
Dynamics of Astrophysical Discs Mathematical Tripos, Part III
Professor Gordon Ogilvie Lent Term 2020

Lecture 8: Radiative models

8.1. Equations of vertical structure

A radiative model describes the vertical structure of a disc in which the energy dissipated by viscosity
is carried away by radiation from the surfaces of the disc.

The energy flux due to radiative di↵usion, for an optically thick disc, is

F = �16�T 3
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where  is the (Rosseland mean) opacity. The dominant balance in the thermal energy equation, for
a thin disc, is
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Contributions from Fr and from radial advection are smaller by O(H/r)2, e.g.
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The equations of vertical structure for a radiative, Keplerian disc are then
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together with an equation of state, e.g.

p =
R⇢T

µ
+

4�T 4

3c
(ideal gas + radiation)

(where R is the gas constant and µ the mean molecular weight), an opacity function (⇢, T ), a
viscosity prescription for ⌫̄ and boundary conditions, e.g. the ‘zero boundary conditions’ ⇢ = p =
T = 0 at z = ±zs (or, more realistically, matching to an atmospheric model at the photosphere).

The problem is analogous to the radial structure of a star. In the local approximation, these are
exact ODEs for equilibrium solutions independent of (x, y, t).

Opacity is often approximated by a power law, e.g. Thomson opacity (due to electron scattering:
hotter regions of ionized discs)

 = constant ⇡ 0.33 cm2 g�1,

or Kramers opacity (due to free-free/bound-free transitions: cooler regions of ionized discs)

 = C⇢T
�7/2, C ⇡ 4.5⇥ 1024 cm5 g�2 K7/2.

In cooler discs, dust and molecules dominate the opacity.



8.2. Radiative, Keplerian disc with gas pressure, power-law opacity and alpha viscosity

We aim to solve
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The problem can be reduced to a dimensionless form by writing

⇢(z) = ⇢̂ · ⇢̃(z̃), p(z) = p̂ · p̃(z̃), T (z) = T̂ · T̃ (z̃), Fz(z) = F̂ · F̃ (z̃),

with dimensionless vertical coordinate z̃ = z/H and characteristic values
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where, again, P = ⌃H2⌦2, and the characteristic optical thickness is

⌧̂ = ̂⌃ = C⇢̂
xT̂ y⌃.

We obtain the dimensionless equations of vertical structure,
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subject to the normalization conditions
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and the zero boundary conditions ⇢̃ = p̃ = T̃ = 0 at the surfaces z̃ = ±z̃s.

The inclusion of thermal physics leads to a specific solution of the problem of hydrostatic equilibrium
considered in the previous lecture.

� is an eigenvalue of the problem, which can be interpreted as the dimensionless cooling rate:
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The numerical solution for Thomson opacity (x = y = 0) gives � = 3.213 and zs = 2.895. This
solution is similar to a polytropic model with n ⇡ 2.4.

The energy equation in a steady state gives the equilibrium condition for thermal balance:
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The vertically integrated viscosity is
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Thermal balance implies
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so
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e.g. for Thomson opacity (x = y = 0),
⌫̄ / r⌃2/3,

or for Kramers opacity (x = 1, y = �7/2),

⌫̄ / r15/14⌃3/7.

The constant of proportionality involves a numerical coe�cient and various powers of C/�, R/µ
and GM .



The heating and cooling rates per unit area (equal in a thermal steady state) are

H =

Z
9

4
↵⌦p dz =

9

4
↵⌦P,

C = 2�T 4
s = 2Fz

���
z=zs

= 2F̂ F̃s = �
16�T̂ 4

3⌧̂
.

Note that

T 4
s =

8�

3⌧̂
T̂ 4,

so T̂ � Ts in a highly optically thick disc (as assumed when using zero boundary conditions).

8.3. Viscous instability

Consider the nonlinear di↵usion equation for a Keplerian disc,
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with ⌫̄ = ⌫̄(r,⌃). Linearize about any given solution ⌃0(r, t):

⌃(r, t) = ⌃0(r, t) + ⌃0(r, t), |⌃0| ⌧ ⌃0,

so that
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We then obtain the linearized di↵usion equation,
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The evolution is unstable (antidi↵usive) for � < 0: perturbations grow rapidly on short length-scales,
causing the disc to break into rings. Astrophysical applications may be complicated by thermal
instability, which often coincides with it and dominates (see next lecture).

Exercise: Show that, when � < 0, short-wavelength perturbations ⌃0 with radial wavenumber k
grow in time at the rate 3|�|⌫̄k2, when 1/k is small (as in the WKB approximation) compared to the
characteristic scale on which the solution ⌃0 varies. (The di↵usion equation itself becomes inaccurate
when 1/k is not large compared to H, so the fastest-growing modes typically have wavelengths of a
few times H.)


