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Provisional synopsis

• Equations of ideal gas dynamics and MHD, including compress-
ibility, thermodynamic relations and self-gravitation. Microphys-
ical basis and validity of a fluid description.

• Physical interpretation of MHD, with examples of basic phenom-
ena.

• Conservation laws, symmetries and hyperbolic structure. Stress
tensor and virial theorem.

• Linear waves in homogeneous media.

• Nonlinear waves, shocks and other discontinuities.

• Spherical blast waves: supernovae.

• Spherically symmetric steady flows: stellar winds and accretion.

• Axisymmetric rotating magnetized flows: astrophysical jets.

• Waves and instabilities in stratified rotating astrophysical bodies.

Please send any comments and corrections to gio10@cam.ac.uk

1 Ideal gas dynamics and MHD

1.1 Review of ideal gas dynamics

1.1.1 Fluid variables

A fluid is characterized by a velocity field u(x, t) and two independent
thermodynamic properties. Most useful are the dynamical variables:
the pressure p(x, t) and the mass density ρ(x, t). Other properties, e.g.
temperature T , can be regarded as functions of p and ρ. The specific
volume (volume per unit mass) is v = 1/ρ.

We neglect the possible complications of variable chemical composition
associated with ionization and recombination, or chemical or nuclear
reactions.

1.1.2 Eulerian and Lagrangian viewpoints

In the Eulerian viewpoint we consider how fluid properties vary in time
at a point that is fixed in space, i.e. attached to the (usually inertial)
coordinate system. The Eulerian time-derivative is simply

∂

∂t
.

In the Lagrangian viewpoint we consider how fluid properties vary in
time at a point that moves with the fluid. The Lagrangian time-
derivative is then

D

Dt
=

∂

∂t
+ u · ∇.

1.1.3 Material points and structures

A material point is an idealized fluid element, a point that moves with
the bulk velocity u(x, t) of the fluid. (Note that the true particles of
which the fluid is composed have an additional random thermal motion.)
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Material curves, surfaces and volumes are geometrical structures com-
posed of fluid elements and moving (and distorting) with the fluid flow.

An infinitesimal material line element δx evolves according to

Dδx

Dt
= δu = δx · ∇u.

It changes its length and/or orientation in the presence of a velocity
gradient.

Infinitesimal material surface and volume elements can be defined from
material line elements according to

δS = δx(1) × δx(2),

δV = δx(1)
· δx(2) × δx(3).

They therefore evolve according to (exercise)

DδS

Dt
= (∇ · u)δS − (∇u) · δS,

DδV

Dt
= (∇ · u)δV.

(See, e.g., Batchelor, An Introduction to Fluid Dynamics, chapter 3.)
In Cartesian coordinates and suffix notation the equation for δS reads

DδSi

Dt
=
∂uj

∂xj
δSi −

∂uj

∂xi
δSj

1.1.4 Equation of mass conservation

The equation of mass conservation,

∂ρ

∂t
+ ∇ · (ρu) = 0,

has the typical form of a conservation law: ρ is the mass density and
ρu is the mass flux density. An alternative form is

Dρ

Dt
= −ρ∇ · u.
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If δm = ρ δV is a material mass element, it can be seen that mass is
conserved in the form

Dδm

Dt
= 0.

1.1.5 Equation of motion

The equation of motion,

ρ
Du

Dt
= −ρ∇Φ − ∇p,

derives from Newton’s second law with gravitational and pressure forces.
Φ(x, t) is the gravitational potential. Viscous forces are neglected in
ideal gas dynamics.

1.1.6 Poisson’s equation

The gravitational potential is related to the mass density by Poisson’s
equation,

∇2Φ = 4πGρ,

where G is Newton’s constant. The solution

Φ(x, t) = −G
∫

V

ρ(x′, t)

|x′ − x| d3x′ −G

∫

V̂

ρ(x′, t)

|x′ − x| d3x′

= Φint + Φext

generally involves contributions from both inside and outside the fluid
region V under consideration.

Non-self-gravitating means that (variations in) Φint can be neglected.
Then Φ(x, t) is known in advance and Poisson’s equation is not coupled
to the other equations.
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1.1.7 Thermal energy equation

In the absence of non-adiabatic heating (e.g. by viscous dissipation or
nuclear reactions) and cooling (e.g. by radiation or conduction),

Ds

Dt
= 0,

where s is the specific entropy (entropy per unit mass). Fluid elements
undergo reversible thermodynamic changes and preserve their entropy.

This condition is violated in shocks (see later).

The thermal variables (T, s) can be related to the dynamical variables
(p, ρ) via an equation of state and standard thermodynamic identities.
The most important case is that of an ideal gas together with black-body
radiation,

p = pg + pr =
kρT

µmp
+

4σT 4

3c
,

where k is Boltzmann’s constant, mp is the mass of the proton and c
the speed of light. µ is the mean molecular weight (the average mass
of the particles in units of mp), equal to 2.0 for molecular hydrogen,
1.0 for atomic hydrogen, 0.5 for fully ionized hydrogen and about 0.6
for ionized matter of typical cosmic abundances. Radiation pressure is
usually negligible except in the centres of high-mass stars and in the
immediate environments of neutron stars and black holes.

We define the first adiabatic exponent

Γ1 =

(

∂ ln p

∂ ln ρ

)

s

,

related to the ratio of specific heats γ = cp/cv by (exercise)

Γ1 = χργ,

where

χρ =

(

∂ ln p

∂ ln ρ

)

T
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can be found from the equation of state. For an ideal gas with negligible
radiation pressure, χρ = 1 and so Γ1 = γ.

We often rewrite the thermal energy equation as

Dp

Dt
=

Γ1p

ρ

Dρ

Dt
,

and generally write γ for Γ1.

1.1.8 Simplified models

A polytropic gas is an ideal gas with constant cv, cp, γ and µ. The
polytropic index n (not generally an integer) is defined by γ = 1 + 1/n.
Equipartition of energy for a classical gas with N degrees of freedom
per particle gives γ = 1 + 2/N . For a classical monatomic gas with
N = 3 translational degrees of freedom, γ = 5/3 and n = 3/2. In
reality Γ1 is variable when the gas undergoes ionization or when the
gas and radiation pressure are comparable. The specific internal energy
of a polytropic gas is

e =
p

(γ − 1)ρ

[

=
N

µmp

1
2kT

]

.

A barotropic fluid is an idealized situation in which the relation p(ρ)
is known in advance. We can then dispense with the thermal energy
equation. e.g. if the gas is strictly isothermal and ideal, then p = c2sρ
with cs = constant being the isothermal sound speed. Alternatively,
if the gas is strictly isentropic and polytropic, then p = Kργ with
K = constant.

An incompressible fluid is an idealized situation in which Dρ/Dt = 0,
implying ∇ · u = 0. This can be achieved formally by taking the limit
γ → ∞. The approximation of incompressibility eliminates acoustic
phenomena from the dynamics.

The ideal gas law itself is not valid at very high densities or where
quantum degeneracy is important.
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1.2 Elementary derivation of the MHD equations

Magnetohydrodynamics (MHD) is the dynamics of an electrically con-
ducting fluid (ionized plasma or liquid metal) containing a magnetic
field. It is a fusion of fluid dynamics and electromagnetism.

1.2.1 Induction equation

We consider a non-relativistic theory in which the fluid motions are slow
compared to the speed of light. The electromagnetic fields E and B

are governed by Maxwell’s equations without the displacement current,

∂B

∂t
= −∇ × E,

∇ · B = 0,

∇ × B = µ0J ,

where µ0 is the permeability of free space and J is the electric current
density. The fourth Maxwell equation, involving ∇ · E, is not required
in a non-relativistic theory. These are sometimes called the pre-Maxwell
equations.

Exercise: Show that these equations are invariant under the Galilean
transformation to a frame of reference moving with uniform relative
velocity v,

x′ = x − vt,

t′ = t,

E′ = E + v × B,

B′ = B,

J ′ = J ,

as required by a ‘non-relativistic’ theory. (In fact, this is simply Galilean,
rather than Einsteinian, relativity.)
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In the ideal MHD approximation we regard the fluid as a perfect electri-
cal conductor. The electric field in the rest frame of the fluid vanishes,
implying that

E = −u × B

in a frame in which the fluid velocity is u(x, t).

This condition can be regarded as the limit of a constitutive relation
such as Ohm’s law, in which the effects of resistivity (i.e. finite conduc-
tivity) are neglected.

From Maxwell’s equations, we then obtain the ideal induction equation

∂B

∂t
= ∇ × (u × B).

This is an evolutionary equation for B alone, and E and J have been
eliminated. The divergence of the induction equation

∂

∂t
(∇ · B) = 0

ensures that the solenoidal character of B is preserved.

1.2.2 The Lorentz force

A fluid carrying a current density J in a magnetic field B experiences
a bulk Lorentz force

Fm = J × B =
1

µ0
(∇ × B) × B

per unit volume. This can be understood as the sum of the Lorentz
forces on individual particles,

∑

qv × B =
(

∑

qv
)

× B.

(The electrostatic force can be shown to be negligible in the non-relativistic
theory.)
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In Cartesian coordinates

(µ0Fm)i = ǫijk

(

ǫjlm
∂Bm

∂xl

)

Bk

=

(

∂Bi

∂xk
− ∂Bk

∂xi

)

Bk

= Bk
∂Bi

∂xk
− ∂

∂xi

(

B2

2

)

.

Thus

Fm =
1

µ0
B · ∇B − ∇

(

B2

2µ0

)

.

The first term can be interpreted as a curvature force due to a magnetic
tension Tm = B2/µ0 per unit area in the field lines. The second term
is the gradient of an isotropic magnetic pressure

pm =
B2

2µ0
,

which is also equal to the energy density of the magnetic field.

The magnetic tension gives rise to Alfvén waves (see later), which travel
parallel to the field with characteristic speed

va =

(

Tm

ρ

)1/2

=
B

(µ0ρ)1/2
,

the Alfvén speed. This is often considered as a vector Alfvén velocity,

va =
B

(µ0ρ)1/2
.

The magnetic pressure also affects the propagation of sound waves,
which become magnetoacoustic waves (see later).

The combination

Π = p+
B2

2µ0
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is often referred to as the total pressure. The ratio

β =
p

B2/2µ0

is known as the plasma beta.

1.2.3 Summary of the MHD equations

A full set of ideal MHD equations might read

∂ρ

∂t
+ ∇ · (ρu) = 0,

ρ
Du

Dt
= −ρ∇Φ − ∇p+

1

µ0
(∇ × B) × B,

Ds

Dt
= 0,

∂B

∂t
= ∇ × (u × B),

∇ · B = 0,

together with the equation of state, Poisson’s equation, etc., as required.
Most of these equations can be written in at least one other way that
may be useful in different circumstances.

These equations display the essential nonlinearity of MHD. When the
velocity field is prescribed, an artifice known as the kinematic approx-
imation, the induction equation is a relatively straightforward linear
evolutionary equation for the magnetic field. However, a sufficiently
strong magnetic field will modify the velocity field through its dynam-
ical effect, the Lorentz force. This nonlinear coupling leads to a rich
variety of behaviour. (Of course, the purely hydrodynamic nonlinearity
of the u · ∇u term, which is responsible for much of the complexity of
fluid dynamics, is still present.)
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1.3 Microphysical basis

It is useful to understand the way in which the fluid dynamical equations
are derived from microphysical considerations. The simplest model in-
volves identical neutral particles with no internal degrees of freedom.

1.3.1 The Boltzmann equation

Between collisions, particles follow Hamiltonian trajectories in their six-
dimensional (x,v) phase space:

ẋi = vi, v̇i = ai = − ∂Φ

∂xi
.

The distribution function f(x,v, t) specifies the number density of par-
ticles in phase space. The velocity moments of f define the number
density n(x, t) in real space, the bulk velocity u(x, t) and the velocity
dispersion c(x, t) according to

∫

f d3v = n,

∫

vf d3v = nu,

∫

|v − u|2f d3v = 3nc2.

Equivalently,

∫

v2f d3v = n(u2 + 3c2).

The relation between velocity dispersion and temperature is kT = mc2.

In the absence of collisions, f is conserved following the Hamiltonian
flow in phase space. This is because particles are conserved and the
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flow in phase space is incompressible (Liouville’s theorem). f evolves
according to Boltzmann’s equation

∂f

∂t
+ vj

∂f

∂xj
+ aj

∂f

∂vj
=

(

∂f

∂t

)

c

.

The collision term on the right-hand side is a complicated integral oper-
ator but has three simple properties corresponding to the conservation
of mass, momentum and energy in collisions:

∫

m

(

∂f

∂t

)

c

d3v = 0,

∫

mv

(

∂f

∂t

)

c

d3v = 0,

∫

1
2mv

2

(

∂f

∂t

)

c

d3v = 0.

The collision term is strictly local in x (not even involving derivatives)
although it involves integrals over v. The Maxwellian distribution

fM = (2πc2)−3/2n exp

(

−|v − u|2
2c2

)

is the unique solution of (∂fM/∂t)c = 0 and can have any parameters
n, u and c.

