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Example Sheet 1

1. Practice in applications of variational calculus [optional, and certainly not at the
expense of other questions ].

(a) Show that the shortest path between two points in Euclidean space is a straight
line segment.

(b) Show that the geodesics (i.e. the shortest paths between two points) on a spher-
ical surface are arcs of great circles. [Hint: A great circle is the intersection of
a sphere with a plane containing the centre of the sphere.]

(c) The problem of the brachistochrone (meaning ‘shortest time’) is as follows.
Given two points in a vertical plane, find the path in that plane from the higher
point to the lower one that minimizes the time taken by a particle to slide under
gravity, without friction, starting from rest. Show that the solution is an arc of
an inverted cycloid with a cusp at the point from which the particle is released.
[Hint: The differential equation of a cycloid generated by a circle of radius a is
(dy/dx)2 = (2a/y)− 1.]

2. Four equal light rods of length l are hinged together to form a rhombus ABCD,
which lies in a vertical plane. Each of the vertices has mass m. The vertex A is
fixed, while C lies directly beneath it and is free to slide up and down. The whole
system rotates with constant angular velocity ω around the vertical axis AC.

A

B

C

D

ω

Identify suitable generalized coordinate(s) and write down the Lagrangian of the
system.

3. A circular hoop of radius a lies in a vertical plane. The hoop rotates with constant
angular velocity ω around a fixed vertical axis that goes through its centre, O. A
bead of mass m is threaded on the hoop and moves without friction. Its location is
denoted by A. The angle between the line OA and the downward vertical is ψ(t).
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(a) Using the Lagrangian formalism, derive a second-order differential equation for
ψ(t).

(b) Derive the same differential equation using the Newtonian formalism. Compare
the two methods.

(c) Assume now that the hoop rotates freely about the vertical axis without friction.
Write down the Lagrangian of the system, neglecting the mass of the hoop. Find
the additional conserved quantity.

4. A double pendulum is drawn below. Two light rods, of lengths l1 and l2, oscillate
in the same plane. Attached to them are masses m1 and m2. How many degrees of
freedom does the system have? Write down the Lagrangian describing the dynamics.
Derive the equations of motion.

l1

l2

m1

m2

θ1

θ2

5. The pivot of a simple pendulum is attached to the rim of a disc of radius R, which
rotates about its centre in the plane of the pendulum with constant angular velocity
ω. (See the diagram below.) Write down the Lagrangian and derive the equation
of motion for the dynamical variable θ.

l

R

m

θ

ω

6. A particle moves in one dimension in a potential V (x), where x is the spatial coor-
dinate. The dynamics is governed by the Lagrangian

L =
1

12
m2ẋ4 +mẋ2V − V 2 .
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Show that the resulting equation of motion is identical to that which arises from
the more traditional Lagrangian, L = 1

2
mẋ2 − V .

7. The Lagrangian for a relativistic point particle of mass m is

L = −mc2
√

1− |ṙ|
2

c2
− V (r) ,

where c is the speed of light. Derive the equation of motion, and show that it reduces
to Newton’s equation of motion in the limit |ṙ| � c.

8. An electron, of mass m and charge −e, moves in a magnetic field B = ∇×A(r).
The Lagrangian for the motion is

L =
1

2
m|ṙ|2 − e ṙ ·A(r) .

Show that Lagrange’s equations reproduce the Lorentz force law for the electron.
Then:

(a) With respect to cylindrical polar coordinates (r, θ, z), consider the vector po-
tential

A =
f(r)

r
eθ ,

where eθ is the unit vector in the θ direction. At some initial time, the electron
is at a distance r0 from the z axis; its velocity is then in the (r, z) plane. Show
that the electron’s angular velocity about the z axis is given by

θ̇ =
e

mr2
[f(r)− f(r0)] .

(b) (Again, with respect to cylindrical polar coordinates.) Consider the (different)
vector potential,

A = rg(z) eθ ,

where g(z) > 0. Find two constants of the motion. The electron is projected
from a point (r0, θ0, z0) with velocity (2er0g(z0)/m) eθ. Show that the electron
will then describe a circular orbit, provided that g′(z0) = 0. Show that this orbit
is stable against small translations in the z direction, provided that g′′(z0) > 0.

9. A particle of mass m1 is restricted to move on a circle of radius R1 in the plane
z = 0, with centre at (x, y) = (0, 0). A second particle, of mass m2, is restricted to
move on a circle of radius R2 in the plane z = c, with centre at (x, y) = (0, a). The
two particles are connected by a spring; the resulting potential energy is

V =
1

2
ω2d2 ,

where d is the distance between the particles.
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(a) Identify the two generalized coordinates and write down the Lagrangian of the
system.

(b) Write down the Lagrangian in the case that one circle lies directly beneath the
other, a = 0, and identify a conserved quantity that appears in this case.

10. Two particles, each of mass m, are connected by a light rope of length l. One
particle moves on a smooth horizontal table at a variable distance r from a hole,
through which the rope is threaded. The second particle hangs beneath the table.

(a) Assume initially that the second particle hangs directly beneath the hole. Write
down the Lagrangian of the system in terms of r and a variable ψ, describing
the angle that the first particle makes with respect to a fixed axis. Identify
an ignorable coordinate. Write down the equation of motion for the remaining
coordinate, assuming that the rope remains taut.

(b) Assume now that the second particle oscillates beneath the table, as a spherical
pendulum. How many degrees of freedom does the system now have? Write
down the Lagrangian describing this motion, assuming that the rope remains
taut at all times. How many ignorable coordinates are there?

11. Consider a system with n dynamical degrees of freedom, and generalized coordinates
denoted by qa, with a = 1, . . . , n. The most general form for a purely kinetic
Lagrangian is

L =
1

2
gab(q

1, ..., qn)q̇aq̇b , (∗)

where the summation convention is being used. The functions gab = gba depend on
the generalized coordinates. Assume that det(gab) 6= 0 so that the inverse matrix
gab exists (obeying gabgbc = δac). Show that Lagrange’s equations for this system
are given by

q̈a + Γabcq̇
bq̇c = 0 , (†)

where one defines

Γabc =
1

2
gad
(
∂gbd
∂qc

+
∂gcd
∂qb
− ∂gbc
∂qd

)
.

[Remark: The functions gab define a metric on the configuration space, and the
equations (†) are known as the geodesic equations. In addition to appearing natu-
rally in differential geometry, these equations arise in general relativity, describing
the motion of a particle falling freely under gravity (where a gravitational field
is described by a curved spacetime). Lagrangians of the form (∗), known as sigma
models, appear in many other areas of physics, such as the study of solids, of nuclear
forces and of string theory.]

Please send any comments and corrections to gio10@cam.ac.uk
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