Orbital dynamics © al0 201

e Jest particle in gravitational potential ¢
e Cylindrical polar coordinates (r, ¢, z)

e Newtonian dynamics

e Assume: O = P(r, 2) axisymmetric

O(r,—z) =®(r,z)  symmetric

e Special case: d=—-GM(r?+ 22)—1/2

point-mass potential =& Keplerian orbits
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e Equation of motion

e Specific energy
e Specific angular momentum

e Reduces to 2D problem

e Effective potential

— %\7’“\2 + & = const

h = 7“2g.b = const

= —®%

NS

F= -0

N4

h2
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e Circular orbit in midplane (z = 0)

oz@f@ﬁ)

0= c1>?;ff(r, 0) = ®_,.(r,0)

h2
E=5 - ®(r,0)

e I[mportant relation

des  hodho hf
dgr 2 dr /j | W

deg ho :
dhy ~ 2 =07

v by symmetry

ho(r)

eo(r)

> defining

orbital angular velocity
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e Keplerian case

GM

r

d(r,0) =

ho = (GMr)*/?

GM
2r

1/2
Q. (G]Y)
7/)

€o
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e Reminder of general Keplerian orbits

GMr
k

dh d

r —

T

rXr)=rxr+rxr=0

e Orbit is confined to plane L h, so introduce polar coordinates (r, ¢):

GM

2
2 h—r¢—const

7'“'—7°¢52:
d 5 d

o Let r /u and note that = qb 10 u? 10

d d /1 23 5
hu? @ {hu Tb(&)} —h = —GMu
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d?u GM
FU = 5
dop? h?
e General solution (with two arbitrary constants)

GM 4
u:?[1+ecos(¢—w)] = T:1+ecos(¢—w)

e Polar equation of conic section:

Do

e =20 O<e<1 e =1 e > 1
circle ellipse parabola hyperbola
bound bound marginally unbound
(e <0) unbound (e > 0)
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e Perturbations (47, dz) of circular orbits in midplane (& fixed)

or = —Q2 or Q2 = ¢ (1, 0)
0z = —2 62 Q2 = & (r,0)

[©°,(r,0) = 0 by symmetry]

(2. usuallycalled x  (horizontal) epicyclic frequency

(2, sometimes called i vertical (epicyclic) frequency

e Orbitis stableif Q>0 (.e. k*>0) and Q2 >0
l.e. if orbit is of minimum energy for given h
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e Now

3h?
2 | @
ke =@ ,p(1,0) A i

Ay, w
dr \ 3 r4
1 dh?
rs dr

d€2,

— 4072 + 2rQ),
o 2T dr

0? = D ,.(r,0)

z
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e Keplerian case

k=, =)

descending node

pericentre

ascending node
(), =1

eccentric Keplerian orbit inclined Keplerian orbit
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e Precession

o If x = () and/or (2, = (2, describe as slowly precessing orbit

. . . 2
e Minimum r (pericentre) occurs at time intervals At = il

27
Ap = -

K

()
:27T(——1>—|—27T
K

= 27 (Q —1) mod 27

K

A
e Apsidal precession rate thb =0 —kK

e Similarly, nodal precession rate = ) — (),
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e Consider two particles in circular orbits in the midplane
e Can energy be released by an exchange of angular momentum?

e Jotal energy and angular momentum:
E =FE; + Ey =mie1 + maea
H = Hy 4+ Hy = mih; +mahs

¢ |n an infinitesimal exchange:

dE = dE| + dEy = mq18 dhy + maofds dho
dH =dH; +dHy = midhy + modhs

o If dH =0 then
dE = (21 — Q9)dH;

e In practice d2/dr < 0

e Energy released by transferring angular momentum outwards
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e Generalize argument to allow for exchange of mass:
dM:dm1 +dm2 =0

dF = (Ql — QQ) dHl + [(81 — hlﬂl) — (82 — hQQQ)]dml

e In practice d(e — hQ2)/dr = —hdQ2/dr > 0

e Energy released by transferring angular
momentum outwards and mass inwards

e This is the physical basis of an accretion disc
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e Astrophysical fluid dynamics (AFD):

e Basic model: Newtonian gas dynamics:

