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1. Validity of the ideal MHD equations

(a) Ohm’s Law for a medium of conductivity σ is J = σE, where E is the electric field
measured in the rest frame of the conductor. Show that, in the presence of a finite and
uniform conductivity, the ideal induction equation is modified to

∂B

∂t
= ∇× (u×B) + η∇2B ,

where η = 1/(µ0σ) is the magnetic diffusivity. Hence argue that the effects of finite
conductivity are small if the magnetic Reynolds number Rm = LU/η is large, where L
and U are characteristic scales of length and velocity for the fluid flow.1

(b) Three effects neglected in a non-relativistic theory of MHD are (i) the displacement
current in Maxwell’s equations (compared to the electric current), (ii) the bulk electro-
static force on the fluid (compared to the magnetic Lorentz force) and (iii) the electrostatic
energy (compared to the magnetic energy). Verify the self-consistency of these approx-
imations by using order-of-magnitude estimates or scaling relations to show that these
three neglected effects are all smaller than those retained by a factor of order U2/c2. [You
may wish to consult Jackson, Classical Electrodynamics (Wiley), or a similar book.]

2. Equilibrium of a solar prominence

A simple model for a prominence or filament in the solar atmosphere involves a two-
dimensional magnetostatic equilibrium in the (x, z) plane with uniform gravity g = −g ez.
The gas is isothermal with isothermal sound speed cs. The density and magnetic field
depend only on x and the field lines become straight as |x| → ∞.

Show that the solution is of the form

Bz = B0 tanh(kx) ,

where k is a constant to be determined. Sketch the field lines and find the density
distribution.

1The magnetic diffusivity in a fully ionized plasma is on the order of 1013(T/K)−3/2 cm2 s−1. Simple
estimates imply that Rm ≫ 1 for observable solar phenomena.
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3. Equilibrium of a magnetic star

A star contains an axisymmetric and purely toroidal magnetic field B = B(r, z) eφ, where
(r, φ, z) are cylindrical polar coordinates. Show that the equation of magnetostatic equi-
librium can be written in the form

0 = −ρ∇Φ −∇p−
B

µ0r
∇(rB) .

Assuming that the equilibrium is barotropic such that ∇p is everywhere parallel to ∇ρ,
show that the magnetic field must be of the form

B =
1

r
f(r2ρ) ,

where f is an arbitrary function. Sketch the topology of the contour lines of r2ρ in a star
and show that a magnetic field of this form is confined to the interior.

4. Helicity

The magnetic helicity in a volume V is

Hm =

∫
V

A ·B dV .

A thin, untwisted magnetic flux tube is a thin tubular structure consisting of the neigh-
bourhood of a smooth curve C, such that the magnetic field is confined within the tube
and is parallel to C.

(a) Consider a simple example of a single, closed, untwisted magnetic flux tube such that

B = B(r, z) eφ ,

where (r, φ, z) are cylindrical polar coordinates and B(r, z) is a positive function localized
near (r = a, z = 0). The tube is contained entirely within V . Show that the magnetic
helicity of this field is uniquely defined and equal to zero.

(b) Use the fact that Hm is conserved in ideal MHD to argue that the magnetic helicity
of any single, closed, untwisted and unknotted flux tube contained within V is also zero.

(c) Consider a situation in which V contains two such flux tubes T1 and T2. Let F1 and
F2 be the magnetic fluxes associated with T1 and T2. By writing B = B1 +B2, etc., and
assuming that the tubes are thin, show that

Hm = ±2F1F2

if the tubes are simply interlinked, while Hm = 0 if they are unlinked.
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5. Variational principles

The magnetic energy in a volume V bounded by a surface S is

Em =

∫
V

B2

2µ0

dV .

(a) Making use of the representation B = ∇ × A of the magnetic field in terms of a
magnetic vector potential, show that the magnetic field that minimizes Em, subject to
the tangential components of A being specified on S, is a potential field. Argue that this
constraint corresponds to specifying the normal component of B on S.

(b) Making use of the representation B = ∇α × ∇β of the magnetic field in terms
of Euler potentials, show that the magnetic field that minimizes Em, subject to α and
β being specified on S, is a force-free field. Argue that this constraint corresponds to
specifying the normal component of B on S and also the way in which points on S are
connected by magnetic field lines.

Please send any comments and corrections to gio10@cam.ac.uk
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