
Orbital dynamics

● Test particle in gravitational potential

● Cylindrical polar coordinates

Φ

(r, φ, z)

● Newtonian dynamics

● Assume: Φ = Φ(r, z)

Φ(r,−z) = Φ(r, z)

axisymmetric

symmetric

● Special case: Φ = −GM(r2 + z2)−1/2

point-mass potential → Keplerian orbits
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Orbital dynamics

● Equation of motion

r̈ = −∇Φ

r̈ − rφ̇2 = −Φ,r

rφ̈ + 2ṙφ̇ = 0

z̈ = −Φ,z

● Specific energy

● Specific angular momentum h = r2φ̇ = const

● Reduces to 2D problem

z̈ = −Φeff
,z

r̈ = −Φeff
,r

Φeff = Φ +
h2

2r2● Effective potential

ε = 1
2 |ṙ|2 + Φ = const

{
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Orbital dynamics

● Circular orbit in midplane

● Important relation

(z = 0)

0 = Φeff
,r (r, 0) = Φ,r(r, 0)− h2

r3

0 = Φeff
,z (r, 0) ✓ by symmetry

ε =
h2

2r2
+ Φ(r, 0) } defining

h◦(r)
ε◦(r)

dε◦
dr

=
h◦
r2

dh◦
dr

− h2
◦

r3
+ Φ,r(r, 0)

dε◦
dh◦

=
h◦
r2

= φ̇ = Ω◦ orbital angular velocity
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Orbital dynamics

● Keplerian case

Φ(r, 0) = −GM

r

h◦ = (GMr)1/2

ε◦ = −GM

2r

Ω◦ =
(

GM

r3

)1/2
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Orbital dynamics

● Reminder of general Keplerian orbits

r̈ = −GMr

|r|3

dh

dt
=

d
dt

(r × ṙ) = ṙ × ṙ + r × r̈ = 0

● Orbit is confined to plane        , so introduce polar coordinates         :⊥ h (r, φ)

r̈ − rφ̇2 = −GM

r2
h = r2φ̇ = const

● Let               and note that                                   :r = 1/u
d
dt

= φ̇
d
dφ

= hu2 d
dφ

hu2 d
dφ

[
hu2 d

dφ

(
1
u

)]
− h2u3 = −GMu2

d2u

dφ2
+ u =

GM

h2
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Orbital dynamics

● General solution (with two arbitrary constants)

d2u

dφ2
+ u =

GM

h2

u =
GM

h2
[1 + e cos(φ−")]

● Polar equation of conic section:

⇒ r =
λ

1 + e cos(φ−#)

circle
e = 0 0 < e < 1 e = 1 e > 1

ellipse parabola hyperbola
bound bound marginally

unbound
unbound

(ε < 0) (ε > 0)
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Orbital dynamics

● Perturbations             of circular orbits in midplane (    fixed)(δr, δz)

h

δ̈r = −Ω2
r δr

δ̈z = −Ω2
z δz

Ω2
r = Φeff

,rr(r, 0)

Ω2
z = Φeff

,zz(r, 0)

Φeff
,rz(r, 0) = 0[                       by symmetry]

Ωr κ

Ωz µ

usually called (horizontal) epicyclic frequency

sometimes called vertical (epicyclic) frequency

● Orbit is stable if                  (i.e.             )  andΩ2
r > 0 Ω2

z > 0κ2 > 0
i.e. if orbit is of minimum energy for given

h
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Orbital dynamics

● Now

κ2 = Φ,rr(r, 0) +
3h2

◦
r4

=
d
dr

(
h2
◦

r3

)
+

3h2
◦

r4

=
1
r3

dh2
◦

dr

= 4Ω2
◦ + 2rΩ◦

dΩ◦
dr

Ω2
z = Φ,zz(r, 0)
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Orbital dynamics

● Keplerian case

κ = Ωz = Ω

κ = Ω Ωz = Ω

inclined Keplerian orbiteccentric Keplerian orbit

pericentre

apocentre

descending node

ascending node

© GIO 2011



Orbital dynamics

● Precession

κ ≈ Ω Ωz ≈ Ω● If             and/or              , describe as slowly precessing orbit

● Minimum     (pericentre) occurs at time intervalsr ∆t =
2π

κ

∆φ =
2πΩ
κ

= 2π

(
Ω
κ
− 1

)
+ 2π

= 2π

(
Ω
κ
− 1

)
mod 2π

∆φ

∆t
= Ω− κ

= Ω− Ωz

● Apsidal precession rate

● Similarly, nodal precession rate
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Mechanics of accretion

● Consider two particles in circular orbits in the midplane

● Can energy be released by an exchange of angular momentum?