O 1
A w Vu=-Vd—-Vp velocity

ot gravitational potential
density

pressure

adiabatic exponent

e Compressible
e |deal (inviscid, adiabatic)
e Non-relativistic (Galilean-invariant)

e Lagrangian (material) derivative:
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e Gravity:
e Non-self-gravitating fluid:
e d is prescribed (fixed / external potential)
e Self-gravitating fluid:
e ¢ s determined (in part) from the density of the fluid:
V20 =4 7Gp
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e Extensions of the basic model:
e Viscosity:
e Usually extremely small
e May be needed to provide small-scale dissipation

e May be introduced to model turbulent transport

ou _ X o 7 T viscous stress tensor

ot p 1 (shear) viscosity
T =2uS + up(V - u)l uy bulk viscosity

S shear tensor

1 1
S = 5 Vu+ (Vu)'] — g(v w1 1 unit tensor

kinematic viscosity v = u/p
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e Non-adiabatic effects:

 Thermal energy equation: T temperature
D s specific entropy

'OTD—t =H—-C H heating / unit volume
C cooling / unit volume

* Heating: (non-adiabatic effects)

e \iscous:
H=T:Vu=2uS*+ u,(V-u)’
e Cooling:
e Radiative: C =V . F
e Diffusion approximation:

(optically thick regions) o Stefan-Boltzmann

16573 constant

b= 3rp v Kk opacity

(Rosseland mean)




Equations of astrophysical fluid dynamics

© GIO 2011

e Equation of state:

P = p(pv T)
¢ |deal gas with radiation: k Boltzmann constant
kpT AoT4 tm Mean molecular weight
P=PgtPr= Hoan 0 Y m,, proton mass
c speed of light

e Dr iImportant at very high T

® iy = 0.5 for fully ionized H, u,, = 2 for molecular H, etc.

e Thermal energy equation in dynamical variables:

1
pl'ds = ( 1) <dp ’Ylpdp>
3 — P

1 Dp  vipDpy\ .
- () (5 =) e

e For ideal gas of constant ratio of specific heats, 71 = v, =v3 = v
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e Extensions of the basic model:
e Magnetohydrodynamics (MHD)
e Radiation hydrodynamics (RHD)
e Relativistic formulations

¢ Kinetic theory / plasma physics

e Simplifications of the basic model:
e [ncompressible fluid: V -u =0
e Boussinesq / anelastic approximations

e Barotropic fluid: p = p(p)
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e Magnetohydrodynamics (MHD):
e Electrically conducting fluid (plasma, metal, weakly ionized gas)

e Pre-Maxwell equations (without displacement current):

0B

o - VX E B magnetic field

V.B -0 solenoidal E electric field
B constraint J electric current density

V x B = ugJ 1o permeability of free space

(V - E equation not required)
e Galilean invariance:
' =x — vt B' =B
t' =1
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e Ohm’s law:

J =cF' in rest frame of conductor
o . electrical conductivity

= J =0(F +u x B) for conducting fluid with velocity u(x,?)
e Combine with Maxwell:

0B
- _VXxE magnetic diffusivity

ot
1
:Vx(uxB)—Vx<£) n=—
O HoO

=V x (ux B)—V x (nV x B) x resistivity

=V x (ux B)+nV’B if n uniform

e “Induction equation”: vector advection-diffusion equation

cf. vorticity equation %—j =V x (uxw)+vViw for w=V xu
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e |deal MHD (perfect conductor: ¢ — oo, n — 0):

a—B:Vx(uxB)

ot
=B-Vu—u-VB - B(V-u)+u(V-B)

e Magnetic field is “frozen in” to fluid:

e Field lines behave as material lines

e Magnetic flux through an open material surface is conserved
e Valid for large magnetic Reynolds number
— E cf. Re = ﬁ (advection versus diffusion)

77 1%

e Much easier to achieve on astrophysical scales

Rm




Equations of astrophysical fluid dynamics

© GIO 2011

e | orentz force per unit volume

F.,.=JxB

:i(VxB)xB
Ho

2
:iB.VB_v<‘B’ )
140 2440

curvature force: gradient of
magnetic tension magnetic pressure

_ |BF° _ B

Tm m —
P 240

(= magnetic energy density)

f B=ZBe.,
—Dm 0 0
M = 0 —Dm 0
0 0 T — Pm

Maxwell stress tensor
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e | orentz force:

e Magnetic tension + frozen-in field — Alfvéen waves

cf. elastic string

va = (pop)"Y/2B  vector Alfvén velocity

e Magnetic pressure = magnetoacoustic waves
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e |deal MHD equations:

e Or can expand out x X
e F and J eliminated

e Nonlinearities in equation of motion and induction equation
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e Jotal energy equation in ideal MHD:

%, |BJ? E x B

ot

5 |o(hlul + @4 ? DLV a4 e w)+ ZEE | o

T Ho
3 t
specific specific Poynting

internal enthalpy  flux

energy
F=—-uxDmB

e For ideal gas of constant v :

e With self-gravity, ® =® j,,; + Pexy and only 5 ®ipng + Pext
contributes to the energy density
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e Forces as the divergences of a stress tensor:

e Equation of motion can be written

Du
— = —pVOP+V.T
th p -

e Related to conservative form for momentum:

%(pu) +V - (puu—T)=—pVo

e Contributions to stress tensor T :

o pressure —pl BB |BJ?