1.3.2 Derivation of fluid equations

A crude but illuminating model of the collision operator is the BGK
approximation

(

∂f

∂t

)

c

≈ −1

τ
(f − fM)

where fM is a Maxwellian with the same n, u and c as f , and τ is the
relaxation time. This can be identified with the mean free flight time
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of particles between collisions. In other words the collisions attempt to
restore a Maxwellian distribution on a characteristic time-scale τ . They
do this by randomizing the particle velocities in a way consistent with
the conservation of momentum and energy.

If the characteristic time-scale of the fluid flow is T ≫ τ , then the
collision term dominates the Boltzmann equation and f must be very
close to fM. This is the hydrodynamic limit.

The velocity moments of fM can be determined from standard Gaussian
integrals, in particular (exercise)

∫

fM d3v = n,

∫

vifM d3v = nui,

∫

vivjfM d3v = n(uiuj + c2δij),

∫

v2vifM d3v = n(u2 + 5c2)ui.

We obtain equations for mass, momentum and energy by taking mo-
ments of the Boltzmann equation weighted by (m,mvi,

1
2mv

2). In each
case the collision term integrates to zero and the ∂/∂vj term can be in-
tegrated by parts. We replace f with fM when evaluating the left-hand
sides and note that mn = ρ:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0,

∂

∂t
(ρui) +

∂

∂xj

[

ρ(uiuj + c2δij)
]

− ρai = 0,

∂

∂t

(

1
2ρu

2 + 3
2ρc

2
)

+
∂

∂xi

[

(1
2ρu

2 + 5
2ρc

2)ui

]

− ρuiai = 0.

These are equivalent to the equations of ideal gas dynamics in conserva-
tive form (see later) for a monatomic ideal gas (γ = 5/3). The specific
internal energy is e = 3

2c
2 = 3

2kT/m.
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1.3.3 Validity of a fluid approach

The basic idea here is that deviations from the Maxwellian distribution
are small because collisions are frequent compared to the characteristic
time-scale of the flow. In higher-order approximations these deviations
can be estimated, leading to the equations of dissipative gas dynamics
including transport effects (viscosity and heat conduction).

The fluid approach breaks down if τ is not ≪ T , or if the mean free path
λ ≈ cτ between collisions is not ≪ the characteristic length-scale L of
the flow. λ can be very long (measured in AU or pc) in very tenuous
gases such as the interstellar medium, but may still be smaller than the
size of the system.

This approach can be generalized to deal with molecules with internal
degrees of freedom and also to plasmas or partially ionized gases where
there are various species of particle with different charges and masses
experiencing electromagnetic forces. The equations of MHD can be
derived using a similar method.

Some typical numbers:

Solar-type star: centre ρ ∼ 102 g cm−3, T ∼ 107 K; photosphere ρ ∼
10−7 g cm−3, T ∼ 104 K; corona ρ ∼ 10−15 g cm−3, T ∼ 106 K.

Interstellar medium: molecular clouds n ∼ 103 cm−3, T ∼ 10K; cold
medium (neutral) n ∼ 10 − 100 cm−3, T ∼ 102K; warm medium (neu-
tral/ionized) n ∼ 0.1 − 1 cm−3, T ∼ 104K; hot medium (ionized)
n ∼ 10−3 − 10−2 cm−3, T ∼ 106K.

The Coulomb cross-section for ‘collisions’ between charged particles
(electrons or ions) is σ ≈ 1× 10−4(T/K)−2 cm2. The mean free path is
λ = 1/(nσ).

13



2 Physical interpretation of MHD

There are two aspects to MHD: the advection of B by u (induction
equation) and the dynamical back-reaction of B on u (Lorentz force).

2.1 Kinematics of the magnetic field

The ideal induction equation

∂B

∂t
= ∇ × (u × B)

has a beautiful geometrical interpretation: the magnetic field lines are
‘frozen in’ to the fluid and can be identified with material curves. This
is sometimes known as Alfvén’s theorem.

One way to show this is to use the identity

∇ × (u × B) = B · ∇u − B(∇ · u) − u · ∇B + u(∇ · B)

to write the induction equation in the form

DB

Dt
= B · ∇u − B(∇ · u),

and use the equation of mass conservation,

Dρ

Dt
= −ρ∇ · u,

to obtain

D

Dt

(

B

ρ

)

=

(

B

ρ

)

· ∇u.

This is exactly the same equation satisfied by a material line element δx.
Therefore a magnetic field line (an integral curve of B/ρ) is advected
and distorted by the fluid in the same way as a material curve.
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Precisely the same equation,

∂ω

∂t
= ∇ × (u × ω),

is satisfied by the vorticity ω = ∇×u in homentropic/barotropic ideal
fluid dynamics in the absence of a magnetic field. However, the fact
that ω and u are directly related by the curl operation means that the
analogy between vorticity dynamics and MHD is not perfect.

Another way to demonstrate the result of flux freezing is to represent
the magnetic field using Euler potentials α and β,

B = ∇α× ∇β.

This is sometimes called a Clebsch representation. By using two scalar
potentials we are able to represent a three-dimensional vector field
satisfying the constraint ∇ · B = 0. A vector potential of the form
A = α∇β + ∇γ generates this magnetic field via B = ∇ × A. The
magnetic field lines are the intersections of the families of surfaces
α = constant and β = constant.

After some algebra it can be shown that

∂B

∂t
− ∇ × (u × B) = ∇

(

Dα

Dt

)

× ∇β + ∇α× ∇

(

Dβ

Dt

)

.

The ideal induction equation is therefore satisfied if the Euler potentials
are conserved following the fluid flow, i.e. if the families of surfaces
α = constant and β = constant are material surfaces. In this case the
magnetic field lines can also be identified with material lines.

Yet another viewpoint is that the magnetic flux δΦ = B · δS through a
material surface element is conserved:

DδΦ

Dt
=

DB

Dt
· δS + B ·

DδS

Dt

=

(

Bj
∂ui

∂xj
−Bi

∂uj

∂xj

)

δSi +Bi

(

∂uj

∂xj
δSi −

∂uj

∂xi
δSj

)

= 0.
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By extension, we have conservation of the magnetic flux passing through
any material surface.

2.2 The Lorentz force

The Lorentz force

Fm =
1

µ0
B · ∇B − ∇

(

B2

2µ0

)

can also be written as the divergence of the Maxwell stress tensor :

Fm = ∇ · M, M =
1

µ0

(

BB − B2

2
1

)

.

In Cartesian coordinates

(Fm)i =
∂Mji

∂xj
, Mij =

1

µ0

(

BiBj −
B2

2
δij

)

.

If the magnetic field is locally aligned with the x-axis, then

M =





Tm 0 0
0 0 0
0 0 0



−





pm 0 0
0 pm 0
0 0 pm



 ,

showing the magnetic tension and pressure.

Combining the ideas of magnetic tension and a frozen-in field leads
to the picture of field lines as elastic strings embedded in the fluid.
Indeed there is a close analogy between MHD and the dynamics of
dilute solutions of long-chain polymer molecules.

2.3 Differential rotation and torsional Alfvén waves

We first consider the kinematic behaviour of a magnetic field in the
presence of a prescribed velocity field involving differential rotation. In
cylindrical polar coordinates (R,φ, z), let

u = RΩ(R, z)eφ.
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Consider an axisymmetric magnetic field, which we separate into poloidal
(meridional) and toroidal (azimuthal) parts:

B = Bp(R, z, t) +Bφ(R, z, t)eφ.

The ideal induction equation reduces to (exercise)

∂Bp

∂t
= 0,

∂Bφ

∂t
= RBp · ∇Ω.

Differential rotation winds the poloidal field to generate a toroidal field.
To obtain an steady state without winding, we require

Bp · ∇Ω = 0,

known as Ferraro’s law of isorotation.

There is an energetic cost to winding the field, as work is done against
magnetic tension. In a dynamical situation a strong magnetic field tends
to enforce isorotation along its length.

We now generalize the analysis to allow for axisymmetric torsional os-
cillations :

u = RΩ(R, z, t)eφ.

The azimuthal component of equation of motion is (exercise)

ρR
∂Ω

∂t
=

1

µ0R
Bp · ∇(RBφ).

This combines with the induction equation to give

∂2Ω

∂t2
=

1

µ0ρR2
Bp · ∇(R2Bp · ∇Ω).

This equation describes torsional Alfvén waves. e.g. if Bp = Bz ez is
vertical and uniform, then

∂2Ω2

∂t2
= v2

a

∂2Ω2

∂z2
.

This is not strictly an exact nonlinear analysis because we have ne-
glected the force balance (and indeed motion) in the meridional plane.
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2.4 Magnetostatic equilibrium

A magnetostatic equilibrium is a static solution (u = 0) of the equation
of motion, i.e. one satisfying

0 = −ρ∇Φ − ∇p+
1

µ0
(∇ × B) × B,

together with ∇ · B = 0.

In regions of low density, such as the solar corona, the magnetic field
may be dynamically dominant over the effects of gravity or gas pres-
sure. Under these circumstances we have (approximately) a force-free
magnetic field such that

(∇ × B) × B = 0.

Magnetic fields B satisfying this equation are known in a wider mathe-
matical context as Beltrami fields. Since ∇×B must be parallel to B,
we may write

∇ × B = λB, (1)

for some scalar field λ(x). The divergence of this equation is

0 = B · ∇λ,

so that λ is constant on each magnetic field line. In the special case
λ = constant, known as a linear force-free magnetic field, the curl of
equation (1) results in the Helmholtz equation

−∇2B = λ2B,

which admits a wide variety of non-trivial solutions.

A subset of force-free magnetic fields consists of potential or current-free
magnetic fields for which

∇ × B = 0.
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In a true vacuum, the magnetic field must be potential. However, only
an extremely low density of charge carriers (i.e. electrons) is needed to
make the force-free description more relevant.

An example of a force-free field is

B = Bφ(R)eφ +Bz(R)ez,

∇ × B = −dBz

dR
eφ +

1

R

d

dR
(RBφ)ez.

Now ∇ × B = λB implies

1

R

d

dR

(

R
dBz

dR

)

+ λ2Bz = 0.

The solution regular at R = 0 is

Bz = B0J0(λR), Bφ = B0J1(λR),

where Jn is the Bessel function of order n. This solution can be matched
smoothly to a uniform exterior field at a zero of J1.

The helical nature of this field is typical of force-free fields with λ 6= 0.
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2.5 Magnetic buoyancy

A magnetic flux tube is an idealized situation in which the field is lo-
calized in a tube and vanishes outside. To balance the total pressure at
the interface, the gas pressure must be lower inside. Unless the temper-
atures are different, the density is lower inside. In a gravitational field
the tube therefore experiences an upward buoyancy force and tends to
rise.
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3 Conservation laws, symmetries and hyper-

bolic structure

3.1 Synthesis of the total energy equation

Starting from the ideal MHD equations, we construct the total energy
equation piece by piece.

Kinetic energy:

ρ
D

Dt
(1
2u

2) = −ρu · ∇Φ − u · ∇p+
1

µ0
u · [(∇ × B) × B] .

Gravitational energy (assuming first that the system is non-self-gravitating
and Φ is independent of t):

ρ
DΦ

Dt
= ρu · ∇Φ.

Thermal energy (using the thermodynamic identity de = T ds− pdv):

ρ
De

Dt
= ρT

Ds

Dt
+ p

D ln ρ

Dt
= −p∇ · u.

Sum of these three:

ρ
D

Dt
(1
2u

2 + Φ + e) = −∇ · (pu) +
1

µ0
(∇ × B) · (−u × B).

Using mass conservation:

∂

∂t

[

ρ(1
2u

2 + Φ + e)
]

+∇·
[

ρu(1
2u

2 + Φ + e) + pu
]

=
1

µ0
(∇×B) ·E.

Magnetic energy:

∂

∂t

(

B2

2µ0

)

= − 1

µ0
B · ∇ × E.

Total energy:

∂

∂t

[

ρ(1
2u

2 + Φ + e) +
B2

2µ0

]

+∇·

[

ρu(1
2u

2 + Φ + w) +
E × B

µ0

]

= 0,

21



where w = e+p/ρ is the specific enthalpy. Note that (E×B)/µ0 is the
electromagnetic Poynting flux. The total energy is therefore conserved.

To allow for self-gravitation we write Φ = Φint + Φext. Now

ρ
D

Dt
(1
2Φint) = −1

2Gρ
D

Dt

∫

dm′

|x′ − x|

= 1
2Gρ

∫

(u′ − u) · (x′ − x)

|x′ − x|3 dm′

= ρu · ∇Φint + 1
2Gρ

∫

(u′ + u) · (x′ − x)

|x′ − x|3 dm′.

The volume integral of the last term vanishes because it is antisymmet-
ric:

1
2G

∫∫

(u′ + u) · (x′ − x)

|x′ − x|3 dm′ dm = 0.

The final conservation equation is therefore non-local:

∂

∂t

[

ρ(1
2u

2 + 1
2Φint + Φext + e) +

B2

2µ0

]

+ ∇ ·

[

ρu(1
2u

2 + Φ + w) +
E × B

µ0

]

+ (term that integrates to zero) = 0.