● In practice

● Total energy and angular momentum:

E = E1 + E2 = m1ε1 + m2ε2

H = H1 + H2 = m1h1 + m2h2

dE = dE1 + dE2 = m1Ω1 dh1 + m2Ω2 dh2

dH = dH1 + dH2 = m1 dh1 + m2 dh2

● In an infinitesimal exchange:

● If               thendH = 0

dE = (Ω1 − Ω2) dH1

● Energy released by transferring angular momentum outwards

dΩ/dr < 0

dH

© GIO 2011



Mechanics of accretion

● Generalize argument to allow for exchange of mass:

● In practice

● Energy released by transferring angular

dM = dm1 + dm2 = 0

dH = dH1 + dH2 = 0 dHi = mi dhi + hi dmi

dEi = miΩi dhi + εi dmi

= Ωi dHi + (εi − hiΩi) dmi

dE = (Ω1 − Ω2) dH1 + [(ε1 − h1Ω1)− (ε2 − h2Ω2)]dm1

d(ε− hΩ)/dr = −h dΩ/dr > 0

 momentum outwards and mass inwards

● This is the physical basis of an accretion disc

dH

dm
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Equations of astrophysical fluid dynamics

● Astrophysical fluid dynamics (AFD):

● Basic model: Newtonian gas dynamics:

∂u

∂t
+ u · ∇u = −∇Φ− 1

ρ
∇p

∂ρ

∂t
+ u · ∇ρ = −ρ∇ · u

∂p

∂t
+ u · ∇p = −γp∇ · u

u

ρ

p

Φ

γ

velocity
gravitational potential
density
pressure
adiabatic exponent

● Compressible

● Ideal (inviscid, adiabatic)

● Non-relativistic (Galilean-invariant)

D
Dt

=
∂

∂t
+ u · ∇

● Lagrangian (material) derivative:
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Equations of astrophysical fluid dynamics

● Gravity:

●     is determined (in part) from the density of the fluid:

∇2Φ =4 πGρ

● Non-self-gravitating fluid:

●     is prescribed (fixed / external potential)Φ

● Self-gravitating fluid:

Φ

© GIO 2011



Equations of astrophysical fluid dynamics

● Extensions of the basic model:

● Viscosity:

● Usually extremely small

● May be needed to provide small-scale dissipation

viscous stress tensor
(shear) viscosity
bulk viscosity
shear tensor
unit tensor

∂u

∂t
= · · · +

1
ρ
∇ · T

T = 2µS + µb(∇ · u)I

S =
1
2

[
∇u + (∇u)T

]
− 1

3
(∇ · u)I

T

S
I

µ

µb

ν = µ/ρkinematic viscosity

● May be introduced to model turbulent transport
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Equations of astrophysical fluid dynamics

● Non-adiabatic effects:

● Thermal energy equation:

ρT
Ds

Dt
= H− C

temperature
specific entropy
heating / unit volume
cooling / unit volume
(non-adiabatic effects)

T
s

H
C

● Heating:

● Viscous:

H = T : ∇u = 2µS2 + µb(∇ · u)2

● Cooling:

● Radiative: C = ∇ · F
● Diffusion approximation:

F = −16σT 3

3κρ
∇T

Stefan-Boltzmann
constant
opacity
(Rosseland mean)

σ

κ

(optically thick regions)
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Equations of astrophysical fluid dynamics

● Equation of state:

Boltzmann constant
mean molecular weight
proton mass
speed of light

p = p(ρ, T )

● Ideal gas with radiation:

p = pg + pr =
kρT

µmmp
+

4σT 4

3c

k
µm

mp

c●      important at very highpr T

● Thermal energy equation in dynamical variables:

ρT ds =
(

1
γ3 − 1

) (
dp− γ1p

ρ
dρ

)

⇒
(

1
γ3 − 1

) (
Dp

Dt
− γ1p

ρ

Dρ

Dt

)
= H− C

γ1 = γ2 = γ3 = γ● For ideal gas of constant ratio of specific heats,

●                 for fully ionized H,              for molecular H, etc.µm = 2µm = 0.5
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Equations of astrophysical fluid dynamics