. e magnetic I
® VISCOUS 2,LLS + ,LLb(V : ’LL)I J o 2,LLQ
gg
4G

(check using Poisson’s equation)
V20 =4 7Gp g=—-Vo

e also turbulent stresses from correlations of fluctuating fields

e self-gravity
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e Regulated by conservation of mass and angular momentum

e Mass conservation in 3D:

op B
E+V°(p’u,)—0

e Momentum conservation in 3D:
0,

a(pu) + V- (puu —T)=—pVD

e & |s axisymmetric gravitational potential we considered for orbits
(later, allow non-axisymmetric potential and tidal torque)

e T represents collective effects, including self-gravity
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e Write in cylindrical polar coordinates (7, ¢, 2)
e Reduce from 3D to 1D

e Mass conservation:

op 10 10 0 B
o o) o (pug) + () = 0

00 27
e [ntegrate r / / - d¢dz over cylinder of radius r
—o0o J 0

oM  OF . . .
= | =0 assuming no vertical mass loss or gain

ot or

o0 27
e 1D mass density M(r,t) = / / prdedz
—o0 J0

o0 27
e Radial mass flux F(r,t) = / / ou,rdodz
—o0 J 0
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e Angular momentum conservation: (7, ¢, z)

0 1 0 10 0
57 (pug) + —5 - [r* (purug — Trg )HFa_qb(p% Tog) + 5 (puuz —Tpz) =0

o0 27
o Integrate 7 / / - d¢dz over cylinder of radius r
—oo J 0

e Assume that ru, = h(r) from orbital dynamics
(examine this assumption later)

= g(/\/lh) + %(]—“h + G) =0  assuming no vertical loss or gain

27
e Internal torque G(r,1) / / 2Tr¢ do dz
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e Since h depends only on 7 :

8/\/1I _ 0
ot  Or

oM 0
ot 8T(]:h+g)_o

e Eliminate M :

]:dh | 9 _ 0 which determines F
dr  Or

oM _ 0 |(dn\"" oG
dr or

ot Or

e |nterpretation:

e angular momentum determines orbital radius

e angular momentum transport determines mass evolution
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e More usual notation:

M =2nr¥ surface density

F = 2nrXu, mean radial velocity

ds?
G = -2moars— mean effective

dr kinematic viscosity

e Equivalent to:
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e Then obtain:

oY 10

Ot 1 or

e Keplerian disc:

Q o r—3/?

h=1r2Q oc rt/?

oxr _390 {TW 9 (Tl/zyz)} diffusion equation

for surface density

ot  ror Or




Evolution of an accretion disc © GI0 2011

e [nterpretation:

angular momentum
transport

orbital shear

“viscous” spreading
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¢ |[nner boundary condition:
e Important because spreading ring will reach » = 0 In finite time

e Depends on nature of central object

e Star with negligible magnetic field:
e Disc may extend down to stellar surface
e Star usually rotates at only a fraction of Keplerian rate:
QM 1/2
° < (%)
(star is supported mainly by pressure)

e Angular velocity makes a rapid adjustment from Keplerian to
stellar in a viscous boundary layer
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0,

T

df)
e Usual argument: e 0 at r=ry, (= Ry) so G =0 there
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e Black hole:

e Circular orbits are unstable close to event horizon

Non-rotating black hole:

1/2
O — (GJ;4>
r

c2r
Orbits unstable for

6 GM
2

:37“3
C

e Rapid inspiral from s

e u, | and X | rapidly, so effectively G ~ 0 at 7y ~ rus
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e Star with significant magnetic field (e.g. dipole):

polar accretion

magnetospheric (observed)
radius

magnetospheric
cavity

® G not necessarily 0 at 7in ~ rm
e Star can exert torque on disc

e Depends on magnetic coupling (complicated problem)
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e Mathematically, we may let i, — 0O

e Jo allow mass flux at origin but no torque:
F — cst
} as 7 — 0
G—0
e To allow torgque at origin:

g — cst as r — 0

e For a Keplerian disc,

F x rYit, < rl/zg(frlmDZ)

or
g x r/2p%

e First case (no torque): v, —cst as r — 0

e Second case (torque): /202 — cst as r — 0
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e Consideration of angular momentum transport processes
and local vertical structure of disc (later) leads to

v=uv(r,%) (e.g. double power law)

