Lecture 9: Thermal instability / Hydrodynamics of the shearing sheet

9.1. Thermal instability

So far, we have assumed a balance between heating and cooling: \(\frac{9}{4} \dot{\nu} \Sigma \Omega^2 = \mathcal{H} = \mathcal{C} = 2F_s \).

Now relax this assumption, but assume that \(\alpha \ll 1 \) so that \(t_{\text{dyn}} \ll t_{\text{th}} \ll t_{\text{visc}} \). Consider behaviour on the timescale \(t_{\text{th}} \); we can then assume that the disc is hydrostatic and that the surface density does not evolve.

By solving the equations of vertical structure except thermal balance, we can calculate \(\mathcal{H} \) and \(\mathcal{C} \) as functions of \((\Sigma, \dot{\nu} \Sigma) \). In fact \(\mathcal{H} \) depends only on \(\dot{\nu} \Sigma \). The equation of thermal balance \(\mathcal{H} = \mathcal{C} \) defines a curve in the \((\Sigma, \dot{\nu} \Sigma) \) plane.

Along the equilibrium curve, \(d\mathcal{H} = d\mathcal{C} \) and \(d(\dot{\nu} \Sigma) = \beta \dot{\nu} d\Sigma \), where \(\beta = \left(\frac{\partial \ln(\dot{\nu} \Sigma)}{\partial \ln \Sigma} \right)_r \):

\[
\frac{d\mathcal{H}}{d(\dot{\nu} \Sigma)} = \frac{\partial \mathcal{H}}{\partial \Sigma} d\Sigma + \frac{\partial \mathcal{H}}{\partial (\dot{\nu} \Sigma)} d(\dot{\nu} \Sigma)
\]

\[
\frac{d\mathcal{H}}{d(\dot{\nu} \Sigma)} = \frac{1}{\beta \dot{\nu}} \frac{\partial \mathcal{C}}{\partial \Sigma} + \frac{\partial \mathcal{C}}{\partial (\dot{\nu} \Sigma)}.
\]

The internal energy content of disc per unit area is \(\sim P \sim (\Omega/\alpha)\dot{\nu} \Sigma \). If some heat is added, \(\dot{\nu} \Sigma \) increases but \(\Sigma \) is fixed on the timescale \(t_{\text{th}} \). The system is thermally unstable if the excess heating outweighs the excess cooling, i.e. if

\[
\frac{d\mathcal{H}}{d(\dot{\nu} \Sigma)} > \frac{\partial \mathcal{C}}{\partial (\dot{\nu} \Sigma)}, \quad \text{i.e. if} \quad \frac{1}{\beta \dot{\nu}} \frac{\partial \mathcal{C}}{\partial \Sigma} > 0.
\]

In practice \(\partial \mathcal{C}/\partial \Sigma < 0 \) (because, at fixed \(\dot{\nu} \Sigma \), \(\Sigma \propto 1/\dot{\nu} \propto 1/(\alpha T) \), and \(\mathcal{C} \) generally increases with \(T \)), so thermal instability occurs (like viscous instability) when \(\beta < 0 \). Thermal instability then dominates (as its timescale is shorter).

9.2. Outbursts

We have seen that a radiative disc with gas pressure and Thomson opacity has \(\dot{\nu} \Sigma \propto \nu \Sigma^{5/3} \) and is viscously and thermally stable. For cooler discs undergoing H ionization, the graph of \(\dot{\nu} \Sigma \) versus \(\Sigma \) can involve an ‘S curve’, leading to instability and limit-cycle behaviour, which explains the outbursts in many cataclysmic variables, X-ray binaries and other systems.
9.3. Hydrodynamics of the shearing sheet

Recall the local view of an astrophysical disc: a linear shear flow $\mathbf{u}_0 = -Sx \mathbf{e}_y$ in a frame rotating with $\Omega_0 = \Omega_0 \mathbf{e}_z$. Here Ω_0 and $S = -r \Omega_0/dr$ are evaluated at the reference radius r_0.

The model is either horizontally unbounded or equipped with (modified) periodic boundary conditions (see later). Possible treatments of the vertical structure are:

- ignore z completely (2D shearing sheet)
- neglect vertical gravity: homogeneous in z
- include vertical gravity: isothermal, uniform, polytropic, radiative, etc. models

9.4. Homogeneous incompressible fluid

Consider a 3D model, unbounded or periodic in (x, y, z), with a uniform kinematic viscosity ν. The equation of motion is

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} + 2\Omega \times \mathbf{u} = -\nabla \rho - \frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{u},$$

subject to the incompressibility condition

$$\nabla \cdot \mathbf{u} = 0.$$
In components:

\[
\begin{align*}
\left(\frac{\partial}{\partial t} - Sx \frac{\partial}{\partial y} + \mathbf{v} \cdot \mathbf{\nabla} \right) v_x - 2\Omega v_y &= -\frac{\partial \psi}{\partial x} + \nu \nabla^2 v_x, \\
\left(\frac{\partial}{\partial t} - Sx \frac{\partial}{\partial y} + \mathbf{v} \cdot \mathbf{\nabla} \right) v_y + (2\Omega - S)v_x &= -\frac{\partial \psi}{\partial y} + \nu \nabla^2 v_y, \\
\left(\frac{\partial}{\partial t} - Sx \frac{\partial}{\partial y} + \mathbf{v} \cdot \mathbf{\nabla} \right) v_z &= -\frac{\partial \psi}{\partial z} + \nu \nabla^2 v_z.
\end{align*}
\]