● Extensions of the basic model:

● Magnetohydrodynamics (MHD)

● Radiation hydrodynamics (RHD)

● Relativistic formulations

● Simplifications of the basic model:

● Kinetic theory / plasma physics

● Incompressible fluid:

● Boussinesq / anelastic approximations

● Barotropic fluid: p = p(ρ)

∇ · u = 0
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Equations of astrophysical fluid dynamics

● Magnetohydrodynamics (MHD):

● Electrically conducting fluid (plasma, metal, weakly ionized gas)

● Pre-Maxwell equations (without displacement current):

∂B

∂t
= −∇×E

∇×B = µ0J

∇ · B = 0

∇ · E

magnetic field
electric field
electric current density
permeability of free space

B

E
J

µ0

(           equation not required)

● Galilean invariance:

x′ = x− vt

t′ = t

B′ = B

E′ = E + v ×B

J ′ = J

solenoidal
constraint
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Equations of astrophysical fluid dynamics

● Ohm’s law:

J ′ = σE′ in rest frame of conductor

⇒ J = σ(E + u×B) for conducting fluid with velocity u(x, t)

   : electrical conductivityσ

● Combine with Maxwell:

∂B

∂t
= −∇×E

= ∇× (u×B)−∇×
(

J

σ

)

= ∇× (u×B)−∇× (η∇×B)

η =
1

µ0σ

magnetic diffusivity

resistivity∝

= ∇× (u×B) + η∇2B ηif    uniform

● “Induction equation”: vector advection-diffusion equation

cf. vorticity equation                                                 for
∂ω

∂t
= ∇× (u× ω) + ν∇2ω ω = ∇× u
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Equations of astrophysical fluid dynamics

● Ideal MHD (perfect conductor:              ,           ):σ →∞ η → 0

∂B

∂t
= ∇× (u×B)

= B · ∇u− u · ∇B −B(∇ · u) + u(∇ · B)

● Magnetic field is “frozen in” to fluid:

● Field lines behave as material lines

● Magnetic flux through an open material surface is conserved

● Valid for large magnetic Reynolds number

Rm =
LU

η
Re =

LU

ν
cf.                     (advection versus diffusion)

● Much easier to achieve on astrophysical scales
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Equations of astrophysical fluid dynamics

● Lorentz force per unit volume

Fm = J ×B

=
1
µ0

(∇×B)×B

=
1
µ0

B · ∇B −∇
(

|B|2

2µ0

)

curvature force:
magnetic tension

gradient of
magnetic pressure

pm =
|B|2

2µ0
Tm =

|B|2

µ0
(= magnetic energy density)

Fm = ∇ · M

M =
BB

µ0
− |B|2

2µ0
I

Maxwell stress tensor

If                 ,B = B ez

M =




−pm 0 0

0 −pm 0
0 0 Tm − pm





© GIO 2011



Equations of astrophysical fluid dynamics

● Lorentz force:

● Magnetic tension + frozen-in field → Alfvén waves

va =
(

Tm

ρ

)1/2

cf. elastic string

va = (µ0ρ)−1/2B vector Alfvén velocity

● Magnetic pressure → magnetoacoustic waves
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Equations of astrophysical fluid dynamics

● Ideal MHD equations:

∂ρ

∂t
+ u · ∇ρ = −ρ∇ · u

∂p

∂t
+ u · ∇p = −γp∇ · u

∂u

∂t
+ u · ∇u = −∇Φ− 1

ρ
∇p +

1
µ0ρ

(∇×B)×B

∂B

∂t
= ∇× (u×B)

● Or can expand out ××
∇ · B = 0

●      and     eliminatedE J

● Nonlinearities in equation of motion and induction equation

© GIO 2011



Equations of astrophysical fluid dynamics

● Total energy equation in ideal MHD:

∂

∂t

[
ρ( 1

2 |u|2 + Φ+ e) +
|B|2

2µ0

]
+ ∇ ·

[
ρu( 1

2 |u|2 + Φ+ w) +
E ×B

µ0

]
= 0

specific
internal
energy

specific
enthalpy

Poynting
flux

● For ideal gas of constant    :γ

E = −u×B

e =
p

(γ − 1)ρ

w = e +
p

ρ
=

γp

(γ − 1)ρ

● With self-gravity,                            and only        Φ =Φ int + Φext

contributes to the energy density

1
2Φint + Φext
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Equations of astrophysical fluid dynamics

