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1. Shock relations

The Rankine–Hugoniot relations in the rest frame of a non-magnetic shock are

[ρux]
2
1 = 0 ,

[ρu2x + p]21 = 0 ,

[ρux(
1

2
u2x + h)]21 = 0 ,

where ux > 0 and [Q]21 = Q2−Q1 is the difference between the downstream and upstream
values of any quantity Q. Show that the velocity, density and pressure ratios

U =
u2
u1
, D =

ρ2
ρ1
, P =

p2
p1

across a shock in a perfect gas are given by

D =
1

U
=

(γ + 1)M2
1

(γ − 1)M2
1 + 2

, P =
2γM2

1 − (γ − 1)

(γ + 1)
,

where M = ux/vs is the Mach number, and also that

M2
2 =

(γ − 1)M2
1 + 2

2γM2
1 − (γ − 1)

.

Show that the entropy change in passing through the shock is given by

[s]21
cv

= lnP − γ ln

[

(γ + 1)P + (γ − 1)

(γ − 1)P + (γ + 1)

]

and deduce that only compression shocks (D > 1, P > 1) are physically realizable.

2. The Riemann problem

A perfect gas flows in one dimension in the absence of boundaries, gravity and magnetic
fields.

(i) Determine all possible smooth local solutions of the equations of one-dimensional gas
dynamics that depend only on the variable ξ = x/t for t > 0. Show that one such solution
is a rarefaction wave in which du/dξ = 2/(γ+1). How do the adiabatic sound speed and
specific entropy vary with ξ?

(ii) At t = 0 the gas is initialized with uniform density ρL, pressure pL and velocity uL in
the region x < 0 and with uniform density ρR, pressure pR and velocity uR in the region
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x > 0. Explain why the subsequent flow is of the similarity form described in part (i).
What constraints must be satisfied by the initial values if the subsequent evolution is
to involve only two uniform states connected by a rarefaction wave? Give a non-trivial
example of such a solution.

(iii) Explain why, for more general choices of the initial values, the solution cannot have
the simple form described in part (ii), even if uR > uL. What other features will appear
in the solution? (Detailed calculations are not required.)

3. Nonlinear waves in incompressible MHD

Show that the equations of ideal MHD in the case of an incompressible fluid of uniform
density ρ can be written in the symmetrical form

∂z±

∂t
+ z∓ · ∇z± = −∇ψ ,

∇ · z± = 0 ,

where

z± = u± va

are the Elsässer variables, va = (µ0ρ)
−1/2

B is the vector Alfvén velocity, and ψ = Φ +
(Π/ρ) is a modified pressure.

Consider a static basic state in which the magnetic field is uniform and ψ = constant.
Write down the exact equations governing perturbations (z′

±, ψ
′) (i.e. without performing

a linearization). Hence show that there are special solutions in which disturbances of
arbitrary amplitude propagate along the magnetic field lines in one direction or other
without change of form. How do these relate to the MHD wave modes of a compressible
fluid? Why does the general argument for wave steepening not apply to these nonlinear
simple waves?

4. Bondi accretion

Write down the equations of steady, spherical accretion of a perfect gas in an arbitrary
gravitational potential Φ(r).

Accretion on to a black hole can be approximated within a Newtonian theory by using
the Paczyński–Wiita potential

Φ = −
GM

r − rh
,

where rh = 2GM/c2 is the radius of the event horizon and c is the speed of light.

Show that the sonic radius rs is related to rh and the nominal accretion radius ra =
GM/2v2s0 (where vs0 is the sound speed at infinity) by

2r2s − [(5− 3γ)ra + 4rh] rs + 2r2h − 4(γ − 1)rarh = 0 .
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Argue that the accretion flow passes through a unique sonic point for any value of γ > 1.
Assuming that vs0 ≪ c, find approximations for rs in the cases (i) γ < 5/3, (ii) γ = 5/3
and (iii) γ > 5/3.

5. Critical points of magnetized outflows

The integrals of the equations of ideal MHD for a steady axisymmetric outflow are

u =
kB

ρ
+ rω eφ , (1)

uφ −
Bφ

µ0k
=
ℓ

r
, (2)

s = s(ψ) , (3)

1
2
|u− rω eφ|

2 + Φ− 1
2
r2ω2 + h = ε′ , (4)

where k(ψ), ω(ψ), ℓ(ψ), s(ψ) and ε′(ψ) are surface functions. Assume that the magnetic
flux function ψ(r, z) is known from a solution of the Grad–Shafranov equation, and let
the cylindrical radius r be used as a parameter along each magnetic field line. Then the
poloidal magnetic field Bp = ∇ψ×∇φ is a known function of r on each field line. Assume
further that the surface functions k(ψ), ω(ψ), ℓ(ψ), s(ψ) and ε′(ψ) are known.

Show that equations (1)–(3) can then be used, in principle, and together with the equation
of state, to determine the velocity u and the specific enthalpy h as functions of ρ and r
on each field line. Deduce that equation (4) has the form

f(ρ, r) = ε′ = constant

on each field line.

Show that

−ρ
∂f

∂ρ
=
u4p − (v2s + v2a)u

2
p + v2s v

2
ap

u2p − v2ap
,

where vs is the adiabatic sound speed, va is the (total) Alfvén speed and the subscript
‘p’ denotes the poloidal (meridional) component. Deduce that the flow has critical points
where up equals the phase speed of axisymmetric fast or slow magnetoacoustic waves.
What condition must be satisfied by ∂f/∂r for the flow to pass through these critical
points?

Please send any comments and corrections to gio10@cam.ac.uk
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