Example Sheet 3

1. **Integral relations for the shearing box**

A homogeneous incompressible fluid in the shearing sheet satisfies the Navier–Stokes equations

\[
\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} + 2\Omega \times \mathbf{u} = -\nabla \Phi_t - \frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{u},
\]

\[
\nabla \cdot \mathbf{u} = 0,
\]

where

\[
\mathbf{u} = -S_x \mathbf{e}_y + \mathbf{v}
\]

is the total velocity, \(\Omega = \Omega \mathbf{e}_z \) is the angular velocity of the frame of reference, \(\Phi_t = -\Omega S_x^2 \) is the tidal potential (neglecting vertical gravity) and \(\nu \) is the kinematic viscosity. The velocity perturbation \(\mathbf{v} \) therefore satisfies

\[
\left(\frac{\partial}{\partial t} - S_x \frac{\partial}{\partial y} \right) \mathbf{v} - S v_x \mathbf{e}_y + \mathbf{v} \cdot \nabla \mathbf{v} + 2\Omega \times \mathbf{v} = -\nabla \psi + \nu \nabla^2 \mathbf{v},
\]

\[
\nabla \cdot \mathbf{v} = 0,
\]

where \(\psi = p/\rho \).

The **shearing box** is a rectangular domain

\[
0 < x < L_x, \quad 0 < y < L_y, \quad 0 < z < L_z,
\]

on which the following boundary conditions are applied, where \(f \) stands for \(\psi \) or any component of \(\mathbf{v} \):

\[
\begin{align*}
 f(0, y, z, t) &= f(L_x, (y - SL_x t) \mod L_y, z, t), \\
 f(x, 0, z, t) &= f(x, L_y, z, t), \\
 f(x, y, 0, t) &= f(x, y, L_z, t).
\end{align*}
\]

Interpret these boundary conditions, and show that they are compatible with solutions in the form of shearing waves in which

\[
\begin{align*}
 f &= \text{Re} \left\{ \tilde{f}(t) \exp[i \mathbf{k}(t) \cdot \mathbf{x}] \right\},
\end{align*}
\]

provided that the wavevector lies on the shearing lattice

\[
\begin{align*}
 k_x &= \frac{2\pi n_x}{L_x} + S k_y, \\
 k_y &= \frac{2\pi n_y}{L_y}, \\
 k_z &= \frac{2\pi n_z}{L_z},
\end{align*}
\]
where \(n_x, n_y \) and \(n_z \) are integers.

Let \(\langle \cdot \rangle \) denote a volume average over the box. Show that

\[
\langle \frac{\partial f}{\partial x} \rangle = \langle \frac{\partial f}{\partial y} \rangle = \langle \frac{\partial f}{\partial z} \rangle = 0,
\]

where \(f \) is any quantity satisfying the boundary conditions (1), but not necessarily a shearing wave; this result is useful for integration by parts.

Show that

\[
\frac{d}{dt} \langle v \rangle = S \langle v_x e_y \rangle - 2\Omega \times \langle v \rangle,
\]

and deduce that the mean velocity executes an epicyclic oscillation, but if initially zero will remain so.

Show further that

\[
\frac{d}{dt} \left(\frac{1}{2} \langle v_x^2 \rangle \right) = 2\Omega \langle v_x v_y \rangle - \nu \langle |\nabla v_x|^2 \rangle + \langle \psi \frac{\partial v_x}{\partial x} \rangle,
\]
\[
\frac{d}{dt} \left(\frac{1}{2} \langle v_y^2 \rangle \right) = -(2\Omega - S) \langle v_x v_y \rangle - \nu \langle |\nabla v_y|^2 \rangle + \langle \psi \frac{\partial v_x}{\partial y} \rangle,
\]
\[
\frac{d}{dt} \left(\frac{1}{2} \langle v_z^2 \rangle \right) = -\nu \langle |\nabla v_z|^2 \rangle + \langle \psi \frac{\partial v_z}{\partial z} \rangle,
\]
\[
\frac{d}{dt} \left(\frac{1}{2} \langle |v|^2 \rangle \right) = S \langle v_x v_y \rangle - \nu \langle |\nabla \times v|^2 \rangle.
\]

Deduce that, if hydrodynamic turbulence is to be maintained (without external forcing) against viscous dissipation in a Keplerian shear flow \((S/\Omega = 3/2)\), then \(\langle v_x v_y \rangle \) must be positive (corresponding to outward transport of angular momentum) and the pressure–strain correlation \(\langle \psi \frac{\partial v_i}{\partial x_j} \rangle \) must play an important role.

2. Magnetic fields in the shearing sheet

The induction equation in an incompressible fluid of uniform magnetic diffusivity \(\eta \) is

\[
\frac{\partial B}{\partial t} + u \cdot \nabla B = B \cdot \nabla u + \eta \nabla^2 B.
\]

Supposing that the velocity retains purely the form of a linear shear flow, \(u = -S x e_y \), show that the induction equation has solutions in the form of shearing waves,

\[
B = \text{Re} \left\{ \tilde{B}(t) \exp[i \mathbf{k}(t) \cdot \mathbf{x}] \right\},
\]

provided that the wavevector evolves in time according to

\[
\frac{d \mathbf{k}}{dt} = S k_y e_x.
\]
Solve for \(k(t) \), and interpret the result geometrically.

Deduce the equations satisfied by the components of the wave amplitude \(\tilde{B}(t) \), and find their general solution. Show that the magnetic energy typically experiences a phase of growth but ultimately decays.

Verify that \(\mathbf{B} \cdot \nabla \mathbf{B} = 0 \) for this solution, and confirm that the magnetic field has no influence on the flow. Given that any magnetic field can be considered as a superposition of such shearing waves, explain how a non-zero Lorentz force can result.

3. Mechanical analogue of the magnetorotational instability

In the local approximation, the dynamics of two particles of mass \(m \) connected by a spring of spring constant \(k = \beta m \) is described by the equations

\[
\begin{align*}
\ddot{x}_1 - 2\Omega \dot{y}_1 - 2\Omega S x_1 &= \beta (x_2 - x_1), \\
\dot{y}_1 + 2\Omega x_1 &= \beta (y_2 - y_1), \\
\ddot{z}_1 + \Omega^2 z_1 &= \beta (z_2 - z_1),
\end{align*}
\]

together with similar equations in which the suffixes 1 and 2 are interchanged.

Assume that the quantities \(\beta, \Omega, q, \Omega^2_r = 2\Omega(2\Omega - S) \) and \(\Omega^2_z \) are positive. Show that relative motions of the two particles in the \((x, y)\) plane proportional to \(\exp(\lambda t) \) are possible, where

\[
\lambda^4 + (\Omega^2_r + 4\beta)\lambda^2 + 4\beta(\beta - \Omega S) = 0.
\]

Determine the range of \(\beta \) for which instability occurs. For fixed \(\Omega \) and \(q \), find the maximum growth rate of the instability and the value of \(\beta \) for which this occurs. Write down the explicit form of \(x_1(t) \) and \(x_2(t) \) for this optimal solution.

Please send any comments and corrections to gio10@cam.ac.uk

Answers to questions 2 and 3 may be submitted for marking.