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1. Integral relations for the shearing box

A homogeneous incompressible fluid in the shearing sheet satisfies the Navier—Stokes
equations
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is the total velocity, = Q e, is the angular velocity of the frame of reference, ®; = —Q.S5z?

is the tidal potential (neglecting vertical gravity) and v is the kinematic viscosity. The
velocity perturbation v therefore satisfies
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where 1 = p/p.

The shearing box is a rectangular domain
O<zx<L,, 0<y <Ly, 0<z<L,,

on which the following boundary conditions are applied, where f stands for ¢ or any
component of v:

f(0,y,2,t) = f(Ls, (y — SLyt) mod Ly, z,t),
f(x,0,2,t) = f(z, Ly, 2,1t), (1)
f($7y70>t) = f(x7y7LZ7t) :

Interpret these boundary conditions, and show that they are compatible with solutions
in the form of shearing waves in which

f = Re { f(t) explik(t) - x|} .
provided that the wavevector lies on the shearing lattice
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where n,, n, and n, are integers.

Let (-) denote a volume average over the box. Show that
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where f is any quantity satisfying the boundary conditions (1), but not necessarily a

shearing wave; this result is useful for integration by parts.

Show that

d
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and deduce that the mean velocity executes an epicyclic oscillation, but if initially zero
will remain so.

Show further that
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Deduce that, if hydrodynamic turbulence is to be maintained (without external forcing)
against viscous dissipation in a Keplerian shear flow (S/Q = 3/2), then (v,v,) must be
positive (corresponding to outward transport of angular momentum) and the pressure—
strain correlation (i) v;/0x;) must play an important role.

2. Magnetic fields in the shearing sheet

The induction equation in an incompressible fluid of uniform magnetic diffusivity 7 is

%—]?+u-VB:B-Vu+77V2B.

Supposing that the velocity retains purely the form of a linear shear flow, u = —Sxze,,
show that the induction equation has solutions in the form of shearing waves,

B = Re {B(t) explik(t) .x]} ,
provided that the wavevector evolves in time according to

dk
E = Skyex.



Solve for k(t), and interpret the result geometrically.

Deduce the equations satisfied by the components of the wave amplitude B(¢), and find
their general solution. Show that the magnetic energy typically experiences a phase of
growth but ultimately decays.

Verify that B - VB = 0 for this solution, and confirm that the magnetic field has no
influence on the flow. Given that any magnetic field can be considered as a superposition
of such shearing waves, explain how a non-zero Lorentz force can result.

3. Mechanical analogue of the magnetorotational instability

In the local approximation, the dynamics of two particles of mass m connected by a spring
of spring constant k = fm is described by the equations

1 —2Qu — 2QSx = f(x — x1)
i1 +2Qa1 = B(y2 —y1)
21 + szl = 5(22 — Zl) s
together with similar equations in which the suffixes 1 and 2 are interchanged.

Assume that the quantities 3, 2, ¢, Q2 = 2Q(2Q — S) and Q2 are positive. Show that
relative motions of the two particles in the (z, y) plane proportional to exp(At) are possible,
where

M+ (Q24+4B8)N +48(8 - QS) =0.

Determine the range of 8 for which instability occurs. For fixed €2 and ¢, find the maximum
growth rate of the instability and the value of 8 for which this occurs. Write down the
explicit form of x;(t) and x5(t) for this optimal solution.

Please send any comments and corrections to giol0@cam.ac.uk
Answers to questions 2 and 3 may be submitted for marking.