Consider a plane-wave solution in the form of a shearing wave:

\[
\begin{align*}
v(x, t) &= \text{Re} \left\{ \tilde{\psi}(t) \exp[i\mathbf{k}(t) \cdot \mathbf{x}] \right\}, \\
\psi(x, t) &= \text{Re} \left\{ \tilde{\psi}(t) \exp[i\mathbf{k}(t) \cdot \mathbf{x}] \right\},
\end{align*}
\]

with time-dependent wavevector \(\mathbf{k}(t) \). Then

\[
\begin{align*}
\left(\frac{\partial}{\partial t} - Sx \frac{\partial}{\partial y} \right) \mathbf{v} &= \text{Re} \left\{ \left[\frac{d\tilde{\mathbf{v}}}{dt} + \left(i \frac{dk}{dt} + Sx ik_y \right) \tilde{\mathbf{v}} \right] \exp[i\mathbf{k}(t) \cdot \mathbf{x}] \right\}.
\end{align*}
\]

If we choose

\[
\frac{dk}{dt} = S_k \mathbf{e}_x,
\]

then two terms cancel and we are left with \(\frac{d\tilde{\mathbf{v}}}{dt} \).

This means

\[
k_x = k_{x0} + S_y t, \quad k_y = \text{constant}, \quad k_z = \text{constant}.
\]

Tilting of the wavefronts by the shear flow, and

Dual shear flow in Fourier space:
Furthermore, the nonlinear term vanishes:
\[
\mathbf{v} \cdot \nabla \mathbf{v} = \text{Re} \left[\mathbf{v} e^{i\mathbf{k} \cdot \mathbf{x}} \right] \cdot \nabla \text{Re} \left[\mathbf{v} e^{i\mathbf{k} \cdot \mathbf{x}} \right] = \text{Re} \left[\mathbf{k} \cdot \tilde{\mathbf{v}} e^{i\mathbf{k} \cdot \mathbf{x}} \right] \text{Re} \left[i\tilde{\mathbf{v}} e^{i\mathbf{k} \cdot \mathbf{x}} \right] = 0,
\]
because \(\nabla \cdot \mathbf{v} = 0 \) implies \(i\mathbf{k} \cdot \tilde{\mathbf{v}} = 0 \). (This is a special result for an incompressible fluid. Note also that the nonlinear term does not vanish for a superposition of shearing waves.)

The amplitude equations for a shearing wave are
\[
\frac{d\tilde{v}_x}{dt} - 2\Omega \tilde{v}_y = -i\mathbf{k}_x \tilde{\psi} - \nu k^2 \tilde{v}_x,
\]
\[
\frac{d\tilde{v}_y}{dt} + (2\Omega - S)\tilde{v}_x = -i\mathbf{k}_y \tilde{\psi} - \nu k^2 \tilde{v}_y,
\]
\[
\frac{d\tilde{v}_z}{dt} = -i\mathbf{k}_z \tilde{\psi} - \nu k^2 \tilde{v}_z,
\]
\[i\mathbf{k} \cdot \tilde{\mathbf{v}} = 0,
\]
with \(k^2 = |\mathbf{k}|^2 \).

The viscous terms can be taken care of by a viscous decay factor
\[
E_\nu(t) = \exp \left(-\int \nu k^2 \, dt \right) = \exp \left\{ -\nu \left[(k_x^2 + k_y^2 + k_z^2) t + S k_x k_y t^2 + \frac{1}{3} S^2 k_y^2 t^3 \right] \right\}.
\]

The decay is faster than exponential if \(k_y \neq 0 \).

Write \(\tilde{\mathbf{v}} = E_\nu(t) \tilde{\mathbf{v}}(t) \) and \(\tilde{\psi} = E_\nu(t) \tilde{\psi}(t) \) to eliminate the \(\nu \) terms in the amplitude equations. Then eliminate variables in favour of \(\tilde{v}_x \) to obtain (see Example 2.1)
\[
\frac{d^2}{dt^2} \left(k_x^2 \tilde{v}_x \right) + \Omega_x^2 k_y^2 \tilde{v}_x = 0,
\]
where \(\Omega_x^2 = 2\Omega(2\Omega - S) \) is the square of the epicyclic frequency in the local approximation.

Summary of outcomes (see Example 2.1):

- Stable if \(\Omega_x^2 > 0 \): \(|\tilde{v}|^2 \) oscillates if \(k_y = 0 \), or decays algebraically if \(k_y \neq 0 \).
- Unstable if \(\Omega_x^2 < 0 \): \(|\tilde{v}|^2 \) grows exponentially if \(k_y = 0 \), or grows algebraically if \(k_y \neq 0 \).

When \(\nu > 0 \), \(E_\nu \) kills off any algebraic growth for \(k_y \neq 0 \). But axisymmetric disturbances \((k_y = 0) \) of sufficiently large scale grow exponentially.

We conclude that a rotating shear flow is linearly stable when \(\Omega_x^2 > 0 \), but unstable when \(\Omega_x^2 < 0 \).

This agrees with the stability of circular test-particle orbits. It also agrees with Rayleigh’s criterion for the linear stability of a cylindrical shear flow \(\mathbf{u} = r \Omega(r) \mathbf{e}_\phi \) to axisymmetric perturbations: the flow is unstable if the specific angular momentum \(|r^2 \Omega| \) decreases outwards.

The case \(\Omega_x^2 = 0 \) (either a non-rotating shear flow or one with uniform specific angular momentum) is marginally Rayleigh-stable and allows algebraic growth in the absence of viscosity.