(r) only, diffusion equation is linear

(r, X2), diffusion equation is nonlinear

e Usually solve as initial-value problem or look at steady solutions
e Linear case can be treated using Green’s function G(r,s,t) :
e Solution of diffusion equation with initial condition

Y(r,0) =6(r —s) (i.e. very narrow ring)

e Then solution for any initial condition >y(r) is

Y(r,t) = /OOO G(r,s,t) Xo(s)ds
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e Can calculate G(r, s,t) in terms of Bessel functions for any
power law 7 o« P and any boundary conditions

e Classic example: (Lynden-Bell & Pringle 1974)
vV = cst
G=0 innerBCat =0

no outer boundary modified Bessel function

—1/4 .5/4 2 2 l
G(r,s,1) = —— exp{ T }11/4 (E)

ot 1201 ot

(omit derivation)

e Becomes more asymmetrical as ¢ increases

e As t — oo, all mass accreted by central object
and all angular momentum carried to r = oo by negligible mass
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e Easier example: suppose v = Ar with A = const :

4\ 12
(3—2) and ¢ =r'/?02 = Ar3/?% to obtain

classical diffusion equation

e Spreading-ring solution with zero torque (g = 0) at centre:

goctl/Q{eXp{ (y—yo)Q} _eXp{ (y+yo)2”

4t 4t
e Thus

,r—3/2t—1/2

BrAy/2 P { 3AL

G(r,s,t) =

(r + s)} . {Q(TS)W}

JAt

Remaini /OOG( t)rd f{( ° )1/1
e Remaining mass r.s,t)rdr =erf || ——
J ; AL
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7“_3/2t_1/2 i (T—I—S)_ 2(T8)1/2
t) = inh

Gr.s,t) = “g e P |~y | S Ty
10

: |
ol

| «— t =0.0003s/A
6 -

|._-t=01s/A
4 L

| / _t=0.001 s/A
| t:O'O\gs/A / \ t =0.003s/A

: " $+=0.01s/A

| —

— l S T S ——— _— r/s

0.0 0.5 1.0 1.5 2.0
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r—3/2¢—1/2 (r + s) 2(rs)t/?
t) = inh
Grs.t) = 5y eXp{ 3At }Sm { 3At ]
Gr « mass / unit radius Gr3/? « ang mom / unit radius

1.0 -
0.8
0.6 -

041

021

N C———

. | | | | | | | | |
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0

t ={0.01,0.03,0.1,0.3,1} s/A
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e Nonlinear case with 7Y «x r>? and r;, — 0

e No intrinsic length-scale

e Special algebraic similarity solutions

e Generally attract solutions of initial-value problem

e But if ¢ < 0, viscous instability occurs (see later)
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e Steady discs

F=cst=—-M M = mass accretion rate
(but always neglect slow increase of M )

—0 — —Mh + G = cst

olf G=0 atr=ry,,solutionis G = M(h— hi)

. d)
e In Keplerian case (recall G = —27v¥r° — )

dr
' . \N1/2
EZ _ % |:1 <T1n> :|
37 r

o If we know v(r, ), we can solve for >(r)
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e Other solutions:
e Non-accreting disc: F =0, G =cst }

e Decretiondisc: F >0

require torque
from central object

d
e Note that F < 0 requires d—f > 0

e Energy balance in steady disc:

o . dQ A0\ ?
e Energy dissipation rate per unit volume =1, T@ = U TE

e Energy emission rate per unit area (from each face of disc)

1 d0 ?
— §VE (T@)

e Effective blackbody temperature T.«(r) given by
9 3GMM Fin\ 1/2
()]

T = 20302 =
OLeff 8V s r
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e Typical (theoretical) spectrum of emitted radiation:

Inner disc

outer disc
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e Total luminosity of disc (ri, < r < o)

> 3GMM LN\ 1/2 1 GMM
Ldisc :/ 3G |:1 — (T—> :| 2mrdr = §G

83 r Tin

in

rate of release of orbital binding energy (co — ri,)

