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Example Sheet 2

1. A particle moves in a fixed plane and its position vector at time t is r. Let (r, θ) be
plane polar coordinates and let r̂ and θ̂ be unit vectors in the directions of increasing r
and increasing θ, respectively. Show that

ṙ = ṙ r̂ + rθ̇ θ̂ .

The particle moves outwards with speed v(t) on the equiangular spiral r = a exp(θ cotα),
where a and α are constants, with 0 < α < 1

2
π. Show that

v sinα = rθ̇ ,

and hence that

ṙ = v cosα r̂ + v sinα θ̂ .

Give an expression for r̈ and show that |r̈|2 = v̇2 + v2θ̇2.

(∗) If θ̇ takes a constant value ω, show that the acceleration has magnitude v2/r and is
directed at an angle 2α to the position vector.

2. In these orbital questions, the particles move in a gravitational potential Φg(r) = −k/r
with k > 0.

In what follows, you should answer all questions using only energy and angular momentum
conservation, and (for the circular orbits) the radial component of the equation of motion.

(a) Show that the radius, R, of the orbit of a satellite in geostationary orbit (in the
equatorial plane) is approximately (28)−2/3RM, where RM is the radius of the Moon’s
orbit around the Earth.

(b) One particle moves in a parabolic orbit and another particle moves in a circular orbit.
Show that if they pass through the same point then the ratio of their speeds at
this point is

√
2. For a satellite orbiting the Earth in a circular orbit, what is the

relationship between its orbital speed and its escape velocity?

If, instead of passing through the same point, the particles have the same angular
momentum per unit mass, show that the periapsis distance of the parabola is half the
radius of the circle.

(c) A particle moves with angular momentum h per unit mass in an ellipse, for which
the distances from the focus to the periapsis (closest point to focus) and apoapsis
(furthest point) are p and q, respectively. Show that

h2

(

1

p
+

1

q

)

= 2k .

Show also that the speed V of the particle at the periapsis is related to the speed v
of a particle moving in a circular orbit of radius p by (1 + p/q)V 2 = 2v2.
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(d) A particle P is initially at a very large distance from the origin moving with speed v
on a trajectory that, in the absence of any force, would be a straight line for which
the shortest distance from the origin is b. The shortest distance between P ’s actual
trajectory and the origin is d. Show that 2kd = v2(b2 − d2).

3. For a particle of mass m subject to an inverse-square force given by F = −mkr̂/r2,
the vectors h and e are defined by

h = r × ṙ , e =
ṙ × h

k
− r

r
.

Show that h is constant and deduce that the particle moves in a plane through the origin.

The vector e is known as the eccentricity vector or Laplace–Runge–Lenz vector. Show
that it too is constant and that

er cos θ =
h2

k
− r ,

where e = |e|, h = |h| and θ is the angle between r and e. Deduce that the orbit is a
conic section.

4. A particle of unit mass moves with speed v in the gravitational field of the Sun and is
influenced by radiation pressure. The forces acting on the particle are µ/r2 towards the
Sun and kv opposing the motion, where µ and k are constants. Write down the vector
equation of motion and show that the vector H , defined by

H = ekt r × ṙ ,

is constant. Deduce that the particle moves in a plane through the origin. Establish the
equations

r2θ̇ = h e−kt and µr = h2 e−2kt − r3(r̈ + kṙ) ,

where r and θ are plane polar coordinates centred on the Sun and h is a constant. Show
that, when k = 0, a circular orbit of radius a exists for any value of a, and find its angular
frequency ω in terms of a and µ.

When k/ω ≪ 1, r varies so slowly that ṙ and r̈ may be neglected in the above equations.
Verify that in this case an approximate solution is

r = a e−2kt , θ̇ = ω e3kt .

Give a brief qualitative description of the behaviour of this solution for t > 0. Does the
speed of the particle increase or decrease?
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5. A particle P of unit mass moves in a plane under a central force

F (r) = − λ

r3
− µ

r2
,

where λ and µ are positive constants. Write down the differential equation satisified by
u(θ), where u = 1/r.

Given that P is projected with speed V from the point r = r0, θ = 0 in the direction
perpendicular to OP , find the equation of the orbit under the assumptions

λ < V 2r20 < 2µr0 + λ .

Explain the significance of these inequalities. Show that between consecutive apsides
(points of greatest or least distance) the radius vector turns through an angle

π

(

1− λ

V 2r20

)

−1/2

.

Under what condition is the orbit a closed curve?

6. A particle P of massm moves under the influence of a central force of magnitudemk/r3

directed towards a fixed point O. Initially r = a and P has velocity v perpendicular to
OP , where v2 < k/a2. Use the differential equation for the shape of the orbit to prove
that P spirals in towards O (you should give the geometric equation of the spiral). Show
also that it reaches O in a time

T =
a2√

k − a2v2
.

7∗. A particle of mass m moves in a circular orbit of radius R under the influence of an
attractive central force of magnitude F (r). Obtain an equation relating R, F (R), m and
the orbital angular momentum per unit mass, h.

The particle experiences a very small radial perturbation of the form u(θ) = U + ǫ(θ),
where u = 1/r and U = 1/R. The orbital angular momentum is not affected. Obtain the
equation for ǫ′′(θ). Given that the subsequent orbit is closed, show that

RF ′(R)

F (R)
= β2 − 3 ,

where β is a rational number. Deduce that, if β is independent of R, then F (r) is of the
form Arα, where α is rational and greater than −3.
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8. In these sequence of questions on the Coriolis force, use ω for the angular speed of the
Earth, assume that events take place at latitude θ in the northern hemisphere and ignore
centrifugal forces.

(a) Are bath-plug vortices in the northern hemisphere likely, on average, to be clockwise
or anticlockwise?

(b) A straight river flows with speed v in a direction α degrees east of north. Show that
the effect of the Coriolis force is to erode the right bank. Calculate the magnitude of
the force.

(c) A plumb line is attached to the ceiling inside one of the carriages of a train and hangs
down freely, at rest relative to the train. When the train is travelling at speed V
in the north-easterly direction the plumb line hangs at an angle φ to the direction
in which it hangs when the train is at rest. Ignoring centrifugal forces, show that
φ ≈ (2ωV sin θ)/g. Can the centrifugal force be ignored?

9. A bullet of mass m is fired from a point r0 with velocity u in a frame that rotates
with constant angular velocity ω relative to an inertial frame. The bullet is subject
to a gravitational force mg which is constant in the rotating frame. Using the vector
equation of motion and neglecting terms of order |ω|2, show that the bullet’s position
vector measured in the rotating frame is approximately

r0 + u t+
(

1
2
g − ω × u

)

t2 + 1
3
(g × ω) t3

at time t. Suppose that the bullet is projected from sea level on the Earth at latitude θ
in the northern hemisphere, at an angle π/4 from the upward vertical and in a northward
direction. Show that when the particle returns to sea level (neglecting the curvature of
the Earth’s surface), it has been deflected to the east by an amount approximately equal
to

√
2ω|u|3
3g2

(3 sin θ − cos θ) ,

where ω is the angular speed of the Earth. Evaluate the approximate size of this deflection
at latitude 52◦N for |u| = 1000m s−1.

Please send any comments and corrections to gio10@cam.ac.uk
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