ = Bijxixj + constant, where
Bij(t) is a symmetric tensor.

Show that the equations of Newtonian gas dynamics and the boundary conditions are
satisfied if the density and pressure are of the form

ρ = ρ0(t)ρ̂(f), p = ρ0(t)T (t)p̂(f),

where the dimensionless functions p̂(f) and ρ̂(f) are related by p̂′(f) = ρ̂(f) with the
normalization ρ̂(1) = 1 and the boundary condition p̂(0) = 0, provided that the coefficients
evolve according to

Ṡij + SikAkj + SjkAki = 0,

Ȧij + AikAkj = −2Bij + 2TSij,

ρ̇0 = −ρ0Aii,

Ṫ = −(γ − 1)TAii.

Examples of the spatial structure are the homogeneous body: ρ̂ = 1, p̂ = f , and the
polytrope of index n: ρ̂ = fn, p̂ = fn+1/(n+ 1). Show that Poisson’s equation cannot be
satisfied if the body is inhomogeneous.2

Show how the results of the previous question are recovered in the case of a homogeneous,
spherically symmetric body.

Please send any comments and corrections to gio10@cam.ac.uk

1This flow is similar in form to the cosmological ‘Hubble flow’ and can be seen as a homogeneous
expansion or contraction centred on any point, if a Galilean transformation is made. In the limit R → ∞
(for γ > 4/3), or if the pressure is negligible, the equations derived here correspond to the Friedmann
equations for a ‘dust’ universe (i.e. negligible relativistic pressure p ≪ ρc2) with a scale factor a ∝ R,

ä

a
= −

4πGρ0
3

,
ȧ2 + constant

a2
=

8πGρ0
3

.

See Bondi, Cosmology (Cambridge University Press) for a discussion of Newtonian cosmology.
2It can be shown that the self-gravity of a homogeneous ellipsoid generates an interior gravitational

potential of the assumed form. The behaviour of self-gravitating, homogeneous, incompressible ellip-
soids was investigated by many great mathematicians, including Maclaurin, Jacobi, Dirichlet, Dedekind,
Riemann and Poincaré, illustrating the equilibrium and stability of rotating and tidally deformed astro-
physical bodies. See Chandrasekhar, Ellipsoidal Figures of Equilibrium (Yale University Press).
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