1 .
5 rate of release of potential energy

(remaining Kinetic energy released in boundary layer
if Q,=0)
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e \ertical hydrostatic equilibrium

e Dominant balance (for non-self-gravitating gas disc)

od Op
P Oz 0z

0=

e Expand potential

1
d(r,z) = P(r,0) + 5@[)%(7“, O)z2 + ..

e So for a thin disc

g_@ ~ 022 (2, = Q) for Keplerian disc)
<

e Equation of vertical hydrostatic equilibrium
dp

=~ —p02z

0z
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e Disc supported against gravity by pressure in vertical direction

e Centrifugal support in radial direction
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e Order-of-magnitude estimates and time-scales

e Simple scaling arguments (~ ), omitting factors of order unity

e I[mportant dimensionless parameter:

H

—  (angular semi-thickness, aspect ratio)

r

- H
e For a thin disc: .

e H may represent: <

< 1

- true semi-thickness
height of photosphere above midplane

L measure of density scale-height

e From vertical hydrostatic equilibrium:

p
H

—~pVH = ¢~ QH

iIsothermal
sound speed
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o (Effective) viscosity:
e Dimensional argument: [u] = ML T~ = [%}

87 : : :
e Write 1 = ﬁp in terms of dimensionless viscosity «

(“alpha viscosity prescription”, Shakura & Sunyaev 1973)

2
Qs

0 ()
e Analogous to kinetic theory of molecular transport:
v ~ vl for mean speed v and mean free path /¢

~ acsH

e (Mean) kinematic viscosity o ~ R

e Molecular viscosity usually negligible for astrophysical discs

e Similar estimate applies to effective “eddy viscosity” of turbulence
of mean turbulent speed v and correlation length /¢

e Assuming that v < ¢s (subsonic turbulence) and ¢ S H,
expect that o S 1
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dQ
dr

e Alternative version of alpha prescription: 7,4, = —ap

e Stress in a Keplerian disc: T,y = pur——

e Whatever process gives rise to stress, scales with local pressure

e Reasonable assumption for local processes (see later)
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e Three important characteristic time-scales:
e Dynamical time-scale:

1 H
tdyn ~ Q (orbital motion) ~ (hydrostatic)

e \Viscous time-scale:

(radial motion)

e Thermal time-scale:

pH
ONVE

tin ~ (thermal balance)

e Forathindisc with a <1: {fayn < tth < tyisc

e All three time-scales usually increase rapidly with r
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e Mach number of orbital motion:

7\ 1
Ma~ 2 ()
Cs r

e Characteristic radial velocity due to viscosity:

Z H
Uy | ~ % ~a<7> Cs

e For a thin disc,
U, € cg K 12

orbital motion: highly supersonic

accretion flow: highly subsonic
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e Corrections to orbital motion:

e Contribution of radial pressure gradient:

2

op 5 c
“F 02 ~
87’/'0T

’I‘QQQ

e \ertical variations of radial gravitational acceleration ~ (

ou,
e Other terms, e.qg. s — = are smaller

)21 2
e Conclude that vy =rQ2 |14+ 0O <—>

r

l.e. fluid velocity close to orbital velocity of test particle

¢ |n general, thin-disc approximations involve fractional errors O
and a formal asymptotic treatment is possible
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Typical values of H/r :

e protoplanetary discs : 0.05 - 0.1
e binary stars : 0.01 - 0.02
e active galactic nuclei : 0.001

e planetary rings : 0.0000001
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e Barotropic models:

e \ertical hydrostatic equilibrium:

Op 2
—— = —p()
az IO ZZ

e Can be solved if pressure is a known function of density
(physical arguments, or just for analytical convenience)

¢ Vertically isothermal model:

p= Cgp cs iIndependent of z

e Solution:

p(r,2) = po(r,0) == /2’

Cs

H=—=
€1,

iIsothermal scale height
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e Polytropic model:

1+1/n

p=Kp K, n independent of z

¢ Introduce (pseudo-)enthalpy:

d
v :/—p = (n+1)Kp'/"
14

dw S

0z

1 A
e Solution: w = §Q§(H2 — 2%) H = true semi-thickness

p(r.2) = p(r,0) (1

plr,2) = p(r.0) (
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e Radiative models:
e Energy dissipated by viscosity carried away by radiation

e Radiative diffusion (optically thick disc):

16013

F = 3rp VT x = Rosseland mean opacity

e Dominant balance in thermal energy equation (thin disc):

O\° OF,
0= (rg)

.