3.2 Other conservation laws in ideal MHD

In ideal fluid dynamics there are certain invariants with a geometrical or
topological interpretation. In homentropic/barotropic flow, for exam-
ple, vorticity (or, equivalently, circulation) and kinetic helicity are con-
served, while, in non-barotropic flow, potential vorticity is conserved.
The Lorentz force breaks these conservation laws because the curl of the
Lorentz force per unit mass does not vanish in general. However, some
new topological invariants associated with the magnetic field appear.
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The magnetic helicity in a volume V is

Hm =

∫

V
A · B dV,

where A is the magnetic vector potential, such that B = ∇ × A. Now

∂A

∂t
= −E − ∇Φe = u × B − ∇Φe,

where Φe is the electrostatic potential. This can be thought of as the
‘uncurl’ of the induction equation. In ideal MHD, therefore, magnetic
helicity is conserved:

∂

∂t
(A · B) + ∇ · [ΦeB + A × (u × B)] = 0.

However, care is needed because Hm is not uniquely defined unless
B · n = 0 on the surface S of V . Under a gauge transformation A 7→
A + ∇χ, Φe 7→ Φe − ∂χ/∂t, Hm changes by an amount

∫

V
B · ∇χdV =

∫

V
∇ · (χB) dV =

∫

S
χB · ndS.

Magnetic helicity is a pseudoscalar quantity (it changes sign under a re-
flection of the spatial coordinates). It is related to the lack of reflectional
symmetry in the magnetic field. It can also be interpreted topologically
in terms of the twistedness and/or knottedness of the magnetic field (see
Example 1.5). Since the field is ‘frozen in’ to the fluid and deformed
continuously by it, the topological properties of the field are conserved.
The equivalent conserved quantity in ideal gas dynamics (without a
magnetic field) is the kinetic helicity

Hk =

∫

V
u · (∇ × u) dV.

The cross-helicity in a volume V is

Hc =

∫

V
u · B dV.
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It is helpful here to write the equation of motion in ideal MHD in the
form

∂u

∂t
+ (∇ × u) × u + ∇(1

2u
2 + Φ + w)

= T∇s+
1

µ0ρ
(∇ × B) × B,

(1)

using the relation dw = T ds+ v dp. Thus

∂

∂t
(u · B) + ∇ ·

[

u × (u × B) + (1
2u

2 + w + Φ)B
]

= TB · ∇s,

and so cross-helicity is conserved in ideal MHD in homentropic/barotropic
flow.

Bernoulli’s theorem follows from the inner product of equation (1) with
u. In steady flow

u · ∇(1
2u

2 + Φ + w) = 0,

but only if u ·Fm = 0 (e.g. if u ‖B), i.e. if B does no work on the flow.

3.3 Symmetries of the equations

• translation of space and time, and rotation of space (if Φext has
those symmetries): related to conservation of momentum, energy
and angular momentum

• reversal of time: related to absence of dissipation

• reflection of space (but note that B is a pseudovector and does
not change sign)

• Galilean invariance (relativity principle)

• reversal of the sign of B
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3.4 Hyperbolic structure

We neglect the gravitational force here, since it involves action at a
distance.

The equation of mass conservation, the thermal energy equation, the
equation of motion and the induction equation can be written in the
combined form

∂U

∂t
+ Ai

∂U

∂xi
= 0,

where

U = [ρ, p,u,B]T

is an eight-dimensional state vector and the Ai are three 8×8 matrices,
e.g.

Ax =



























ux 0 ρ 0 0 0 0 0
0 ux γp 0 0 0 0 0

0 1
ρ ux 0 0 0

By

µ0ρ
Bz

µ0ρ

0 0 0 ux 0 0 − Bx

µ0ρ 0

0 0 0 0 ux 0 0 − Bx

µ0ρ

0 0 0 0 0 ux 0 0
0 0 By −Bx 0 0 ux 0
0 0 Bz 0 −Bx 0 0 ux



























.

The system of equations is said to be hyperbolic if the eigenvalues of
Aini are real for any unit vector n and if the eigenvectors span the eight-
dimensional space. The eigenvalues can be identified as wave speeds,
and the eigenvectors as wave modes. n is the local normal to the wave-
fronts.

Taking n = ex WLOG, we find

det(Ax − v1) = (v − ux)2
[

(v − ux)
2 − v2

ax

]

×
[

(v − ux)
4 − (v2

s + v2
a)(v − ux)

2 + v2
s v

2
ax

]

,
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where

vs =

(

γp

ρ

)1/2

is the adiabatic sound speed. The wave speeds v are always real and the
system is indeed hyperbolic. The various wave modes will be examined
later.

For ideal gas dynamics without a magnetic field, the state vector is
five-dimensional and the wave speeds for n = ex are ux and ux ± vs.

In this representation, there are two modes that propagate at the fluid
velocity, so they do not propagate relative to the fluid. One is the
entropy mode, which is physical but involves only a density perturba-
tion. The other is the ‘∇ · B’ mode, which is unphysical and involves
a perturbation of ∇ · B. This is eliminated by imposing the constraint
∇ · B = 0.

3.5 Stress tensor and virial theorem

The equation of motion can be written in the form

ρ
Du

Dt
= ∇ · T,

where

T = −p1 − 1

4πG

(

gg − g2

2
1

)

+
1

µ0

(

BB − B2

2
1

)

is a symmetric stress tensor and g = −∇Φ. The idea of gravitational
stress only works if the system is self-gravitating and Φ and ρ are related
through Poisson’s equation:

∇ · (gg − 1
2g

21) = (∇ · g)g = −4πGρg

Consider

ρ
D2

Dt2
(xixj) = ρ

D

Dt
(uixj + xiuj) = 2ρuiuj + xj

∂Tki

∂xk
+ xi

∂Tkj

∂xk
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Integrate over a material volume V bounded by a surface S (mass ele-
ment dm = ρdV ):

d2

dt2

∫

V
xixj dm =

∫

V

(

2ρuiuj + xj
∂Tki

∂xk
+ xi

∂Tkj

∂xk

)

dV

=

∫

V
(2ρuiuj − Tji − Tij) dV +

∫

S
(xjTki + xiTkj)nk dS

If the surface term vanishes (e.g. if Tij falls off faster than r−3 and we
let V occupy the whole of space) and Tij is symmetric, we obtain the
tensor virial theorem

1

2

d2Iij
dt2

= 2Kij − Tij ,

where

Iij =

∫

xixj dm,

Kij =

∫

1
2uiuj dm,

Tij =

∫

Tij dV.

The scalar virial theorem is the trace of this expression:

1

2

d2I

dt2
= 2K − T .

K is the total kinetic energy. Now

−T =

∫
(

3p− g2

8πG
+
B2

2µ0

)

dV

= 3(γ − 1)U +W +M,

for a polytropic gas with no external gravitational field, where U , W
and M are the total internal, gravitational and magnetic energies. The
gravitational integral is

−
∫

V

g2

8πG
dV = −

∫

V

|∇Φ|2
8πG

dV =

∫

V

Φ∇2Φ

8πG
dV =

1

2

∫

V
ρΦdV.
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Thus

1

2

d2I

dt2
= 2K + 3(γ − 1)U +W +M.

On the RHS, only W is negative. For the system to be bound (i.e. not
fly apart) the kinetic, internal and magnetic energies are limited by

2K + 3(γ − 1)U +M 6 |W |.

The tensor virial theorem provides more specific information relating
to the energies associated with individual directions.
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4 Linear waves in homogeneous media

In ideal MHD the density, pressure and magnetic field evolve according
to

∂ρ

∂t
= −u · ∇ρ− ρ∇ · u,

∂p

∂t
= −u · ∇p− γp∇ · u,

∂B

∂t
= ∇ × (u × B).

Consider a magnetostatic equilibrium in which the density, pressure
and magnetic field are ρ0(x), p0(x) and B0(x). Now consider small
perturbations from equilibrium, such that ρ(x, t) = ρ0(x) + δρ(x, t)
with |δρ| ≪ ρ0, etc. The linearized equations are

∂δρ

∂t
= −δu · ∇ρ0 − ρ0∇ · δu,

∂δp

∂t
= −δu · ∇p0 − γp0∇ · δu,

∂δB

∂t
= ∇ × (δu × B0).

By introducing the displacement ξ(x, t) such that δu = ∂ξ/∂t, we can
integrate these equations to obtain

δρ = −ξ · ∇ρ− ρ∇ · ξ,

δp = −ξ · ∇p− γp∇ · ξ,

δB = ∇ × (ξ × B)

= B · ∇ξ − ξ · ∇B − (∇ · ξ)B.

We have now dropped the subscript ‘0’ without danger of confusion.
We have also eliminated the entropy mode, which would consist in this
case of a time-independent perturbation of the density distribution.
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The linearized equation of motion is

ρ
∂2ξ

∂t2
= −δρ∇Φ − ρ∇δΦ − ∇δΠ +

1

µ0
(δB · ∇B + B · ∇δB),

where the perturbation of total pressure is

δΠ = δp+
B · δB

µ0

= −ξ · ∇Π −
(

γp+
B2

µ0

)

∇ · ξ +
1

µ0
B · (B · ∇ξ).

The gravitational potential perturbation satisfies the linearized Poisson
equation

∇2δΦ = 4πGδρ.

We consider a basic state of uniform density, pressure and magnetic
field, in the absence of gravity. Such a system is homogeneous but
anisotropic, because the uniform field distinguishes a particular direc-
tion. The problem simplifies to

ρ
∂2ξ

∂t2
= −∇δΠ +

1

µ0
B · ∇ [B · ∇ξ − (∇ · ξ)B] ,

with

δΠ = −
(

γp+
B2

µ0

)

∇ · ξ +
1

µ0
B · (B · ∇ξ).

Owing to the symmetries of the basic state, plane-wave solutions exist
of the form

ξ(x, t) = Re
[

ξ̃ exp(−iωt+ ik · x)
]

,

where ω and k are the frequency and wavevector, and ξ̃ is a constant
vector representing the amplitude of the wave. Then (omitting the tilde
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and changing the sign)

ρω2ξ =

[(

γp+
B2

µ0

)

k · ξ − 1

µ0
(k · B)B · ξ

]

k

+
1

µ0
(k · B) [(k · B)ξ − (k · ξ)B] .

(1)

For transverse displacements that are orthogonal to both the wavevector
and the field, i.e. k · ξ = B · ξ = 0, this simplifies to

ρω2ξ =
1

µ0
(k · B)2ξ.

Such solutions are called Alfvén waves. Their dispersion relation is

ω2 = (k · va)
2.

Given the dispersion relation ω(k) of any wave mode, the phase and
group velocities of the wave can be identified as

vp =
ω

k
k̂,

vg =
∂ω

∂k
= ∇kω,

where k̂ = k/k. The phase velocity is that with which the phase of the
wave travels; the group velocity is that which the energy of the wave
(or the centre of a wavepacket) travels.

For Alfvén waves, therefore,

vp = ±va cos θ k̂,

vg = ±va,

where θ is the angle between k and B.

To find the other solutions, we take the inner product of equation (1)
with k and then with B to obtain first

ρω2k · ξ =

[(

γp+
B2

µ0

)

k · ξ − 1

µ0
(k · B)B · ξ

]

k2
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and then

ρω2B · ξ = γp(k · ξ)k · B.

These can be written in the form
[

ρω2 −
(

γp+ B2

µ0

)

k2 1
µ0

(k · B)k2

−γp(k · B) ρω2

]

[

k · ξ

B · ξ

]

=

[

0
0

]

.

The ‘trivial solution’ k · ξ = B · ξ = 0 corresponds to the Alfvén wave
that we have already identified. The other solutions satisfy

ρω2

[

ρω2 −
(

γp+
B2

µ0

)

k2

]

+ γpk2 1

µ0
(k · B)2 = 0,

which simplifies to

v4
p − (v2

s + v2
a)v

2
p + v2

s v
2
a cos2 θ = 0.

The two solutions

v2
p = 1

2(v2
s + v2

a) ±
[

1
4(v2

s + v2
a)

2 − v2
s v

2
a cos2 θ

]1/2

are called fast and slow magnetoacoustic waves, respectively.

In the special case θ = 0 (k‖B), we have

v2
p = v2

s or v2
a ,

together with v2
p = v2

a for the Alfvén wave. Note that the fast wave
could be either v2

p = v2
s or v2

p = v2
a , whichever is greater.

In the special case θ = π/2 (k ⊥ B), we have

v2
p = v2

s + v2
a or 0,

together with v2
p = 0 for the Alfvén wave.

The effects of the magnetic field on wave propagation can be understood
as resulting from the two aspects of the Lorentz force. The magnetic
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tension gives rise to Alfvén waves, which are similar to waves on an
elastic string, and are trivial in the absence of the magnetic field. In
addition, the magnetic pressure affects the response of the fluid to com-
pression, and therefore modifies the propagation of acoustic waves.