● Forces as the divergences of a stress tensor:

● Equation of motion can be written

∂

∂t
(ρu) + ∇ · (ρuu−T) = −ρ∇Φ

ρ
Du

Dt
= −ρ∇Φ + ∇ · T

● Related to conservative form for momentum:

● Contributions to stress tensor     :T

BB

µ0
− |B|2

2µ0
I

2µS + µb(∇ · u)I

− gg

4πG
+

|g|2

8πG
I

● pressure −p I

● viscous
● magnetic

● self-gravity                             (check using Poisson’s equation)

● also turbulent stresses from correlations of fluctuating fields

g = −∇Φ∇2Φ =4 πGρ

© GIO 2011



Evolution of an accretion disc

● Regulated by conservation of mass and angular momentum

● Mass conservation in 3D:

∂ρ

∂t
+ ∇ · (ρu) = 0

● Momentum conservation in 3D:

∂

∂t
(ρu) + ∇ · (ρuu−T) = −ρ∇Φ

●     is axisymmetric gravitational potential we considered for orbitsΦ
(later, allow non-axisymmetric potential and tidal torque)

●     represents collective effects, including self-gravityT
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Evolution of an accretion disc

● Write in cylindrical polar coordinates

● Reduce from 3D to 1D

(r, φ, z)

● Mass conservation:

∂ρ

∂t
+

1
r

∂

∂r
(rρur) +

1
r

∂

∂φ
(ρuφ) +

∂

∂z
(ρuz) = 0

r

∫ ∞

−∞

∫ 2π

0
· dφdz● Integrate                                     over cylinder of radius

∂M
∂t

+
∂F
∂r

= 0 assuming no vertical mass loss or gain

M(r, t) =
∫ ∞

−∞

∫ 2π

0
ρ r dφdz

F(r, t) =
∫ ∞

−∞

∫ 2π

0
ρur r dφdz

● 1D mass density

● Radial mass flux

⇒

r
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Evolution of an accretion disc

● Angular momentum conservation: (r, φ, z)

● Integrate                                     over cylinder of radius

assuming no vertical loss or gain

● Internal torque

∂

∂t
(ρuφ)+

1
r2

∂

∂r
[r2(ρuruφ−Trφ)]+

1
r

∂

∂φ
(ρu2

φ−Tφφ)+
∂

∂z
(ρuφuz−Tφz) = 0

r2

∫ ∞

−∞

∫ 2π

0
· dφdz

● Assume that                     from orbital dynamicsruφ = h(r)

∂

∂t
(Mh) +

∂

∂r
(Fh + G) = 0

G(r, t) = −
∫ ∞

−∞

∫ 2π

0
r2Trφ dφ dz

   (examine this assumption later)

⇒

r
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Evolution of an accretion disc

● Since     depends only on    :h r

∂M
∂t

h +
∂

∂r
(Fh + G) = 0

∂M
∂t

+
∂F
∂r

= 0

● Eliminate      :M

F dh

dr
+

∂G
∂r

= 0 which determines F

∂M
∂t

=
∂

∂r

[(
dh

dr

)−1 ∂G
∂r

]

● Interpretation:

● angular momentum determines orbital radius

● angular momentum transport determines mass evolution

© GIO 2011



Evolution of an accretion disc

● More usual notation:

M = 2πrΣ Σ(r, t)

F = 2πrΣūr

G = −2πν̄Σr3 dΩ
dr

ūr(r, t)

ν̄(r, t)

surface density

mean radial velocity

mean effective
kinematic viscosity

● Equivalent to:

Σ =
∫ ∞

−∞
〈ρ〉dz

Σūr =
∫ ∞

−∞
〈ρur〉dz

ν̄Σ =
∫ ∞

−∞
〈µ〉dz Trφ = µr

dΩ
dr

〈·〉 =
1
2π

∫ 2π

0
· dφ
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Evolution of an accretion disc

● Then obtain:

● Keplerian disc:

∂Σ
∂t

=
1
r

∂

∂r

[(
dh

dr

)−1 ∂

∂r

(
−ν̄Σr3 dΩ

dr

)]

