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1. A clock C is at rest at the spatial origin of an inertial frame S. A second clock C ′ is
at rest at the spatial origin of an inertial frame S ′ moving with constant speed u relative
to S. The clocks read t = t′ = 0 when the two spatial origins coincide.

When C ′ reads t′2 it receives a radio signal from C sent when C reads t1. Draw a space-time
diagram showing this process.

Determine the space-time coordinates (ct2, x2) in S of the point (event) at which C ′

receives the radio signal. Hence show that

t1 = t′2

√
1− u/c
1 + u/c

.

2. S and S ′ are inertial frames in a two-dimensional space-time, the origins of which
coincide. Observers O and O′ are at the spatial origins of S and S ′ respectively. Observer
O′ moves at velocity u relative to observer O, where u > 0. Observer O observes a
particle P passing through the origin and moving with velocity v, where v < u. Observer
O′ observes P moving with velocity −v.

Draw a space-time diagram, from O’s point of view, to illustrate this situation. Use the
relativistic velocity transformation law to show that

v =
c2

u

(
1−

√
1− u2

c2

)
.

Writing u/c = tanhϕ, find an expression for v/c in terms of the rapidity ϕ.

3. Write down the Lorentz transformation law for the energy and relativistic 3-momentum
of a particle.

In an inertial frame S, a photon with energy E moves in the xy plane at an angle θ with
respect to the x axis. Show that in a second frame S ′ whose relative speed is u directed
in the x direction, the energy and angle are given by

E ′ = γE(1− β cos θ) and cos θ′ =
cos θ − β

1− β cos θ
,

where β = u/c and γ = (1 − β2)−1/2. Write down E and cos θ as functions of E ′ and
cos θ′.
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For a photon moving in the x direction, derive the relativistic Doppler effect by showing
that there is a frequency change by a factor√

1− β
1 + β

.

(∗) How does this relate to question 1?

A source of photons is at rest in S ′. Derive the headlight effect by showing that, as u→ c,
the photons emitted in the forward direction (cos θ′ > 0) in S are concentrated in a narrow
cone about θ = 0.

(∗) Show that the semi-angle of the cone is approximately
√

2(1− β).

4. Pulsars are stars that emit pulses of radiation at regular intervals. Bob and Ann count
pulses from a very distant pulsar in the y direction. Ann travels at a speed given by
β ≡ u/c = 24/25 in the x direction for seven years and then comes back at the same
speed, while Bob stays at home. At the end of the trip they have counted the same
number of pulses. Use question 3 (with θ = 1

2
π) to show that on return she has aged by

14 years and he by 50.

Obtain the corresponding result when the pulsar is in the x direction (question 3 with
θ = π), drawing a space-time diagram to show why Bob and Ann count the same number
of pulses.

5. A particle with 4-momentum P is detected by an observer whose four-velocity is U .
Working in the rest frame of the observer, express P ·U in terms of the mass of the particle
and its speed v in the observer’s rest frame. Show that

v

c
=

√
1− (P · P )c2

(P · U)2
.

6. A particle of rest mass m0 disintegrates into two particles of rest masses m1 and
m2. Use conservation of relativistic energy and relativistic 3-momentum to show that the
energies E1 and E2 of the particles in the rest frame of the original particle are given by

E1

c2
=
m2

0 +m2
1 −m2

2

2m0

and
E2

c2
=
m2

0 +m2
2 −m2

1

2m0

.

Let P0 be the 4-momentum of the original particle, and let and P1 and P2 be the 4-
momenta of the product particles. Derive the above results by expanding the invariant
quantities (P0 − P1) · (P0 − P1) and (P0 − P2) · (P0 − P2).
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7. A photon (of zero rest mass) collides with an electron of rest mass m that is initially
at rest in the laboratory frame. Show that the angle θ by which the photon is deflected
(measured in the laboratory frame) is related to the magnitudes p and q of its initial and
final momenta by

2 sin2(1
2
θ) =

mc

q
− mc

p
.

8. In a laboratory frame a particle of rest mass m1 has energy E1, and a second particle
of rest mass m2 is at rest. By considering the scalar quantity (P1 + P2) · (P1 + P2),
or otherwise, show that the combined energy in the centre-of-momentum frame (i.e. the
frame in which the total 3-momentum is zero) is√

m2
1c

4 +m2
2c

4 + 2E1m2c2 .

Hence show that, in a collision between a proton with energy E and a proton at rest, it
is not possible to create a proton-antiproton pair (in addition to the original protons) if
E < 7mc2, where m is the rest mass of the proton and also of the antiproton.

9. A rocket ejects exhaust at constant speed u relative to itself by a process that conserves
relativistic energy and momentum (but not mass!). Let m be the rest mass of the rocket
when the rocket has speed v measured in the initial rest frame of the rocket.

By equating the 4-momentum P of the rocket with the total 4-momentum at a later time
when the 4-momentum of the rocket is P + δP , show that

d(mγv)

dv
=

(
v − u

1− uv/c2

)
d(mγ)

dv
,

where γ = (1 − v2/c2)−1/2. Rearrange this as a differential equation for mγ and derive
the relativistic rocket equation

v = c tanh
(u
c

log r
)
,

where r = m0/m and m0 is the initial rest mass of the rocket.

Now suppose that the rocket has an ideal photon drive, so that all matter to be ejected
is converted first to photons by means of positron-electron annihilation. By considering
directly the initial and final energy and momentum (taking into account the total energy
and momentum of the ejected photons, which you do not need to calculate), derive the
relativistic rocket equation for the case of a photon-drive rocket.

Please send any comments and corrections to gio10@cam.ac.uk
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