The phase and group velocity vectors for the full range of θ are usually
exhibited in Friedrichs diagrams. We can interpret:

• the fast wave as a quasi-isotropic acoustic-type wave in which both
gas and magnetic pressure contribute

• the slow wave as an acoustic-type wave that is strongly guided by
the magnetic field

• the Alfvén waves as analogous to a wave on an elastic string,
propagating by means of magnetic tension and perfectly guided
by the magnetic field
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Phase and group velocity diagrams for the case va = 0.7vs.

Phase and group velocity diagrams for the case vs = 0.7va.

34

5 Nonlinear waves, shocks and other disconti-

nuities

5.1 One-dimensional gas dynamics

5.1.1 Riemann’s analysis

The equations of mass conservation and motion in one dimension are

∂ρ

∂t
+ u

∂ρ

∂x
= −ρ∂u

∂x
,

∂u

∂t
+ u

∂u

∂x
= −1

ρ

∂p

∂x
.

We assume the gas is homentropic (s = constant) and polytropic. Then
p ∝ ργ and v2

s = γp/ρ ∝ ργ−1. It is convenient to use vs as a variable
in place of ρ or p:

dp = v2
s dρ, dρ =

ρ

vs

(

2 dvs
γ − 1

)

.

Then

∂u

∂t
+ u

∂u

∂x
+ vs

∂

∂x

(

2vs
γ − 1

)

= 0,

∂

∂t

(

2vs
γ − 1

)

+ u
∂

∂x

(

2vs
γ − 1

)

+ vs
∂u

∂x
= 0.

We add and subtract to obtain
[

∂

∂t
+ (u+ vs)

∂

∂x

](

u+
2vs
γ − 1

)

= 0,

[

∂

∂t
+ (u− vs)

∂

∂x

](

u− 2vs
γ − 1

)

= 0.

Define the two Riemann invariants

R± = u± 2vs
γ − 1

.
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Then we deduce that R± = constant along a characteristic (curve) of
gradient dx/dt = u±vs in the (x, t) plane. The + and − characteristics
form an interlocking web covering the space-time diagram.

Note that both Riemann invariants are needed to reconstruct the solu-
tion (u and vs). Half of the information is propagated along one set of
characteristics and half along the other.

In general the characteristics are not known in advance but must be
determined along with the solution. The + and − characteristics prop-
agate at the speed of sound to the right and left, respectively, with
respect to the motion of the fluid.

This concept generalizes to nonlinear waves the solution of the classical
wave equation for acoustic waves on a uniform background, of the form
f(x− vst) + g(x+ vst).

5.1.2 Method of characteristics

A numerical method of solution can be based on the following idea.

• start with the initial data (u and vs) for all relevant x at t = 0

• determine the characteristic slopes at t = 0

• propagate the R± information for a small increment of time, ne-
glecting the variation of the characteristic slopes

• combine the R± information to find u and vs at each x at the new
value of t

• re-evaluate the slopes and repeat

The domain of dependence of a point P in the space-time diagram is
that region of the diagram bounded by the ± characteristics through
P and located in the past of P . The solution at P cannot depend on
anything that occurs outside the domain of dependence. Similarly, the
domain of influence of P is the region in the future of P bounded by
the characteristics through P .
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5.1.3 A simple wave

Suppose that R− is uniform (the same constant on every characteristic
emanating from an undisturbed region to the right). Its value every-
where is that of the undisturbed region:

u− 2vs
γ − 1

= − 2vs0
γ − 1

Then both R+ and R− must be constant on the + characteristics, so
both u and vs are constant on them, and the + characteristics have
constant slope v = u+ vs (they are straight lines).

The statement that the wave speed v = constant on the straight lines
dx/dt = v is expressed by the equation

∂v

∂t
+ v

∂v

∂x
= 0.

This is known as the inviscid Burgers equation or the nonlinear advec-
tion equation.

It is easily solved by the method of characteristics. The initial data
define v0(x) = v(x, 0). The characteristics are straight lines. In regions
where dv0/dx > 0 the characteristics diverge in the future. In regions
where dv0/dx < 0 the characteristics converge and will form a shock at
some point. Contradictory information arrives at the same point in the
space-time diagram, leading to a breakdown of the solution.

Another viewpoint is that of wave steepening. The graph of v versus x
evolves in time by moving each point at its wave speed v. The crest of
the wave moves fastest and eventually overtakes the trough to the right
of it. The profile would become multiple-valued, but this is physically
meaningless and the wave breaks, forming a discontinuity.

Indeed, the formal solution of the inviscid Burgers equation is

v(x, t) = v0(x0) with x = x0 + v0(x0)t.

Then ∂v/∂x = v′0/(1 + v′0t) diverges first at the breaking time t =
1/max(−v′0).
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The crest of a sound wave move faster than the trough for two reasons.
It is partly because the crest is denser and hotter, so the sound speed
is higher (unless the gas is isothermal). But it is also because of the
self-advection of the wave (the wave speed is u+vs). The breaking time
depends on the amplitude and wavelength of the wave.

5.2 General analysis of simple nonlinear waves

Recall the hyperbolic structure of the ideal MHD equations:

∂U

∂t
+ Ai

∂U

∂xi
= 0,

U = [ρ, p,U ,B]T.

The system is hyperbolic because the eigenvalues of Aini are real for
any unit vector ni. The eigenvalues are identified as the wave speeds,
and the corresponding eigenvectors as wave modes.

In a simple wave propagating in the x-direction, all physical quantities
are functions of a single variable, the one-dimensional phase ϕ(x, t).
Thus U = U(ϕ) and

dU

dϕ

∂ϕ

∂t
+ Ax

dU

dϕ

∂ϕ

∂x
= 0.

This works if dU/dϕ is an eigenvector of the hyperbolic system and then

∂ϕ

∂t
+ v

∂ϕ

∂x
= 0

where v is the corresponding wavespeed. But since v = v(ϕ) we again
find

∂v

∂t
+ v

∂v

∂x
= 0,

the inviscid Burgers equation.
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Wave steepening is therefore generic for simple waves. However, waves
do not always steepen in practice. For example, linear dispersion arising
from Coriolis or buoyancy forces (see later) can counteract nonlinear
wave steepening. Waves propagating on a non-uniform background are
not simple waves.

5.3 Shocks and other discontinuities

5.3.1 Jump conditions

Discontinuities are resolved in reality by additional physical effects (vis-
cosity, thermal conduction and resistivity, i.e. diffusive effects) that be-
come more important on smaller length-scales.

Properly, we should solve an enhanced set of equations to resolve the
internal structure of a shock. This would then be matched on to the
external solution where diffusion is neglected. But the matching condi-
tions can in fact be determined from general principles without resolving
the internal structure.

We consider a shock front at rest at x = 0 (making a Galilean trans-
formation if necessary). We look for a stationary solution in which gas
flows from left (ρ1, etc.) to right (ρ2, etc.). On the left is upstream,
pre-shocked material.

Consider any equation in conservative form

∂Q

∂t
+ ∇ · F = 0.

For a stationary solution in one dimension,

dFx

dx
= 0,

which implies that the flux density Fx has the same value on each side
of the shock. We write the matching condition as

[Fx]
2
1 = Fx2 − Fx1 = 0.
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Including additional physics means that additional diffusive fluxes (not
of mass but of momentum, energy, magnetic flux, etc.) are present.
But these fluxes are negligible outside the shock, so they do not affect
the jump conditions. This approach is permissible as long as the new
physics doesn’t introduce any source terms in the equations. So the
total energy is a properly conserved quantity but not the entropy (see
later).

From mass conservation:

[ρux]21 = 0.

From momentum conservation:

[

ρu2
x + Π − B2

x

µ0

]2

1

= 0,

[

ρuxuy −
BxBy

µ0

]2

1

= 0,

[

ρuxuz −
BxBz

µ0

]2

1

= 0,

From ∇ · B = 0:

[Bx]
2
1 = 0.

From ∂B/∂t + ∇ × E = 0:

[uxBy − uyBx]
2
1 = −[Ez]

2
1 = 0,

[uxBz − uzBx]
2
1 = [Ey]

2
1 = 0.

(These are the standard electromagnetic conditions at an interface: the
normal component of B and the parallel components of E are contin-
uous.) From total energy conservation:

[

ρux(1
2u

2 + Φ + w) +
1

µ0

(

B2ux − (u · B)Bx

)

]2

1

= 0.
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Note that the conservative form of the momentum equation is

∂

∂t
(ρui) + ∇ ·

(

ρuiu + Πei −
BiB

µ0

)

= 0.

Including gravity makes no difference to the shock relations because Φ
is always continuous (it satisfies ∇2Φ = 4πGρ).

Although the entropy in ideal MHD satisfies an equation of conservative
form,

∂

∂t
(ρs) + ∇ · (ρsu) = 0,

the dissipation of energy within the shock provides a source term for
entropy. Therefore the entropy flux is not continuous across the shock.

5.3.2 Non-magnetic shocks

Consider a normal shock (uy = uz = 0) with no magnetic field. We
obtain the Rankine–Hugionot relations

[ρux]21 = 0,

[ρu2
x + p]21 = 0,

[ρux(1
2u

2
x + w)]21 = 0.

For a polytropic gas,

w =

(

γ

γ − 1

)

p

ρ

and these equations can be solved algebraically (see example 2.2). In-
troduce the upstream Mach number (the shock Mach number)

M1 =
ux1

vs1
.
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Then we find

ρ2

ρ1
=
ux1

ux2
=

(γ + 1)M2
1

(γ − 1)M2
1 + 2

,

p2

p1
=

2γM2
1 − (γ − 1)

(γ + 1)
,

M2
2 =

2 + (γ − 1)M2
1

2γM2
1 − (γ − 1)

.

Case (i): M2
1 > 1, M2

2 < 1: supersonic upstream, subsonic downstream.
This is a compression shock (ρ2 > ρ1, p2 > p1).

Case (ii): M2
1 < 1, M2

2 > 1: supersonic upstream, subsonic down-
stream. This is a rarefaction shock (ρ2 < ρ1, p2 < p1).

Trivial case: M2
1 = 1, M2

2 = 1 (no shock).

It is shown in example 2.2 that the entropy change in passing through
the shock is positive for compression shocks and negative for rarefac-
tion shocks. Therefore only compression shocks are physically realizable.
Rarefaction shocks are excluded by the second law of thermodynamics.
All shocks involve dissipation and irreversibility.

In the strong shock limit M1 ≫ 1, common in astrophysical applica-
tions, we have

ρ2

ρ1
=
ux1

ux2
→ γ + 1

γ − 1
,

p2

p1
≫ 1,

M2
2 → γ − 1

2γ
.

Note that the compression ratio ρ2/ρ1 is finite (and equal to 4 when
γ = 5/3). In the rest frame of the undisturbed (upstream) gas the
shock speed is ushock = −ux1. The downstream density, velocity (in
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that frame) and pressure in the limit of a strong shock are (to be used
later)

ρ2 =

(

γ + 1

γ − 1

)

ρ1,

ux2 − ux1 =

(

2

γ + 1

)

ushock,

p2 =

(

2

γ + 1

)

ρ1u
2
shock.

This last equation can be thought of as determining the thermal energy
that is generated out of kinetic energy by the passage of a strong shock.

5.3.3 Oblique shocks

When uy or uz are non-zero, we have the additional relations

[ρuxuy]
2
1 = [ρuxuz]

2
1 = 0.

Since ρux is continuous across the shock (and non-zero), we deduce that
[uy]

2
1 = [uz]

2
1 = 0. Momentum and energy conservation apply as before,

and we recover the Rankine–Hugoniot relations.

5.3.4 Tangential discontinuities

There is a separate case with no flow through the discontinuity (ux = 0).
This is usually called an interface, not a shock. We can deduce only
that [p]21 = 0. Arbitrary discontinuities are allowed in ρ, uy and uz.
If [uy]

2
1 = [uz]

2
1 = 0 we have a contact discontinuity (only ρ and s

may change across the shock), otherwise a vortex sheet (the vorticity is
proportional to δ(x)).
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5.3.5 MHD shocks and discontinuities

When a magnetic field is included, the jump conditions allow a wider
variety of solutions. There are different types of discontinuity associated
with the three MHD waves (Alfvén, slow and fast). Since the parallel
components of B need not be continuous, it is possible for them to
‘switch on’ or ‘switch off’ on passage through a shock.

A current sheet is a tangential discontinuity in the parallel magnetic
field. A classic case would be where By, say, changes sign across the
interface. The current density is proportional to δ(x).
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6 Spherical blast waves: supernovae

6.1 Introduction

In a supernova, an energy of order 1051 erg is released into the inter-
stellar medium. An expanding spherical blast wave is formed as the
explosion sweeps up the surrounding gas. Several good examples of
these supernova remnants are observed in the Galaxy.

The effect is similar to a bomb. When photographs (complete with
length and time scales) were released of the first atomic bomb test in
New Mexico in 1945, both L. I. Sedov in the Soviet Union and G. I. Tay-
lor in the UK were able to work out the energy of the bomb (about 20
kilotons), which was supposed to be a secret.

We suppose that an energy E is released at t = 0, r = 0 and that the
explosion is spherically symmetric. The external medium has density
ρ0 and pressure p0. In the Sedov–Taylor phase of the explosion, the
pressure p ≫ p0. Then a strong shock is formed and the external
pressure p0 can be neglected (formally set to zero). Gravity is also
negligible in the dynamics.