∂Σ
∂t

=
3
r

∂

∂r

[
r1/2 ∂

∂r
(r1/2ν̄Σ)

]

Ω ∝ r−3/2

h = r2Ω ∝ r1/2

diffusion equation
for surface density
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Evolution of an accretion disc

● Interpretation:

orbital shear

angular momentum
transport

dΩ
dr

< 0

dh

dr
> 0

“viscous” spreading
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Analysis of the diffusion equation

● Inner boundary condition:

● Star with negligible magnetic field:

● Disc may extend down to stellar surface

● Star usually rotates at only a fraction of Keplerian rate:

Ω∗ <

(
GM

R3
∗

)1/2

(star is supported mainly by pressure)

● Angular velocity makes a rapid adjustment from Keplerian to
stellar in a viscous boundary layer

● Important because spreading ring will reach           in finite timer = 0

● Depends on nature of central object
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Analysis of the diffusion equation

● Usual argument:                  at                           so              there
dΩ
dr

= 0 r = rin (≈ R∗) G = 0
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Analysis of the diffusion equation

● Black hole:

● Circular orbits are unstable close to event horizon

●          and          rapidly, so effectively             at

● Rapid inspiral from rms

Σ ↓ūr ↑ G ≈ 0 rin ≈ rms

Ω =
(

GM

r3

)1/2

Non-rotating black hole:

Orbits unstable for

r <
6 GM

c2
= 3 rS

κ2 = Ω2

(
1− 6 GM

c2r

)
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Analysis of the diffusion equation

● Star with significant magnetic field (e.g. dipole):

●     not necessarily     at rin ≈ rmG 0

● Star can exert torque on disc

● Depends on magnetic coupling (complicated problem)

polar accretion

magnetospheric

disc

magnetospheric
rmradius

(observed)

cavity

© GIO 2011



Analysis of the diffusion equation

● Mathematically, we may let

● To allow mass flux at origin but no torque:

rin → 0

F → cst

G → 0
as r → 0}

● To allow torque at origin:

G → cst as r → 0

● For a Keplerian disc,

F ∝ rΣūr ∝ r1/2 ∂

∂r
(r1/2ν̄Σ)

G ∝ r1/2ν̄Σ

● First case (no torque):

● Second case (torque):

ν̄Σ→ cst

r1/2ν̄Σ→ cst

as r → 0

as r → 0
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Analysis of the diffusion equation

● Consideration of angular momentum transport processes

● If                 only, diffusion equation is linear

● Usually solve as initial-value problem or look at steady solutions

and local vertical structure of disc (later) leads to

ν̄ = ν̄(r,Σ) (e.g. double power law)

ν̄ = ν̄(r)

● If                   , diffusion equation is nonlinearν̄ = ν̄(r,Σ)

● Linear case can be treated using Green’s function                :

● Solution of diffusion equation with initial condition

Σ(r, 0) = δ(r − s)

G(r, s, t)

(i.e. very narrow ring)

● Then solution for any initial condition            isΣ0(r)

Σ(r, t) =
∫ ∞

0
G(r, s, t) Σ0(s) ds

© GIO 2011



Analysis of the diffusion equation

● Can calculate                in terms of Bessel functions for any
power law             and any boundary conditions

G(r, s, t)
ν̄ ∝ rp

● Classic example:

ν̄ = cst

G = 0 r = 0inner BC at

no outer boundary

G(r, s, t) =
r−1/4s5/4

6ν̄t
exp

[
−r2 + s2

12ν̄t

]
I1/4

( rs

6ν̄t

)
modified Bessel function

(omit derivation)

● Becomes more asymmetrical as     increases

● As            , all mass accreted by central object

t

and all angular momentum carried to             by negligible mass
t→∞

r =∞

(Lynden-Bell & Pringle 1974)
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Analysis of the diffusion equation

● Easier example: suppose              with                  :ν̄ = Ar A = const

y =
(

4r

3A

)1/2

g = r1/2ν̄Σ = Ar3/2Σ

∂g

∂t
=

∂2g

∂y2

● Let                           and                                        to obtain

● Spreading-ring solution with zero torque (         ) at centre:

g ∝ t−1/2

{
exp

[
− (y − y0)2

4t

]
− exp

[
− (y + y0)2

4t

]}

● Thus

classical diffusion equation

g = 0

G(r, s, t) =
r−3/2t−1/2

(3πA)1/2
exp

[
− (r + s)

