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Lecture 2: Orbital dynamics

2.1. Orbits in an axisymmetric potential

Consider the motion, according to Newtonian dynamics, of a test particle in the gravitational po-
tential Φ of a star, planet, black hole, galaxy, etc. Use cylindrical polar coordinates (r,φ, z) (called
radial, azimuthal and vertical).

Assume that Φ is axisymmetric and reflectionally symmetric:

Φ = Φ(r, z), Φ(r,−z) = Φ(r, z).

An important special case is the potential of a point mass M ,

Φ = − GM√
r2 + z2

.

In this case the test particle follows a Keplerian orbit.

Lagrange’s equations of motion are
d

dt

∂L

∂q̇i
=

∂L

∂qi
,

where qi are the generalized coordinates of the particle. The Lagrangian for a particle of unit mass
is

L = T − V =
1

2

�
ṙ2 + r2φ̇2 + ż2

�
− Φ(r, z).

Two conserved quantities are the specific angular momentum,

h =
∂L

∂φ̇
= r2φ̇,

and the specific energy,

ε =
�

i

q̇i
∂L

∂q̇i
− L = T + V =

1

2

�
ṙ2 + r2φ̇2 + ż2

�
+ Φ(r, z).

The radial and vertical equations of motion are

r̈ = rφ̇2 − Φr, z̈ = −Φz,

where the subscripts on Φ denote partial derivatives. These are equivalent to

r̈ = −Φeff
r , z̈ = −Φeff

z ,

with the effective potential

Φeff =
h2

2r2
+ Φ.

Note that

ε =
1

2

�
ṙ2 + ż2

�
+ Φeff .



Consider the family of circular orbits (r = constant) in the midplane (z = 0). These must satisfy

0 = −Φeff
r (r, 0) =

h2

r3
− Φr(r, 0),

0 = −Φeff
z (r, 0) (� by reflectional symmetry).

The specific angular momentum hc(r), angular velocity Ωc(r) and specific energy εc(r) of the circular
orbits are therefore given by (assuming Φr(r, 0) > 0 and considering prograde orbits)

hc =
�

r3Φr(r, 0), Ωc =
hc

r2
, εc =

h2
c

2r2
+ Φ(r, 0).

They satisfy the relation
dεc
dhc

= Ωc.

Proof:
dεc
dr

=
hc

r2
dhc

dr
− h2

c

r3
+ Φr(r, 0) = Ωc

dhc

dr
.

The orbital shear rate S(r) and the dimensionless orbital shear parameter q(r) are defined by

S = −r
dΩc

dr
, q = −d lnΩc

d ln r
=

S

Ωc

.

In the case of a point-mass potential, the circular Keplerian orbits satisfy

Φ(r, 0) = −GM

r
, hc =

√
GMr, Ωc =

�
GM

r3
, εc = −GM

2r
, S =

3

2
Ωc, q =

3

2
.

(See Example 1.1 for a revision of Keplerian orbits.)

2.2. Oscillations and precession

Small departures from a circular orbit of radius r in the midplane satisfy

δ̈r = −Ω2
r δr, δ̈z = −Ω2

z δz,

with
Ω2

r = Φeff
rr (r, 0), Ω2

z = Φeff
zz (r, 0),

defining the radial frequency Ωr(r) and the vertical frequency Ωz(r). (The radial frequency is more
often called the epicyclic frequency and denoted κ. The vertical frequency is sometimes denoted ν.
Note that Φeff

rz (r, 0) = 0 by reflectional symmetry.)

The circular orbit is stable if Ω2
r > 0 and Ω2

z > 0, i.e. if the orbit minimizes ε for a given h.

We have

Ω2
r =

3h2
c

r4
+ Φrr(r, 0)

=
3h2

c

r4
+

d

dr

�
h2
c

r3

�

=
1

r3
dh2

c

dr

= 4Ω2
c + 2rΩc

dΩc

dr
= 2Ωc(2Ωc − S)

= 2(2− q)Ω2
c,

Ω2
z = Φzz(r, 0).



Keplerian orbits satisfy
Ωr = Ωz = Ω,

meaning that (slightly) eccentric or inclined orbits close after one turn.

[FIGURE]

If Ωr ≈ Ω, an eccentric orbit precesses slowly. The minimum radius (periapsis) occurs at time
intervals Δt = 2π/Ωr, corresponding to

Δφ =
2πΩ

Ωr

= 2π

�
Ω

Ωr

− 1

�
+ 2π

= 2π

�
Ω

Ωr

− 1

�
mod 2π.

The apsidal precession rate is therefore

Δφ

Δt
= Ω− Ωr.

Similarly, if Ωz ≈ Ω, an inclined orbit precesses slowly with nodal precession rate

Ω− Ωz.

(See Example 1.2 for precession of orbits in binary stars and around black holes.)

2.3. Mechanics of accretion

Consider two particles in circular orbits in the midplane. Can energy be released by a conservative
exchange of angular momentum between the particles?

The total angular momentum and energy are

H = H1 +H2 = m1h1 +m2h2,

E = E1 + E2 = m1ε1 +m2ε2.

In an infinitesimal exchange:

dH = dH1 + dH2 = m1 dh1 +m2 dh2,

dE = dE1 + dE2 = m1Ω1 dh1 +m2Ω2 dh2,

If dH = 0 then
dE = (Ω1 − Ω2) dH1.

So energy is released by transferring angular momentum from higher to lower angular velocity. In
practice dΩ/dr < 0, so this means an outward transfer of angular momentum.

Now generalize the argument to allow for an exchange of mass:

dM = dm1 + dm2 = 0,

dH = dH1 + dH2 = 0, dHi = mi dhi + hi dmi,

dEi = miΩi dhi + εi dmi

= Ωi dHi + (εi − hiΩi) dmi,

dE = (Ω1 − Ω2) dH1 + [(ε1 − h1Ω1)− (ε2 − h2Ω2)] dm1.



In practice
d

dr
(ε− hΩ) = −h

dΩ

dr
> 0,

so energy is released by an outward transfer of angular momentum and an inward transfer of mass.
This is the physical basis of an accretion disc.

[FIGURE]

2.4. Departures from Keplerian rotation

Families of prograde circumstellar (top) and circumbinary (bottom) periodic orbits of the restricted

three-body problem for an equal-mass, circular binary. Orbits that are too large (top) or small

(bottom) depart sufficiently from circular Keplerian orbits that they intersect their neighbours.

Exercise: Accretion on to a non-rotating black hole can be modelled using the potential Φ =
−GM/(R− rh), where R =

√
r2 + z2 is the spherical radius and rh = 2GM/c2 is the (Schwarzschild)

radius of the event horizon of the black hole. Calculate Ωc(r) and compare with the Keplerian angular
velocity. Show that hc(r) has a minimum at r = 3rh and deduce that circular orbits in this potential
are unstable for r < 3rh.