6.2 Governing equations

For a spherically symmetric flow of a polytropic gas,
(

∂

∂t
+ u

∂

∂r

)

ρ = − ρ

r2
∂

∂r
(r2u),

(

∂

∂t
+ u

∂

∂r

)

u = −1

ρ

∂p

∂r
,

(

∂

∂t
+ u

∂

∂r

)

ln(pρ−γ) = 0.

These imply the total energy equation

∂

∂t

(

1

2
ρu2 +

p

γ − 1

)

+
1

r2
∂

∂r

[

r2
(

1

2
ρu2 +

γp

γ − 1

)

u

]

= 0.
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The shock is at r = R(t), and the shock speed is Ṙ. The equations are
solved in 0 < r < R with the strong shock conditions at r = R:

ρ =

(

γ + 1

γ − 1

)

ρ0,

u =
2Ṙ

γ + 1
,

p =
2ρ0Ṙ

2

γ + 1
.

The total energy of the explosion is

E =

∫ R

0

(

1

2
ρu2 +

p

γ − 1

)

4πr2 dr.

(The thermal energy of the external medium is negligible.)

6.3 Dimensional analysis

The dimensional parameters of the problem on which the solution might
depend are E and ρ0. Their dimensions are

[E] = ML2T−2, [ρ0] = ML−3

Together, they do not define a characteristic length-scale, so the explo-
sion is ‘scale-free’ or ‘self-similar’. If the dimensional analysis includes
the time t since the explosion, however, we find a time-dependent char-
acteristic length-scale. The radius of the shock must be

R = α

(

Et2

ρ0

)1/5

,

where α is a dimensionless constant to be determined.
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6.4 Similarity solution

The self-similarity of the explosion is expressed using the dimensionless
similarity variable ξ = r/R(t). The solution has the form

ρ = ρ0 ρ̃(ξ),

u = Ṙ ũ(ξ),

p = ρ0Ṙ
2 p̃(ξ),

where ρ̃(ξ), ũ(ξ) and p̃(ξ) are dimensionless functions to be determined.

6.5 Dimensionless equations

We substitute these forms into the equation and cancel the dimensional
factors:

(ũ− ξ)ρ̃′ = − ρ̃

ξ2
d

dξ
(ξ2ũ),

(ũ− ξ)ũ′ − 3

2
ũ = − p̃

′

ρ̃
,

(ũ− ξ)

(

p̃′

p̃
− γρ̃′

ρ̃

)

− 3 = 0.

The shock conditions at ξ = 1 are:

ρ̃ =
γ + 1

γ − 1
,

ũ =
2

γ + 1
,

p̃ =
2

γ + 1
.

The total energy integral provides a normalization condition,

1 =
16π

25
α5

∫ 1

0

(

1

2
ρ̃ũ2 +

p̃

γ − 1

)

ξ2 dξ,

which will determine the value of α.
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6.6 First integral

Consider the total energy equation in conservative form (multiply through
by r2):

∂Q

∂t
+
∂F

∂r
= 0.

The dimensions are

[Q] =

[

E

r

]

, [F ] =

[

E

t

]

.

In dimensionless form,

Q = ρ0R
2Ṙ2 Q̃(ξ), F = ρ0R

2Ṙ3 F̃ (ξ).

Substitute into the conservation equation to find

−ξQ̃′ − Q̃+ F̃ ′ = 0.

We deduce the first integral

d

dξ
(F̃ − ξQ̃) = 0.

Now

Q = r2
(

1

2
ρu2 +

p

γ − 1

)

,

F = r2
(

1

2
ρu2 +

γp

γ − 1

)

u,

and so

Q̃ = ξ2
(

1

2
ρ̃ũ2 +

p̃

γ − 1

)

,

F̃ = ξ2
(

1

2
ρ̃ũ2 +

γp̃

γ − 1

)

ũ.
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Thus

F̃ − ξQ̃ = constant = 0

(for a solution finite at ξ = 0).

Solve for p̃:

p̃ =
(γ − 1)ρ̃ũ2(ξ − ũ)

2(γũ− ξ)
.

Note that this is compatible with the shock boundary conditions. Hav-
ing found a first integral, we can now dispense with (e.g.) the thermal
energy equation.

Let ũ = vξ. We now have

(v − 1)
d ln ρ̃

d ln ξ
= − dv

d ln ξ
− 3v,

(v − 1)
dv

d ln ξ
+

1

ρ̃ξ2
d

d ln ξ

[

(γ − 1)ρ̃ξ2v2(1 − v)

2(γv − 1)

]

=
3

2
v.

Eliminate ρ̃:

dv

d ln ξ
=

v(γv − 1)[5 − (3γ − 1)v]

γ(γ + 1)v2 − 2(γ + 1)v + 2
.

Invert and split into partial fractions:

d ln ξ

dv
= − 2

5v
+

γ(γ − 1)

(2γ + 1)(γv − 1)
+

13γ2 − 7γ + 12

5(2γ + 1)[5 − (3γ − 1)v]

The solution is

ξ ∝ v−2/5(γv − 1)(γ−1)/(2γ+1)

× [5 − (3γ − 1)v]−(13γ2−7γ+12)/5(2γ+1)(3γ−1).

Now

d ln ρ̃

dv
= − 1

v − 1
− 3v

v − 1

d ln ξ

dv

=
2

(2 − γ)(1 − v)
+

3γ

(2γ + 1)(γv − 1)

− 13γ2 − 7γ + 12

(2 − γ)(2γ + 1)[5 − (3γ − 1)v]
.
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The solution is

ρ̃ ∝ (1 − v)−2/(2−γ)(γv − 1)3/(2γ+1)

× [5 − (3γ − 1)v](13γ2−7γ+12)/(2−γ)(2γ+1)(3γ−1).

e.g. for γ = 5/3:

ξ ∝ v−2/5

(

5v

3
− 1

)2/13

(5 − 4v)−82/195,

ρ̃ ∝ (1 − v)−6

(

5v

3
− 1

)9/13

(5 − 4v)82/13.

To satisfy v = 2/(γ + 1) = 3/4 and ρ̃ = (γ + 1)/(γ − 1) = 4 at ξ = 1:

ξ =

(

4v

3

)−2/5(20v

3
− 4

)2/13(5

2
− 2v

)−82/195

,

ρ̃ = 4 (4 − 4v)−6

(

20v

3
− 4

)9/13(5

2
− 2v

)82/13

.

Then, from the first integral,

p̃ =
3

4

(

4v

3

)6/5

(4 − 4v)−5

(

5

2
− 2v

)82/15

.

ξ ranges from 0 to 1, and v from 3/5 to 3/4.

The normalization integral (numerically) yields α ≈ 1.152.

6.7 Application

Supernova: E ∼ 1051 erg. Estimate ρ0 ∼ 2 × 10−24 g cm−3. Then
R ≈ 5.1 pc and Ṙ ≈ 2000 km s−1 at t = 1000 yr.

1945 New Mexico explosion: E ≈ 7.1×1021 erg, ρ0 ≈ 1.2×10−3 g cm−3.
Then R ≈ 140m and Ṙ ≈ 5.7 km s−1 at t = 0.01 s.
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Sedov solution for γ = 5/3.

The similarity method is useful in a very wide range of nonlinear prob-
lems. In this case it reduced partial differential equations to integrable
ordinary differential equations.
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7 Spherically symmetric steady flows: stellar

winds and accretion

7.1 Basic equations

We consider spherically symmetric steady flow that is purely radial,
either towards or away from a body of mass M . We neglect the effects
of rotation and magnetic fields. The gas is polytropic and non-self-
gravitating, so Φ = −GM/r.

Mass conservation for such a flow implies

r2ρu = −Ṁ
4π

= constant

If u > 0 (a stellar wind), −Ṁ is the mass loss rate. If u < 0 (an
accretion flow), Ṁ is the mass accretion rate. We ignore the secular
change in the mass M .

The thermal energy equation implies homentropic flow:

p = Kργ , K = constant

The equation of motion has only one component (where u = ur):

ρu
du

dr
= −dp

dr
− ρ

dΦ

dr

Alternatively, we can use the integral form (Bernoulli’s equation):

1
2u

2 + w + Φ = B = constant, w =

(

γ

γ − 1

)

p

ρ

In highly subsonic flow the first term is negligible and the gas is quasi-
hydrostatic.

In highly supersonic flow the second term is negligible and the flow is
quasi-ballistic (freely falling).

Our aim is to solve for u(r), and to determine Ṁ if appropriate.
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7.2 First treatment

We first use the differential form of the equation of motion.

Rewrite the pressure term using the other two equations:

−dp

dr
= −γpd ln ρ

dr
= ρv2

s

(

2

r
+

1

u

du

dr

)

Thus

(u2 − v2
s )

du

dr
= u

(

2v2
s

r
− dΦ

dr

)

There is a critical point (sonic point) at r = rs where |u| = vs. For
the flow to pass smoothly from subsonic to supersonic, the RHS must
vanish at the sonic point:

2v2
ss

rs
− GM

r2s
= 0

Evaluate Bernoulli’s equation at sonic point:

(

1

2
+

1

γ − 1

)

v2
ss −

GM

rs
= B

We deduce that

v2
ss =

2(γ − 1)

(5 − 3γ)
B, rs =

(5 − 3γ)

4(γ − 1)

GM

B

There is a unique transonic solution, which exists only for 1 < γ < 5/3
(the case γ = 1 can be treated separately or by taking a limit).

Now evaluate Ṁ at the sonic point:

|Ṁ | = 4πr2s ρsvss
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7.3 Second treatment

We now use Bernoulli’s equation instead of the equation of motion.

Introduce the local Mach number M = |u|/vs. Then

r2ρvsM =
|Ṁ |
4π

v2
s = γKργ−1

Eliminate ρ:

vγ+1
s = γK

(

|Ṁ |
4πr2M

)γ−1

Bernoulli’s equation becomes

1
2v

2
sM2 +

v2
s

γ − 1
= B +

GM

r

Substitute for vs:

(γK)2/(γ+1)

(

|Ṁ |
4π

)2(γ−1)/(γ+1) [

M4/(γ+1)

2
+

M−2(γ−1)/(γ+1)

γ − 1

]

= Br4(γ−1)/(γ+1) +GMr−(5−3γ)/(γ+1)

Think of this as f(M) = g(r). Assume that 1 < γ < 5/3 and B > 0.
Then f(M) has a minimum at M = 1. g(r) has a minimum at

r =
(5 − 3γ)

4(γ − 1)

GM

B

This is the sonic radius rs identified previously. A smooth passage
through the sonic point is possible only if |Ṁ | has a special value, so
that the minima of f and g are equal. If |Ṁ | is too large the solution
does not work for all r. If it is too small the solution remains subsonic (or
supersonic) for all r, which may not agree with the boundary conditions.
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The (r,M) plane shows an X-type critical point at (rs, 1).

Solution curves for the case γ = 4/3.

For r ≪ rs the subsonic solution is close to a hydrostatic atmosphere.
The supersonic solution is close to free fall.

For r ≫ rs the subsonic solution is close to p = constant. The super-
sonic solution is close to u = constant (so ρ ∝ r−2).

7.4 Stellar wind

For a stellar wind the appropriate solution is subsonic (hydrostatic)
at small r and supersonic (coasting) at large r. Parker (1958) first
presented this simplified model for the solar wind.
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7.5 Accretion

In spherical or Bondi (1952) accretion we consider a gas that is uni-
form and at rest at infinity (pressure p0 and density ρ0). Then B =
v2
s0/(γ − 1). The appropriate solution is subsonic (uniform) at large r

and supersonic (free fall) at small r. If the accreting object has a dense
surface (a star rather than a black hole) then the accretion flow will be
arrested by a shock above the surface.

The accretion rate of the critical solution is

Ṁ = 4πr2s ρsvss = 4πr2sρ0vs0

(

vss
vs0

)(γ+1)/(γ−1)

= f(γ)ṀB

where

ṀB =
πG2M2ρ0

v3
s0

= 4πr2aρ0vs0

f(γ) =

(

2

5 − 3γ

)(5−3γ)/2(γ−1)

Here

ra =
GM

2v2
s0

is the nominal accretion radius, roughly the radius within which the
mass M captures the surrounding medium into a supersonic inflow.

Exercise: show that

lim
γ→1

f(γ) = e3/2, lim
γ→5/3

f(γ) = 1

However, there is no sonic point for γ = 5/3.
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8 Axisymmetric rotating magnetized flows: as-

trophysical jets

Stellar winds and jets from accretion discs are examples of outflows
in which rotation and magnetic fields have important or essential roles.
Using cylindrical polar coordinates (R,φ, z), we examine steady (∂/∂t =
0), axisymmetric (∂/∂φ = 0) models based on the equations of ideal
MHD.

8.1 Representation of an axisymmetric magnetic field

The solenoidal condition for an axisymmetric magnetic field is

1

R

∂

∂R
(RBR) +

∂Bz

∂z
= 0.