3At

]
sinh

[
2(rs)1/2

3At

]

● Remaining mass ∝
∫ ∞

0
G(r, s, t) r dr = erf

[( s

3At

)1/2
]
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Analysis of the diffusion equation

G(r, s, t) =
r−3/2t−1/2

(3πA)1/2
exp

[
− (r + s)

3At

]
sinh

[
2(rs)1/2

3At

]

0.0 0.5 1.0 1.5 2.0

2

4

6

8

10

r/s

t = 0.0003 s/A

t = 0.001 s/A

t = 0.003 s/A

t = 0.01 s/A

t = 0.03 s/A

t = 0.1 s/A
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Analysis of the diffusion equation

G(r, s, t) =
r−3/2t−1/2

(3πA)1/2
exp

[
− (r + s)

3At

]
sinh

[
2(rs)1/2

3At

]

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

t = {0.01, 0.03, 0.1, 0.3, 1} s/A

Gr ∝ Gr3/2 ∝mass / unit radius ang mom / unit radius

r/sr/s
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Analysis of the diffusion equation

● Nonlinear case with                      and              :

● No intrinsic length-scale

ν̄Σ ∝ rpΣq rin → 0

● Special algebraic similarity solutions

● Generally attract solutions of initial-value problem

● But if          , viscous instability occurs (see later)q < 0
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Analysis of the diffusion equation

● Steady discs

F = cst = −Ṁ

F dh

dr
+

dG
dr

= 0 ⇒ −Ṁh + G = cst

mass accretion rate
(but always neglect slow increase of     )
Ṁ =

M

● If             at             , solution isG = 0 r = rin G = Ṁ(h− hin)

● In Keplerian case (recall                              )G = −2πν̄Σr3 dΩ
dr

ν̄Σ =
Ṁ

3π

[
1−

(rin

r

)1/2
]

● If we know             , we can solve forν̄(r,Σ) Σ(r)

© GIO 2011



Analysis of the diffusion equation

● Other solutions:

● Non-accreting disc:

● Decretion disc:

F = 0, G = cst

F > 0 } require torque
from central object

● Note that              requiresF < 0
dG
dr

> 0

● Energy balance in steady disc:

● Energy dissipation rate per unit volume = Trφ r
dΩ
dr

= µ

(
r
dΩ
dr

)2

● Energy emission rate per unit area (from each face of disc)

=
1
2
ν̄Σ

(
r
dΩ
dr

)2

● Effective blackbody temperature             given byTeff(r)

σT 4
eff =

9
8
ν̄ΣΩ2 =

3GMṀ

8πr3

[
1−

(rin

r

)1/2
]
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Analysis of the diffusion equation

● Typical (theoretical) spectrum of emitted radiation:

inner disc

outer disc
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Analysis of the diffusion equation

● Total luminosity of disc (rin < r <∞)

Ldisc =
∫ ∞

rin

3GMṀ

8πr3

[
1−

(rin

r

)1/2
]

2πr dr =
1
2

GMṀ

rin

rate of release of orbital binding energy

rate of release of potential energy

=

=
1
2

(remaining kinetic energy released in boundary layer
if              )Ω∗ = 0

(∞→ rin)
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Vertical disc structure

● Vertical hydrostatic equilibrium

● Dominant balance (for non-self-gravitating gas disc)

0 = −ρ
∂Φ
∂z
− ∂p

∂z

● Expand potential

Φ(r, z) = Φ(r, 0) +
1
2
Φzz(r, 0)z2 + · · ·

● So for a thin disc

∂Φ
∂z

≈ Ω2
zz

● Equation of vertical hydrostatic equilibrium

∂p

∂z
≈ −ρΩ2

zz

Ωz = Ω(             for Keplerian disc)

© GIO 2011



Vertical disc structure

● Disc supported against gravity by pressure in vertical direction

● Centrifugal support in radial direction

r

H
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Vertical disc structure

● Simple scaling arguments (    ), omitting factors of order unity

●      may represent:

● Order-of-magnitude estimates and time-scales

● Important dimensionless parameter:

H

r
(angular semi-thickness, aspect ratio)

● For a thin disc:
H

r
! 1

H

true semi-thickness
height of photosphere above midplane
measure of density scale-height
{

