Dynamics of Astrophysical Discs Mathematical Tripos, Part III
Professor Gordon Ogilvie Lent Term 2020

Lecture 8: Radiative models

8.1. Equations of vertical structure

A radiative model describes the vertical structure of a disc in which the energy dissipated by viscosity
is carried away by radiation from the surfaces of the disc.

The energy flux due to radiative diffusion, for an optically thick disc, is
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where « is the (Rosseland mean) opacity. The dominant balance in the thermal energy equation, for
a thin disc, is

Contributions from F, and from radial advection are smaller by O(H/r)?, e.g.
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The equations of vertical structure for a radiative, Keplerian disc are then
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together with an equation of state, e.g.
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(ideal gas + radiation)

(where Z is the gas constant and p the mean molecular weight), an opacity function k(p,T), a
viscosity prescription for 7 and boundary conditions, e.g. the ‘zero boundary conditions’ p = p
T =0 at z = 2z (or, more realistically, matching to an atmospheric model at the photosphere).

The problem is analogous to the radial structure of a star. In the local approximation, these are
exact ODEs for equilibrium solutions independent of (x,y,t).

Opacity is often approximated by a power law, e.g. Thomson opacity (due to electron scattering:
hotter regions of ionized discs)
Kk = constant ~ 0.33cm? g~ *,

or Kramers opacity (due to free-free/bound-free transitions: cooler regions of ionized discs)
K= CKpT_7/2, C,. ~4.5x 10* cm® g2 K"/2.

In cooler discs, dust and molecules dominate the opacity.



8.2. Radiative, Keplerian disc with gas pressure, power-law opacity and alpha viscosity

We aim to solve
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The problem can be reduced to a dimensionless form by writing

pz)=p-p2),  px)=p-8(), T()=T-T(), F(k)=F F@),
with dimensionless vertical coordinate Z = z/H and characteristic values
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where, again, P = Y H?Q?, and the characteristic optical thickness is
F=kY = C. TV,
We obtain the dimensionless equations of vertical structure,
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subject to the normalization conditions

[z = [paz= [ 5z =1

and the zero boundary conditions p = p = T = 0 at the surfaces 5 = +3.

The inclusion of thermal physics leads to a specific solution of the problem of hydrostatic equilibrium
considered in the previous lecture.

A is an eigenvalue of the problem, which can be interpreted as the dimensionless cooling rate:

2F, = /dz— /pdz—A.

The numerical solution for Thomson opacity (r = y = 0) gives A\ = 3.213 and z; = 2.895. This
solution is similar to a polytropic model with n ~ 2.4.

The energy equation in a steady state gives the equilibrium condition for thermal balance:
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The vertically integrated viscosity is
P
vy = /pl/dz :/Ogdz = % = aXH?Q.

Thermal balance implies
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e.g. for Thomson opacity (z =y = 0),
U 7"22/3,

or for Kramers opacity (z =1, y = —7/2),
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The constant of proportionality involves a numerical coefficient and various powers of C /o, Z/u
and GM.



The heating and cooling rates per unit area (equal in a thermal steady state) are

I —/Zaﬁpdz = %QQP,
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soT>>T,in a highly optically thick disc (as assumed when using zero boundary conditions).

8.3. Viscous instability

Consider the nonlinear diffusion equation for a Keplerian disc,
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with 7 = (r, ¥). Linearize about any given solution ¥y(r,t):

X(r,t) = Xo(r, t) + X' (r, 1), X < X,
so that o) ()
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We then obtain the linearized diffusion equation,

52’_%2 120 [ 12 55
ot ror " ar(r ﬁyZ) '

The evolution is unstable (antidiffusive) for § < 0: perturbations grow rapidly on short length-scales,
causing the disc to break into rings. Astrophysical applications may be complicated by thermal
instability, which often coincides with it and dominates (see next lecture).

Exercise: Show that, when [ < 0, short-wavelength perturbations ¥’ with radial wavenumber &
grow in time at the rate 3|8|7k?, when 1/k is small (as in the WKB approximation) compared to the
characteristic scale on which the solution ¥ varies. (The diffusion equation itself becomes inaccurate
when 1/k is not large compared to H, so the fastest-growing modes typically have wavelengths of a
few times H.)