We may write

BR = − 1

R

∂ψ

∂z
, Bz =

1

R

∂ψ

∂R

where ψ(R, z) is the magnetic flux function. This is related to the
magnetic vector potential by ψ = RAφ. The magnetic flux contained
inside the circle (R = constant, z = constant) is

∫ R

0
Bz(R

′, z) 2πR′ dR′ = 2πψ(R, z) (+constant).

Since B · ∇ψ = 0, ψ labels magnetic field lines or their surfaces of
revolution, magnetic surfaces. The magnetic field may be written in
the form

B = ∇ψ × ∇φ+Bφ eφ =

[

− 1

R
eφ × ∇ψ

]

+

[

Bφ eφ

]

.

The two square brackets represent the poloidal (meridional) and toroidal
(azimuthal) parts of the magnetic field:

B = Bp +Bφ eφ.
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Note that

∇ · B = ∇ · Bp = 0.

Similarly, one can write the velocity in the form

u = up + uφ eφ.

8.2 Mass loading and angular velocity

The steady induction equation in ideal MHD,

∇ × (u × B) = 0,

implies

u × B = −E = ∇Φe,

where Φe is the electrostatic potential. Now

u × B = (up + uφ eφ) × (Bp +Bφ eφ)

=

[

eφ × (uφBp −Bφup)

]

+

[

up × Bp

]

.

For an axisymmetric solution with ∂Φe/∂φ = 0, we have

up × Bp = 0,

i.e. the poloidal velocity is parallel to the poloidal magnetic field. Let

ρup = kBp,

where k is the mass loading, i.e. the ratio of mass flux to magnetic flux.

The steady equation of mass conservation is

0 = ∇ · (ρu) = ∇ · (ρup) = ∇ · (kBp) = Bp · ∇k.
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Therefore

k = k(ψ),

i.e. k is a surface function, constant on each magnetic surface.

We now have

u × B = eφ × (uφBp −Bφup) =

(

uφ

R
− kBφ

Rρ

)

∇ψ.

Taking the curl of this, we find

0 = ∇

(

uφ

R
− kBφ

Rρ

)

× ∇ψ.

Therefore

uφ

R
− kBφ

Rρ
= ω,

where ω(ψ) is another surface function, known as the angular velocity
of the magnetic surface.

The complete velocity field may be written in the form

u =
kB

ρ
+Rω eφ,

i.e. the total velocity is parallel to the total magnetic field in a frame
of reference rotating with angular velocity ω. It is useful to think of
the fluid being constrained to move along the field line like a bead on a
rotating wire.

8.3 Entropy

The steady thermal energy equation,

u · ∇s = 0,

implies that Bp · ∇s = 0 and so

s = s(ψ)

is another surface function.
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8.4 Angular momentum

The azimuthal component of the equation of motion is

ρ
(

up · ∇uφ +
uRuφ

R

)

=
1

µ0

(

Bp · ∇Bφ +
BRBφ

R

)

1

R
ρup · ∇(Ruφ) − 1

µ0R
Bp · ∇(RBφ) = 0

1

R
Bp · ∇

(

kRuφ − RBφ

µ0

)

= 0

and so

Ruφ =
RBφ

µ0k
+ ℓ,

where

ℓ = ℓ(ψ)

is another surface function, the angular momentum invariant. This is
the angular momentum removed in the outflow per unit mass, but part
of the torque is carried by the magnetic field.

8.5 The Alfvén surface

Define the poloidal Alfvén number (cf. the Mach number)

A =
up

vap
.

Then

A2 =
µ0ρu

2
p

B2
p

=
µ0k

2

ρ
,

and so A ∝ ρ−1/2 on each magnetic surface.
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Consider the two equations

uφ

R
=
kBφ

Rρ
+ ω,

Ruφ =
RBφ

µ0k
+ ℓ.

Eliminate Bφ to obtain

uφ =
R2ω − A2ℓ

R(1 −A2)

=

(

1

1 − A2

)

Rω +

(

A2

A2 − 1

)

ℓ

R
.

For A≪ 1 we have

uφ ≈ Rω,

i.e. the fluid is in uniform rotation, corotating with the magnetic sur-
face. For A≫ 1 we have

uφ ≈ ℓ

R
,

i.e. the fluid conserves its specific angular momentum. The point R =
Ra(ψ) where A = 1 is the Alfvén point. The locus of Alfvén points
for different magnetic surfaces forms the Alfvén surface. To avoid a
singularity there we require

ℓ = R2
aω.

Typically the outflow will start at low velocity in high-density mate-
rial, where A ≪ 1. We can therefore identify ω as the angular veloc-
ity uφ/R = Ω0 of the footpoint R = R0 of the magnetic field line at
the source of the outflow. It will then accelerate smoothly through
an Alfvén surface and become super-Alfvénic (A > 1). If mass is
lost at a rate Ṁ in the outflow, angular momentum is lost at a rate
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Ṁℓ = ṀR2
aΩ0. In contrast, in a hydrodynamic outflow, angular mo-

mentum is conserved by fluid elements and is therefore lost at a rate
ṀR2

0Ω0. A highly efficient removal of angular momentum occurs if the
Alfvén radius is large compared to the footpoint radius. This effect
is the magnetic lever arm. The loss of angular momentum through a
stellar wind is called magnetic braking.

8.6 The Bernoulli equation

The total energy equation for a steady flow is

∇ ·

[

ρu(1
2u

2 + Φ + w) +
E × B

µ0

]

= 0.

Now since

u =
kB

ρ
+Rω eφ,

we have

E = −u × B = −Rω eφ × B = −Rω eφ × Bp,

which is purely poloidal. Thus

(E × B)p = E × (Bφ eφ) = −RωBφBp.

The total energy equation is then

∇ ·

[

kBp(1
2u

2 + Φ + w) − RωBφ

µ0
Bp

]

= 0

Bp · ∇

[

k

(

1
2u

2 + Φ + w − RωBφ

µ0k

)]

= 0

1
2u

2 + Φ + w − RωBφ

µ0k
= ε,

where

ε = ε(ψ)

62

is another surface function, the energy invariant.

An alternative invariant is

ε′ = ε− ℓω

= 1
2u

2 + Φ + w − RωBφ

µ0k
−
(

Ruφ − RBφ

µ0k

)

ω

= 1
2u

2 + Φ + w −Ruφω

= 1
2u

2
p + 1

2(uφ −Rω)2 + Φcg + w,

where

Φcg = Φ − 1
2ω

2R2

is the centrifugal–gravitational potential associated with the magnetic
surface. One can then see that ε′ is the Bernoulli function of the flow
in the frame rotating with angular velocity ω. In this frame the flow is
strictly parallel to the field and the field therefore does no work because
J × B ⊥ B and so J × B ⊥ (u −Rω eφ).

8.7 Summary

We have been able to integrate almost all of the MHD equations, re-
ducing them to a set of algebraic relations on each magnetic surface.
If the poloidal magnetic field Bp (or, equivalently, the flux function
ψ) is specified in advance, these algebraic equations are sufficient to
determine the complete solution on each magnetic surface separately,
although we must also (i) specify the initial conditions at the source of
the outflow and (ii) ensure that the solution passes smoothly through
critical points where the flow speed matches the speeds of slow and fast
magnetoacoustic waves.

The component of the equation of motion perpendicular to the magnetic
surfaces is the only piece of information not yet used. This ‘transfield’ or
‘Grad–Shafranov’ equation ultimately determines the equilibrium shape
of the magnetic surfaces. It is a very complicated nonlinear partial
differential equation for ψ(R, z) and cannot be reduced to simple terms.
We do not consider it here.
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8.8 Acceleration from the surface of an accretion disc

We consider the launching of an outflow from a thin accretion disc.
The angular velocity Ω(R) of the disc corresponds to circular Keplerian
orbital motion around a central mass M :

Ω =

(

GM

R3

)1/2

If the flow starts essentially from rest in high-density material (A≪ 1),
we have

ω ≈ Ω,

i.e. the angular velocity of the magnetic surface is the angular velocity
of the disc at the foot-point of the field line. In the sub-Alfvénic region
we have

ε′ ≈ 1
2u

2
p + Φcg + w.

As in the case of stellar winds, if the gas is hot (comparable to the
escape temperature) an outflow can be driven by thermal pressure. Of
more interest here is the possibility of a dynamically driven outflow.
For a ‘cold’ wind the enthalpy makes a negligible contribution in this
equation. Whether the flow accelerates or not above the disc then
depends on the variation of the centrifugal–gravitational potential along
the field line.

Consider a Keplerian disc in a point-mass potential. Let the foot-point
of the field line be at R = R0, and let the angular velocity of the field
line be

ω = Ω0 =

(

GM

R3
0

)1/2

,

as argued above. Then

Φcg = −GM(R2 + z2)−1/2 − 1

2

GM

R3
0

R2.
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Contours of Φcg, in units such that R0 = 1.
The downhill directions are indicated by dashed contours.

In units such that R0 = 1, the equation of the equipotential passing
through the foot-point (R0, z) is

(R2 + z2)−1/2 +
R2

2
=

3

2
.

This can be rearranged into the form

z2 =
(2 −R)(R− 1)2(R+ 1)2(R+ 2)

(3 −R2)2
.

Close to the foot-point (1, 0) we have

z2 ≈ 3(R − 1)2
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and so

z ≈ ±
√

3(R− 1).

The foot-point lies at a saddle point of Φcg. If the inclination of the field
line to the vertical, i, at the surface of the disc exceeds 30◦, the flow
is accelerated without thermal assistance. This is magnetocentrifugal
acceleration.

The critical equipotential has an asymptote at r = r0
√

3. The field line
must continue to expand sufficiently in the radial direction in order to
sustain the magnetocentrifugal acceleration.

8.9 Magnetically driven accretion

To allow a quantity of mass ∆Macc to be accreted from radius R0,
the angular momentum that must be removed is R2

0Ω0 ∆Macc. The
angular momentum removed by a quantity of mass ∆Mjet flowing out
in a magnetized jet from radius R0 is ℓ∆Mjet = R2

aΩ0 ∆Mjet. Therefore
accretion can in principle be driven by an outflow, with

Ṁacc

Ṁjet

∼ R2
a

R2
0

.

The magnetic lever arm allows an efficient removal of angular momen-
tum if the Alfvén radius is large compared to the foot-point radius.
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9 Waves and instabilities in stratified rotating

astrophysical bodies

9.1 Eulerian and Lagrangian perturbations

We have used the symbol δ to denote an Eulerian perturbation, i.e. the
perturbation of a quantity at a fixed point in space. Let ∆ denote the
Lagrangian perturbation, i.e. the perturbation of a quantity as expe-
rienced by a fluid element, taking into account its displacement by a
distance ξ. For infinitesimal perturbations these are related by

∆ = δ + ξ · ∇,

and so

∆ρ = −ρ∇ · ξ,

∆p = −γp∇ · ξ,

∆B = B · ∇ξ − (∇ · ξ)B.

These relations hold even if the basic state is not static, if ξ is the
Lagrangian displacement, i.e. the displacement of a fluid element the
between the unperturbed and perturbed flows. Thus

∆u =
Dξ

Dt

If the basic state is static (u = 0) this reduces to δu = ∂ξ/∂t as before.

9.2 The energy principle

In Section 4 we derived the linearized equation

ρ
∂2ξ

∂t2
= −δρ∇Φ − ρ∇δΦ − ∇δΠ +

1

µ0
(δB · ∇B + B · ∇δB) (1)
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governing the displacement ξ(x, t) of the fluid from an arbitrary mag-
netostatic equilibrium, where

δρ = −∇ · (ρξ),

∇2δΦ = 4πGδρ,

δΠ = −ξ · ∇Π −
(

γp+
B2

µ0

)

∇ · ξ +
1

µ0
B · (B · ∇ξ),

δB = B · ∇ξ − ξ · ∇B − (∇ · ξ)B.

Using the equation of magnetostatic equilibrium,

0 = −ρ∇Φ − ∇Π +
1

µ0
B · ∇B,

equation (1) can be put into the equivalent form (exercise)

ρ
∂2ξi
∂t2

= −ρ∂δΦ
∂xi

− ρξj
∂2Φ

∂xi∂xj
+

∂

∂xj

(

Vijkl
∂ξk
∂xl

)

, (2)

where

Vijkl =

(

γp+
B2

µ0

)

δijδkl + Π(δilδjk − δijδkl)

+
1

µ0
(BjBlδik −BiBjδkl −BkBlδij)

= Vklij.

In this form (but with ρD2ξ/Dt2 on the left-hand side) this equation
can be shown to hold for perturbations from an arbitrary flow u(x, t),
if ξ is the Lagrangian displacement.