● From vertical hydrostatic equilibrium:

p

H
∼ ρΩ2H ⇒ cs ∼ ΩH

cs =
(

p

ρ

)1/2

isothermal

∼

sound speed
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Vertical disc structure

● Dimensional argument:

● (Effective) viscosity:

[µ] = ML−1T−1 =
[ p

Ω

]

● Write                  in terms of dimensionless viscosityµ =
αp

Ω
α

(“alpha viscosity prescription”, Shakura & Sunyaev 1973)

● (Mean) kinematic viscosity ν̄ ∼ µ

ρ
∼ αc2

s

Ω
∼ αcsH

● Analogous to kinetic theory of molecular transport:
ν ∼ v"             for mean speed     and mean free pathv !

● Molecular viscosity usually negligible for astrophysical discs

● Similar estimate applies to effective “eddy viscosity” of turbulence
of mean turbulent speed     and correlation length !v

● Assuming that            (subsonic turbulence) and           ,v ! cs ! ! H

expect that α ! 1
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Vertical disc structure

● Stress in a Keplerian disc: Trφ = µr
dΩ
dr

= −3
2
αp

● Alternative version of alpha prescription: Trφ = −αp

● Whatever process gives rise to stress, scales with local pressure

● Reasonable assumption for local processes (see later)
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Vertical disc structure

● Three important characteristic time-scales:

● Dynamical time-scale:

tdyn ∼
1
Ω

∼ H

cs
(orbital motion) (hydrostatic)

● Viscous time-scale:

tvisc ∼
r2

ν̄
∼ α−1

(
H

r

)−2

tdyn (radial motion)

● Thermal time-scale:

tth ∼
pH

ν̄ΣΩ2
∼ c2

s

ν̄Ω2
∼ H2

ν̄
∼ α−1tdyn (thermal balance)

● For a thin disc with           :α < 1 tdyn < tth ! tvisc

● All three time-scales usually increase rapidly with r
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Vertical disc structure

● Mach number of orbital motion:

Ma ∼ rΩ
cs
∼

(
H

r

)−1

● Characteristic radial velocity due to viscosity:

● For a thin disc,

|ūr| ! cs ! rΩ

orbital motion: highly supersonic

accretion flow: highly subsonic

© GIO 2011

|ūr| ∼ ν̄

r
∼ α

(
H

r

)
cs



Vertical disc structure

● Corrections to orbital motion:

● Contribution of radial pressure gradient:

∂p

∂r

/
ρrΩ2 ∼ c2

s

r2Ω2
∼

(
H

r

)2

● Vertical variations of radial gravitational acceleration ∼
(

H

r

)2

● Other terms, e.g.               , are smallerρur
∂ur

∂r

● Conclude that uφ = rΩ

[
1 + O

(
H

r

)2
]

i.e. fluid velocity close to orbital velocity of test particle

● In general, thin-disc approximations involve fractional errors
and a formal asymptotic treatment is possible

O

(
H

r

)2
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Vertical disc structure

● protoplanetary discs : 0.05 – 0.1

Typical values of         :H/r

● binary stars : 0.01 – 0.02

● active galactic nuclei : 0.001

● planetary rings : 0.0000001
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Vertical disc structure

● Barotropic models:

● Vertical hydrostatic equilibrium:

● Can be solved if pressure is a known function of density

● Vertically isothermal model:

p = c2
sρ cs independent of z

● Solution:

ρ(r, z) = ρ0(r, 0) e−z2/2H2

H =
cs

Ωz
isothermal scale height

∂p

∂z
= −ρΩ2

zz

(physical arguments, or just for analytical convenience)
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Vertical disc structure

● Polytropic model:

● Solution:

p = Kρ1+1/n independent of zK, n

● Introduce (pseudo-)enthalpy:

w =
∫

dp

ρ
= (n + 1)Kρ1/n

∂w

∂z
= −Ω2

zz

w =
1
2
Ω2

z(H
2 − z2) H = true semi-thickness

ρ(r, z) = ρ(r, 0)
(

1− z2

H2

)n

p(r, z) = p(r, 0)
(

1− z2

H2

)n+1

(vacuum above            )z = H
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Vertical disc structure

● Radiative models:

● Energy dissipated by viscosity carried away by radiation

● Radiative diffusion (optically thick disc):

