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Example Sheet 3

1. A square hoop ABCD is made of fine smooth wire and has side length 2a. The hoop
is horizontal and rotating with constant angular speed ω about a vertical axis through A.
A small bead that can slide on the wire is initially at rest at the midpoint of the side
BC. Choose axes fixed relative to the hoop, and let x be the distance of the bead from
the vertex B on the side BC. Write down the position vector of the bead in the rotating
frame.

Using the standard expression for acceleration in a rotating frame, show that

ẍ− ω2x = 0 .

Hence show that the time that the bead takes to reach a corner of the hoop is ω−1 cosh−1 2.
Using dimensional analysis, explain why this time is independent of a.

Obtain an expression for the magnitude of the force exerted by the hoop on the bead.

2. In a system of particles, the ith particle has mass mi and position vector ri with respect
to a fixed origin. The centre of mass of the system is at R. Show that L, the total angular
momentum of the system about the origin, and Lc, the total angular momentum of the
system about the centre of mass, are related by

Lc = L−R× P ,

where P is the total linear momentum of the system.

Given that dP /dt = F , where F is the total external force, and dL/dt = G where G is
the total external torque about the origin, show that

dLc

dt
= Gc ,

where Gc is the total external torque about the centre of mass.

3. A system of particles with masses mi and position vectors ri (i = 1, . . . , n) moves
under its own mutual gravitational attraction alone. Write down the equation of motion
for ri. Show that a possible solution of the equations of motion is given by ri = t2/3ai,
where the vectors ai are constant vectors satisfying

ai =
9G

2

∑

j 6=i

mj(ai − aj)

|ai − aj|3
.

Show that, for this system, the total angular momentum about the origin and the total
momentum both vanish. What is the angular momentum about any other fixed point?

1



4. Two particles of masses m1 and m2 move under their mutual gravitational attraction.
Show from first principles that the quantity

1

2
ṙ · ṙ −

GM

r

is constant, where r is the position vector of one particle relative to the other and M =
m1 +m2.

The particles are released from rest a long way apart and fall towards each other. Show
that the position of their centre of gravity is fixed, and that when they are a distance r
apart their relative speed is

√

2GM/r.

(∗) When the particles are a distance a apart, they are given equal and opposite impulses
(changes of momentum), each of magnitude I, and each perpendicular to the direction
of motion. Show that subsequently r2ω = aI/µ, where ω is the angular speed of either
particle relative to the centre of mass and µ is the reduced mass of the system.

Show further that the minimum separation, d, of the two particles in the subsequent
motion satisfies

(a2 − d2)I2 = 2GMµ2d .

5. A rocket, moving vertically upwards, ejects gas vertically downwards at speed u relative
to the rocket. Derive the equation of motion

m
dv

dt
= −u

dm

dt
−mg ,

where v and m are the speed and total mass of the rocket (including fuel) at time t. If u
is constant and the rocket starts from rest with total mass m0, show that

m = m0 e
−(gt+v)/u .

6. A firework of initial mass m0 is fired vertically upwards from the ground. Fuel is burnt
at a constant rate −dm/dt = α and the exhaust is ejected at constant speed u relative to
the firework. Show that the speed of the firework at time t, where 0 < t < m0/α, is

v(t) = −gt− u log

(

1−
αt

m0

)

,

and that this is positive provided u > m0g/α.

Suppose now that nearly all of the firework consists of fuel, the mass of the containing
shell being negligible. Show that the height attained by the shell when all of the fuel is
burnt is

m0

α

(

u−
m0g

2α

)

.
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7.

(a) Thin circular discs of radius a and b are made of uniform materials with mass per
unit area ρa and ρb, respectively. They lie in the same plane. Their centres A and
B are connected by a light rigid rod of length c. Find the moment of inertia of the
system about an axis through B perpendicular to the plane of the discs.

(b) A thin uniform circular disc of radius a and centre A has a circular hole cut in it of
radius b and centre B, where AB = c < a−b. The disc is free to oscillate in a vertical
plane about a smooth fixed horizontal circular rod of radius b passing through the
hole. Using the result of part (a), with ρb suitably chosen, show that the period of
small oscillations is 2π

√

l/g, where

l = c+
a4 − b4

2a2c
.

8. A yo-yo consists of two uniform discs, each of mass M and radius R, connected by a
short light axle of radius a around which a portion of a thin string is wound. One end of
the string is attached to the axle and the other to a fixed point P . The yo-yo is held with
its centre of mass vertically below P and then released.

Assuming that the unwound part of the string remains approximately vertical, use the
principle of conservation of energy to find the equation of motion of the centre of mass of
the yo-yo. Find the tension in the string as the yo-yo falls.

If the string has length L, what is the speed of the yo-yo just before it reaches the end?
Explain what happens next. What is the impulse due to the tension in the string at this
time?

9. A uniform circular cylinder of mass M and radius a is free to turn about its axis which
is horizontal. A thin uniform cylindrical shell of mass M/2 and radius a is fitted over the
cylinder. At time t = 0 the angular velocity of the cylinder is Ω, while the shell is at rest.
The shell exerts a frictional torque on the cylinder of magnitude k(ω − ω), where ω(t)
and ω(t) are the angular velocities of the cylinder and shell, respectively, at time t about
the axis. Prove that

ω(t) =
1

2
Ω
(

1 + e−4kt/Ma2
)

,

and find the corresponding expression for ω(t).

Please send any comments and corrections to gio10@cam.ac.uk
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