We may write the equation in the form

∂2ξ

∂t2
= Fξ,
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where F is a linear differential operator (or integro-differential if self-
gravitation is taken into account). The force operator F can be shown
to be self-adjoint with respect to the inner product

〈η, ξ〉 =

∫

ρη∗
· ξ dV

if appropriate boundary conditions apply. Let δΨ be the gravitational
potential perturbation associated with the displacement η, so ∇2δΨ =
−4πG∇ · (ρη). Then

〈η,Fξ〉 =

∫
[

−ρη∗i
∂δΦ

∂xi
− ρη∗i ξj

∂2Φ

∂xi∂xj
+ η∗i

∂

∂xj

(

Vijkl
∂ξk
∂xl

)]

dV

=

∫
[

−δΦ∇2δΨ∗

4πG
− ρξiη

∗

j

∂2Φ

∂xi∂xj
− Vijkl

∂ξk
∂xl

∂η∗i
∂xj

]

dV

=

∫
[

∇(δΦ) · ∇(δΨ∗)

4πG
− ρξiη

∗

j

∂2Φ

∂xi∂xj
+ ξk

∂

∂xl

(

Vijkl
∂η∗i
∂xj

)]

dV

=

∫
[

−δΨ∗
∇2δΦ

4πG
− ρξiη

∗

j

∂2Φ

∂xi∂xj
+ ξi

∂

∂xj

(

Vklij
∂η∗k
∂xl

)]

dV

=

∫
[

−ρξi
∂δΨ∗

∂xi
− ρξiη

∗

j

∂2Φ

∂xi∂xj
+ ξi

∂

∂xj

(

Vijkl
∂η∗k
∂xl

)]

dV

= 〈Fη, ξ〉.
Here the integrals are over all space. We assume that the exterior of the
body is a medium of zero density in which the force-free limit of MHD
holds and B decays sufficiently fast as |r| → ∞ that we may integrate
freely by parts and ignore surface terms. Also note that δΦ = O(r−1),
or in fact O(r−2) if δM = 0.

The functional

W [ξ] = −1

2
〈ξ,Fξ〉

=
1

2

∫
[

− |∇δΦ|2
4πG

+ ρξ∗i ξj
∂2Φ

∂xi∂xj
+ Vijkl

∂ξ∗i
∂xj

∂ξk
∂xl

]

dV

is therefore real and represents the change in potential energy associated
with the displacement ξ.
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If the basic state is static, we may consider solutions of the form

ξ = Re
[

ξ̃(x) exp(−iωt)
]

,

so we obtain

−ω2ξ̃ = F ξ̃

and

ω2 = −〈ξ̃,F ξ̃〉
〈ξ̃, ξ̃〉

=
2W [ξ̃]

〈ξ̃, ξ̃〉
.

Therefore ω2 is real and we have either oscillations (ω2 > 0) or insta-
bility (ω2 < 0).

The above expression for ω2 satisfies the usual Rayleigh–Ritz variational
principle for self-adjoint eigenvalue problems. The eigenvalues ω2 are
the stationary values of 2W [ξ]/〈ξ, ξ〉 among trial displacements ξ sat-
isfying the boundary conditions. In particular, the lowest eigenvalue is
the global minimum value of 2W [ξ]/〈ξ, ξ〉. Therefore the equilibrium is
unstable if and only if W [ξ] can be made negative by a trial displace-
ment ξ satisfying the boundary conditions. This is called the energy
principle.

This discussion is incomplete because it assumes that the eigenfunctions
form a complete set. In general a continuous spectrum of non-square-
integrable modes is also present. However, it can be shown that a
necessary and sufficient condition for instability is that W [ξ] can be
made negative as described above. Consider the equation for twice the
energy of the perturbation,

d

dt

(

〈ξ̇, ξ̇〉 + 2W [ξ]
)

= 〈ξ̈, ξ̇〉 + 〈ξ̇, ξ̈〉 − 〈ξ̇,Fξ〉 − 〈ξ,F ξ̇〉

= 〈Fξ, ξ̇〉 + 〈ξ̇,Fξ〉 − 〈ξ̇,Fξ〉 − 〈Fξ, ξ̇〉
= 0.

Therefore

〈ξ̇, ξ̇〉 + 2W [ξ] = 2E = constant.
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where E is determined by the initial conditions ξ0, ξ̇0. If W is posi-
tive definite then the equilibrium is stable because ξ is limited by the
constraint W [ξ] 6 E.

Suppose that a (real) trial displacement η can be found for which

2W [η]

〈η,η〉 = −γ2, γ > 0.

Then let the initial conditions be ξ0 = η, ξ̇0 = γη so that

〈ξ̇, ξ̇〉 + 2W [ξ] = 2E = 0.

Now let

a(t) = ln

( 〈ξ, ξ〉
〈η,η〉

)

so that

da

dt
=

2〈ξ, ξ̇〉
〈ξ, ξ〉

d2a

dt2
=

2(〈ξ,Fξ〉 + 〈ξ̇, ξ̇〉)〈ξ, ξ〉 − 4〈ξ, ξ̇〉2
〈ξ, ξ〉2

=
2(−2W [ξ] + 〈ξ̇, ξ̇〉)〈ξ, ξ〉 − 4〈ξ, ξ̇〉2

〈ξ, ξ〉2

=
4(〈ξ̇, ξ̇〉〈ξ, ξ〉 − 〈ξ, ξ̇〉2)

〈ξ, ξ〉2
> 0

by the Cauchy–Schwarz inequality. Thus

da

dt
> ȧ0 = 2γ

a > 2γt+ a0 = 2γt.

Therefore the disturbance with these initial conditions grows at least as
fast as exp(γt) and the equilibrium is unstable.
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9.3 Spherically symmetric star

The simplest model of a star neglects rotation and magnetic fields and
assumes a spherically symmetric hydrostatic equilibrium in which ρ(r)
and p(r) satisfy

dp

dr
= −ρg

with inward radial gravitational acceleration

g(r) =
dΦ

dr
=
G

r2

∫ r

0
ρ(r′) 4πr′2 dr′

The stratification induced by gravity provides a non-uniform back-
ground for wave propagation.

In this case

ρ
∂2ξ

∂t2
= −δρ∇Φ − ρ∇δΦ − ∇δp

ω2

∫

V
ρ|ξ|2 dV =

∫

V
ξ∗ · (δρ∇Φ + ρ∇δΦ + ∇δp) dV

At the surface S of the star, we assume that ρ and p vanish. Then δp
also vanishes on S (assuming that ξ and its derivatives are bounded).
Now
∫

V
ξ∗ · ∇δpdV = −

∫

V
(∇ · ξ)∗δpdV

=

∫

V

1

γp
(δp+ ξ · ∇p)∗δpdV

=

∫

V

[ |δp|2
γp

+
1

γp
(ξ∗ · ∇p)(−ξ · ∇p− γp∇ · ξ)

]

dV

=

∫

V

[ |δp|2
γp

− |ξ · ∇p|2
γp

− (ξ∗ · ∇p)∇ · ξ

]

dV

=

∫

V

[ |δp|2
γp

− |ξ · ∇p|2
γp

− (ξ∗ · ∇Φ)(δρ+ ξ · ∇ρ)

]

dV
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Thus

ω2

∫

V
ρ|ξ|2 dV = − 1

4πG

∫

∞

|∇δΦ|2 dV

+

∫

V

[ |δp|2
γp

− (ξ∗ · ∇p) ·

(

1

γ
ξ · ∇ ln p− ξ · ∇ ln ρ

)]

dV

ω2

∫

V
ρ|ξ|2 dV = − 1

4πG

∫

∞

|∇δΦ|2 dV +

∫

V

( |δp|2
γp

+ ρN2|ξr|2
)

dV

where N(r) is the Brunt–Väisälä frequency (or buoyancy frequency)
given by

N2 = g

(

1

γ

d ln p

dr
− d ln ρ

dr

)

∝ g
ds

dr

N is the frequency of oscillation of a fluid element that is displaced
vertically in a stably stratified atmosphere if it maintains pressure equi-
librium with its surroundings.

There are three contributions to ω2: the self-gravitational term (desta-
bilizing), the acoustic term (stabilizing) and the buoyancy term (stabi-
lizing if N2 > 0).

If N2 < 0 for any interval of r, a trial displacement can always be
found such that ω2 < 0. This is done by localizing ξr in that interval
and arranging the other components of ξ such that δp = 0. Therefore
the star is unstable if ∂s/∂r < 0 anywhere. This is Schwarzschild’s
criterion for convective instability.

9.4 Modes of an incompressible sphere

Analytical solutions can be obtained in the case of a homogeneous in-
compressible ‘star’ of mass M and radius R which has

ρ =

(

3M

4πR3

)

H(R− r),
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where H is the Heaviside step function. For r 6 R we have

g =
GMr

R3
,

p =
3GM2(R2 − r2)

8πR6
.

For an incompressible fluid

∇ · ξ = 0,

δρ = −ξ · ∇ρ = ξr

(

3M

4πR3

)

δ(r −R),

∇2δΦ = 4πGδρ = ξr

(

3GM

R3

)

δ(r −R). (1)

δp is indeterminate and is a variable independent of ξ. The linearized
equation of motion is

−ρω2ξ = −ρ∇δΦ − ∇δp.

Thus ξ = ∇U with ∇2U = 0 and −ρω2U = −ρδΦ − δp in r 6 R.
Appropriate solutions of Laplace’s equation regular at r = 0 are the
solid spherical harmonics (with arbitrary normalization)

U = rℓY m
ℓ (θ, φ),

where ℓ and m are integers with ℓ > |m|. Equation (1) also implies

δΦ =

{

ArℓY m
ℓ , r < R

Br−ℓ−1Y m
ℓ , r > R

The matching conditions from equation (1) at r = R are

[δΦ] = 0

[

∂δΦ

∂r

]

= ξr

(

3GM

R3

)
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Thus

BR−ℓ−1 −ARℓ = 0

−(ℓ+ 1)BR−ℓ−2 − ℓARℓ−1 = ℓRℓ−1

(

3GM

R3

)

with solution

A = − ℓ

2ℓ+ 1

(

3GM

R3

)

, B = AR2ℓ+1

At r = R the Lagrangian pressure perturbation should vanish:

∆p = δp+ ξ · ∇p = 0
(

3M

4πR3

)[

ω2Rℓ +

(

ℓ

2ℓ+ 1

)(

3GM

R3

)

Rℓ

]

− 3GM2

4πR5
ℓRℓ−1 = 0

ω2 =
2ℓ(ℓ− 1)

2ℓ+ 1

GM

R3

Since ω2 > 0 the star is stable. Note that ℓ = 0 corresponds to ξ = 0

and ℓ = 1 corresponds to ξ = constant. The remaining modes are
non-trivial and are called f modes (fundamental modes). These can be
thought of as surface gravity waves, related to ocean waves for which
ω2 = gk.

9.5 The plane-parallel atmosphere

The local dynamics of a stellar atmosphere can be studied in a Cartesian
(‘plane-parallel’) approximation. The gravitational acceleration is taken
to be constant (appropriate to an atmosphere) and in the −z direction.
For hydrostatic equilibrium,

dp

dz
= −ρg

A simple example is an isothermal atmosphere in which p = c2sρ with
cs = constant:

ρ = ρ0 e−z/H , p = p0 e−z/H
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H = c2s/g is the isothermal scale-height. The Brunt–Väisälä frequency
in an isothermal atmosphere is given by

N2 = g

(

1

γ

d ln p

dz
− d ln ρ

dz

)

=

(

1 − 1

γ

)

g

H

which is constant and is positive for γ > 1. An isothermal atmosphere is
stably (subadiabatically) stratified if γ > 1 and neutrally (adiabatically)
stratified if γ = 1.

A further example is a polytropic atmosphere in which p ∝ ρ1+1/m

in the undisturbed state, where m is a positive constant. In general
1+1/m differs from the adiabatic exponent γ = 1+1/n of the gas. For
hydrostatic equilibrium,

ρ1/m dρ

dz
∝ −ρg

ρ1/m ∝ −z
if z = 0 is the surface of the atmosphere. Let

ρ = ρ0

(

− z

H

)m

where ρ0 and H are constants. Then

p = p0

(

− z

H

)m+1

where

p0 =
ρ0gH

m+ 1

to satisfy dp/dz = −ρg. In this case

N2 =

(

m+ 1

γ
−m

)

g

z
=

(

m− n

n+ 1

)

g

−z .

We return to the linearized equations looking for solutions of the form

ξ = Re
[

ξ̃(z) exp(−iωt+ ikh · x)
]

, etc.
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where ‘h’ stands for horizontal (x and y components). Then

−ρω2ξh = −ikhδp,

−ρω2ξz = −g δρ− dδp

dz
,

δρ = −ξz
dρ

dz
− ρ∆,

δp = −ξz
dp

dz
− γp∆,

∆ ≡ ∇ · ξ = ikh · ξh +
dξz
dz

The self-gravitation of the perturbation (i.e. δΦ) is neglected in the
atmosphere. This is known as Cowling’s approximation.

Eliminate variables in favour of ξz and ∆:

ω2 dξz
dz

− gk2
hξz = (ω2 − v2

s k
2
h)∆,

g
dξz
dz

− ω2ξz =
1

ρ

d

dz
(γp∆) + g∆,

where kh = |kh|. A general property of these equations is that they
admit an incompressible mode in which ∆ = 0. For compatibility of
these equations,

ω2

gk2
h

=
g

ω2

ω2 = ±gkh.