0z

e Contributions from F,. and from radial advection are smaller by
O(H/r)*
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e \ertical structure of radiative Keplerian disc:

together with:

_ kol 40T* .
e equation of state, e.g. p = | (ideal gas + radiation)
UMy, 3¢

e viscosity prescription
e opacity function «(p,T)

e boundary conditions,e.g. p=p=1"=0 at z=H
(or match to atmopsheric model)

e Analogous to radial structure of a star
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e Opacity often approximated by a power law, e.g. for ionized discs:

Thomson opacity
electron scattering
hotter regions

k = const ~ 0.33cm? g™ !

Kramers opacity

bt 5 a7 free-free / bound-free
Crp~4.5x10"cm’g K cooler regions

k= CopT ™ "/?

e Cooler discs: dust, molecules, ...
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e Keplerian disc, alpha viscosity, gas pressure, Thomson opacity:

dp
0z

= —p)°2

%apﬂ
1601 OT
3rp 0z

kol

Hmp

H
E:/ pdz
—H

F =
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e Order-of-magnitude treatment:

8]0 0?2 p 2
0z pae s H P

9 F
1 aps) 7™ aps)

16017 0T 7
3kp 0z kp H

_ kpT kpT

p— pN

Hmp Hmp

H
E:/ pdz Y.~ pH
—H

e Algebraic solution:

H ~ o/631/30)—5/6 (Mmmp>—2/3 (g)—1/6
k K
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e Viscosity:

e Th

e Fu

b~ acsH ~ aQH? ~ o*/3%2/302/3 (Mm;lp>_4/3 (z)_l/g
K

Us 7 r32/3

| treatment:

Use order-of-magnitude treatment as a dimensional analysis

t defines characteristic units Ugq, U,, U,, Ur, etc.

e Then write z=Ug Z, p=U, p(Z), etc. to obtain a system of

dimensionless ODEs with no free parameters

e Solve numerically

e Find 7 = Arx?/3 with a precise coefficient A

e Power-law constitutive relations give power-law viscosity
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pressure density

similar to
polytropic models

xes (H2 _ZQ)TL
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Thermal and viscous stability © GIO 2011

e Viscous stability:

e Nonlinear diffusion equation for Keplerian disc:

32_§§ 1/2& 1/2 - _
% = 5 {T 8T(T UY) v=uv(r,%)

e Linearize about any given solution X (r,t) :
Y(r,t) = Xo(r,t) + X' (r, 1) ¥ < X

, _ 9(PX)
0>
e Linearized diffusion equation:

X 39
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e Unstable for ¢ < 0 : rapid growth on short length-scales




Thermal and viscous stabillity
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e Thermal stability:

e So far, assumed a balance between heating and cooling:

%pm? —H=C=2F"

e Relax this assumption, but assume that a < 1 so that
tadyn K tih <K tyisc
e Consider behaviour on the timescale t, :
e disc is hydrostatic
e surface density does not evolve

e By solving equations of vertical structure except thermal balance,
can calculate ‘H and C as functions of (X, vY)

e |In fact ‘'H depends only on v’

e Equation of thermal balance defines a curve in the (3, 7Y) plane




Thermal and viscous stabillity
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e |nfinitesimal perturbations:

dH oC oc |
M = 155 d(7%) 10 = 55 9=+ 505 d(7%)

e Along the equilibrium curve, dH = dC and d(vX) = qvd¥

dH 1 oC oC - O0ln(vX)

MR 2O 1= oy

e Thermal energy content of disc per unit area ~ pH ~ (Q2/a)v
e |[f some heat is added, 7> increases but X is fixed on tiy

e Unstable if excess heating exceeds excess cooling, i.e. if

dH - dC o 1 0C - 0
d(r¥) = d(rX)  qu 0X
e In practice 9C/0%¥ < 0 (because, at fixed X, ¥ x 1/v < 1/(aT))

so thermal instability occurs (like viscous instability) when ¢ < 0




Thermal and viscous stability © GIO 2011

e Qutbursts:

e Radiative disc with gas pressure and Thomson opacity has
7Y o r¥%/3 and is viscously and thermally stable

e For cooler discs undergoing H ionization, instability can occur

U “S curve” and limit cycle

for steady accretion:

' .\ 1/2
Sy % |:1 (Tﬂl) :|
37 r

cooOl

>
e Explains outbursts in many cataclysmic variables, X-ray binaries

and other systems