The acceptable solution with ξz decaying with depth is

ω2 = gkh, ξz ∝ exp(khz)

This is a surface gravity wave known in stellar oscillations as the f mode
(fundamental mode). It is vertically evanescent.
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The other wave solutions can be found analytically in the case of a
polytropic atmosphere. Eliminate variables in favour of ∆ (algebra
omitted):

z
d2∆

dz2
+ (m+ 2)

d∆

dz
− (A+ khz)kh∆ = 0

where

A =
n(m+ 1)

n+ 1

ω2

gkh
+

(

m− n

n+ 1

)

gkh

ω2

is a constant. Let ∆ = w(z) ekhz:

z
d2w

dz2
+ (m+ 2 + 2khz)

dw

dz
− (A−m− 2)khw = 0

This is related to the confluent hypergeometric equation and has a reg-
ular singular point at z = 0. Using the method of Frobenius, we seek
power-series solutions

w =

∞
∑

r=0

arz
σ+r, a0 6= 0

The indicial equation is

σ(σ +m+ 1) = 0

and the regular solution has σ = 0. The recurrence relation is then

ar+1

ar
=

(A−m− 2 − 2r)kh

(r + 1)(r +m+ 2)

In the case of an infinite series, ar+1/ar ∼ −2kh/r as r → ∞, so w
behaves like e−2khz and ∆ diverges like e−khz as z → −∞. Solutions
in which ∆ decays with depth are those for which the series terminates
and w is a polynomial. For a polynomial of degree N − 1 (N > 1),

A = 2N +m
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Rearrange:

n(m+ 1)

(

ω2

gkh

)2

− (n+ 1)(2N +m)

(

ω2

gkh

)

+ (m− n) = 0

A negative root for ω2 exists if and only if m − n < 0, i.e. N2 < 0, as
expected from Schwarzschild’s criterion for stability.

Dispersion relation, in arbitrary units, for a stably stratified
plane-parallel polytropic atmosphere with m = 3 and n = 3/2.

The dashed line is the f mode. Above it are the first ten
p modes and below it are the first ten g modes.
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For N ≫ 1, the large root is

ω2

gkh
∼ (n+ 1)2N

n(m+ 1)
(p modes, ω2 ∝ v2

s )

and the small root is

ω2

gkh
∼ m− n

(n+ 1)2N (g modes, ω2 ∝ N2)

The f mode is the ‘trivial’ solution ∆ = 0. p modes (‘p’ for pressure)
are acoustic waves, which rely on compressibility. g modes are gravity
waves, which rely on buoyancy.

In solar-type stars the inner part (radiative zone) is convectively stable
(N2 > 0) and the outer part (convective zone) is unstable (N2 < 0).
However, the convection is so efficient that only a very small entropy
gradient is required to sustain the convective heat flux, so N2 is very
small and negative in the convective zone. Although g modes propagate
in the radiative zone at frequencies smaller than N , they cannot reach
the surface. Only f and p modes are observed at the solar surface.

In more massive stars the situation is reversed. Then f, p and g modes
can be observed, in principle, at the surface. g modes are particularly
well observed in certain classes of white dwarf.

9.6 Rotating fluid bodies

9.6.1 Equilibrium

The equations of ideal gas dynamics in cylindrical polar coordinates are

DuR

Dt
−
u2

φ

R
= −∂Φ

∂R
− 1

ρ

∂p

∂R

Duφ

Dt
+
uRuφ

R
= − 1

R

∂Φ

∂φ
− 1

ρR

∂p

∂φ
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Duz

Dt
= −∂Φ

∂z
− 1

ρ

∂p

∂z

Dρ

Dt
= −ρ

[

1

R

∂

∂R
(RuR) +

1

R

∂uφ

∂φ
+
∂uz

∂z

]

Dp

Dt
= −γp

[

1

R

∂

∂R
(RuR) +

1

R

∂uφ

∂φ
+
∂uz

∂z

]

with

D

Dt
=

∂

∂t
+ uR

∂

∂R
+
uφ

R

∂

∂φ
+ uz

∂

∂z

Consider a steady, axisymmetric basic state with density ρ(R, z), pres-
sure p(R, z), gravitational potential Φ(R, z) and with differential rota-
tion

u = RΩ(R, z)eφ

For equilibrium we require

−RΩ2 eR = −∇Φ − 1

ρ
∇p

Take the curl to obtain

−R∂Ω2

∂z
eφ = ∇p× ∇

(

1

ρ

)

= ∇T × ∇s

This is just the vorticity equation in a steady state. It is sometimes
called the thermal wind equation. The equilibrium is called barotropic
if ∇p is parallel to ∇ρ, otherwise it is called baroclinic. In a barotropic
state the angular velocity is independent of z: Ω = Ω(R). This is a ver-
sion of the Taylor–Proudman theorem which states that under certain
conditions the velocity in a rotating fluid is independent of height.

We can also write

1

ρ
∇p = g = −∇Φ +RΩ2 eR
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where g is the effective gravitational acceleration, including the centrifu-
gal force associated with the (non-uniform) rotation.

In a barotropic state with Ω(R) we can write

g = −∇Φcg, Φcg = Φ(R, z) + Ψ(R), Ψ = −
∫

RΩ2 dR

Also, since p = p(ρ) in the equilibrium state, we can define the pseudo-
enthalpy w̃(ρ) such that dw̃ = dp/ρ. An example is a polytropic model
for which

p = Kρ1+1/m, w̃ = (m+ 1)Kρ1/m

(w̃ equals the true enthalpy only if the equilibrium is homentropic.)
The equilibrium condition then reduces to

0 = −∇Φcg − ∇w̃

or

Φ + Ψ + w̃ = C = constant (1)

An example of a rapidly and differentially rotating equilibrium is an
accretion disc around a central mass M . For a non-self-gravitating
disc Φ = −GM(R2 + z2)−1/2. Assume the disc is barotropic and let
the arbitrary additive constant in w̃ be defined (as in the polytropic
example above) such that w̃ = 0 at the surfaces z = ±H(R) of the disc
where ρ = p = 0. Then

−GM(R2 +H2)−1/2 + Ψ(R) = C

from which

RΩ2 = − d

dR

[

GM(R2 +H2)−1/2
]

For example, if H = ǫR with ǫ = constant,

Ω2 = (1 + ǫ2)−1/2GM

R3

The thinner the disc is, the closer it is to Keplerian rotation. Having
determined the relation between Ω(R) and H(R), equation (1) then
determines the spatial distribution of w̃ (and therefore of ρ and p) within
the disc.
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9.6.2 Linear perturbations

The basic state is independent of t and φ, allowing us to consider linear
perturbations of the form

Re [δuR(R, z) exp(−iωt+ imφ)] , etc.

where m is the azimuthal wavenumber (an integer). The linearized
equations in the Cowling approximation are

−iω̂δuR − 2Ωδuφ = −1

ρ

∂δp

∂R
+
δρ

ρ2

∂p

∂R

−iω̂δuφ +
1

R
δu · ∇(R2Ω) = − imδp

ρR

−iω̂δuz = −1

ρ

∂δp

∂z
+
δρ

ρ2

∂p

∂z

−iω̂δρ+ δu · ∇ρ = −ρ
[

1

R

∂

∂R
(RδuR) +

imδuφ

R
+
∂δuz

∂z

]

−iω̂δp+ δu · ∇p = −γp
[

1

R

∂

∂R
(RδuR) +

imδuφ

R
+
∂δuz

∂z

]

where

ω̂ = ω −mΩ

is the Doppler-shifted frequency, i.e. the frequency measured in a frame
of reference that rotates with the local angular velocity of the fluid.

Eliminate δuφ and δρ to obtain

(ω̂2 −A)δuR −Bδuz = − iω̂

ρ

(

∂δp

∂R
− ∂p

∂R

δp

γp

)

+ 2Ω
imδp

ρR

−CδuR + (ω̂2 −D)δuz = − iω̂

ρ

(

∂δp

∂z
− ∂p

∂z

δp

γp

)
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where

A =
2Ω

R

∂

∂R
(R2Ω) − 1

ρ

∂p

∂R

(

1

γp

∂p

∂R
− 1

ρ

∂ρ

∂R

)

B =
2Ω

R

∂

∂z
(R2Ω) − 1

ρ

∂p

∂R

(

1

γp

∂p

∂z
− 1

ρ

∂ρ

∂z

)

C = −1

ρ

∂p

∂z

(

1

γp

∂p

∂R
− 1

ρ

∂ρ

∂R

)

D = −1

ρ

∂p

∂z

(

1

γp

∂p

∂z
− 1

ρ

∂ρ

∂z

)

Note that A, B, C and D involve radial and vertical deriavtives of the
specific angular momentum and the specific entropy. The thermal wind
equation implies

B = C

so the matrix

M =

[

A B
C D

]

=

[

A B
B D

]

is symmetric.

9.6.3 The Solberg–Høiland criteria

It can be useful to introduce the Lagrangian displacement ξ such that

∆u = δu + ξ · ∇u =
Dξ

Dt
,

i.e.

δuR = −iω̂ξR,

δuφ = −iω̂ξφ −Rξ · ∇Ω,

δuz = −iω̂ξz.
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Note that

1

R

∂

∂R
(RδuR)+

imδuφ

R
+
∂δuz

∂z
= −iω̂

[

1

R

∂

∂R
(RξR) +

imξφ
R

+
∂ξz
∂z

]

The linearized equations constitute an eigenvalue problem for ω but it
is not self-adjoint except when m = 0.

We specialize to the case m = 0 (axisymmetric perturbations). Then

(ω2 −A)ξR −Bξz =
1

ρ

(

∂δp

∂R
− ∂p

∂R

δp

γp

)

−BξR + (ω2 −D)ξz =
1

ρ

(

∂δp

∂z
− ∂p

∂z

δp

γp

)

with

δp = −ξ · ∇p− γp∇ · ξ

Multiply the first equation by ρξ∗R and the second by ρξ∗z and integrate
over the volume V of the fluid (using the boundary condition δp = 0)
to obtain

ω2

∫

V
ρ(|ξR|2 + |ξz|2) dV =

∫

V

[

ρQ(ξ) + ξ∗ · ∇δp− δp

γp
ξ∗ · ∇p

]

dV

=

∫

V

[

ρQ(ξ) − δp

γp
(γp∇ · ξ∗ + ξ∗ · ∇p)

]

dV

=

∫

V

(

ρQ(ξ) +
|δp|2
γp

)

dV

where

Q(ξ) = A|ξR|2 +B(ξ∗Rξz + ξ∗zξR) +D|ξz|2 =
[

ξ∗R ξ∗z
]

[

A B
B D

] [

ξR
ξz

]

is the (real) Hermitian form associated with the matrix M.

Note that this integral involves only the meridional components of
the displacement. If we had not made the Cowling approximation
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there would be the usual negative definite contribution to ω2 from self-
gravitation.

The above integral relation therefore shows that ω2 is real and a vari-
ational property ensures that instability to axisymmetric perturbations
occurs if and only if the integral on the right-hand side can be made
negative by a suitable trial displacement. If Q is positive definite then
ω2 > 0 and we have stability. Now the characteristic equation of the
matrix M is

λ2 − (A+D)λ+AD −B2 = 0

The eigenvalues λ± are both positive if and only if

A+D > 0 and AD −B2 > 0

If these conditions are satisfied throughout the fluid then Q > 0, which
implies ω2 > 0, so the fluid is stable to axisymmetric perturbations
(neglecting self-gravitation). These conditions are also necessary for
stability. If one of the eigenvalues is negative in some region in the
meridional plane, a trial displacement can be found which is localized
in that region, has δp = 0 and Q < 0, implying instability. (By choosing
ξ in the correct direction and tuning ∇ · ξ appropriately, it is possible
to arrange for δp to vanish.)

Using ℓ = R2Ω (specific angular momentum) and s = cp(γ
−1 ln p −

ln ρ) + constant (specific entropy) for a polytropic ideal gas, we have

A =
1

R3

∂ℓ2

∂R
− gR

cp

∂s

∂R

B =
1

R3

∂ℓ2

∂z
− gR

cp

∂s

∂z
= −gz

cp

∂s

∂R

D = −gz

cp

∂s

∂z

so the two conditions become

1

R3

∂ℓ2

∂R
− 1

cp
g · ∇s > 0
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and

−gz

(

∂ℓ2

∂R

∂s

∂z
− ∂ℓ2

∂z

∂s

∂R

)

> 0

These are the Solberg–Høiland stability criteria.

(If the criteria are marginally satisfied a further investigation may be
required.)

Consider first the non-rotating case ℓ = 0. The first criterion reduces
to the Schwarzschild criterion for convective stability,

− 1

cp
g · ∇s ≡ N2 > 0

In the homentropic case s = constant (which is a barotropic model)
they reduce to the Rayleigh criterion for centrifugal (inertial) stability,

dℓ2

dR
> 0

which states that the specific angular momentum should increase with
R for stability.

The second Solberg-Høiland criterion is equivalent to

(eR × (−g)) · (∇ℓ2 × ∇s) > 0

In other words the vectors eR × (−g) and ∇ℓ2 ×∇s should be parallel
(rather than antiparallel). In a rotating star, for stability we require
that the specific angular momentum should increase with R on each
surface of constant entropy.
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