F = −16σT 3

3κρ
∇T κ = Rosseland mean opacity

● Dominant balance in thermal energy equation (thin disc):

0 = µ

(
r
dΩ
dr

)2

− ∂Fz

∂z

● Contributions from       and from radial advection are smaller byFr

O(H/r)2
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Vertical disc structure

● Vertical structure of radiative Keplerian disc:

∂p

∂z
= −ρΩ2z

∂F

∂z
=

9
4
µΩ2

F = −16σT 3

3κρ

∂T

∂z

together with:

p =
kρT

µmmp
+

4σT 4

3c
● equation of state, e.g.                                    (ideal gas + radiation)

● viscosity prescription

● opacity function κ(ρ, T )

● boundary conditions, e.g.                          atρ = p = T = 0 z = H

(or match to atmopsheric model)

● Analogous to radial structure of a star
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Vertical disc structure

● Opacity often approximated by a power law, e.g. for ionized discs:

κ = const ≈ 0.33 cm2 g−1

Cκ ≈ 4.5× 1024 cm5 g−2 K7/2

κ = CκρT−7/2

Thomson opacity
electron scattering

Kramers opacity
free-free / bound-free
cooler regions

hotter regions

● Cooler discs: dust, molecules, ...
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Vertical disc structure

● Keplerian disc, alpha viscosity, gas pressure, Thomson opacity:

∂p

∂z
= −ρΩ2z

F = −16σT 3

3κρ

∂T

∂z

p =
kρT

µmmp

∂F

∂z
=

9
4
αpΩ

Σ =
∫ H

−H
ρ dz
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Vertical disc structure

● Order-of-magnitude treatment:

∂p

∂z
= −ρΩ2z

F = −16σT 3

3κρ

∂T

∂z

p =
kρT

µmmp

∂F

∂z
=

9
4
αpΩ

Σ =
∫ H

−H
ρ dz

p

H
∼ ρΩ2H

F

H
∼ αpΩ

F ∼ σT 3

κρ

T

H

Σ ∼ ρH

p ∼ kρT

µmmp

● Algebraic solution:

H ∼ α1/6Σ1/3Ω−5/6
(µmmp

k

)−2/3 (σ

κ

)−1/6
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Vertical disc structure

● Viscosity:

● Full treatment:

ν̄ ∼ αcsH ∼ αΩH2 ∼ α4/3Σ2/3Ω−2/3
(µmmp

k

)−4/3 (σ

κ

)−1/3

● Thus ν̄ ∝ rΣ2/3

● Use order-of-magnitude treatment as a dimensional analysis

● It defines characteristic units                              etc.UH , Uρ, Up, UT ,

● Then write                                       etc. to obtain a system ofz = UH z̃, ρ = Uρ ρ̃(z̃),
dimensionless ODEs with no free parameters

● Solve numerically

● Find                      with a precise coefficientν̄ = ArΣ2/3 A

● Power-law constitutive relations give power-law viscosity
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Vertical disc structure

ρ ∝ (H2 − z2)n

p ∝ (H2 − z2)n+1

T ∝ (H2 − z2)

similar to

polytropic models

pressure density

temperature radiative flux
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Thermal and viscous stability

● Viscous stability:

● Nonlinear diffusion equation for Keplerian disc:

∂Σ
∂t

=
3
r

∂

∂r

[
r1/2 ∂

∂r
(r1/2ν̄Σ)

]
ν̄ = ν̄(r,Σ)

● Linearize about any given solution              :Σ0(r, t)

Σ(r, t) = Σ0(r, t) + Σ′(r, t) |Σ′| ! Σ0

● Linearized diffusion equation:

(ν̄Σ)′ =
∂(ν̄Σ)

∂Σ
Σ′ = qν̄Σ′ q =

∂ ln(ν̄Σ)
∂ ln Σ

∂Σ′

∂t
=

3
r

∂

∂r

[
r1/2 ∂

∂r
(r1/2qν̄Σ′)

]

● Unstable for           : rapid growth on short length-scalesq < 0
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Thermal and viscous stability

● Thermal stability:

● So far, assumed a balance between heating and cooling:
9
4
ν̄ΣΩ2 = H = C = 2F+

● Relax this assumption, but assume that             so thatα! 1

tdyn ! tth ! tvisc

● Consider behaviour on the timescale       :tth

● disc is hydrostatic

● surface density does not evolve

● By solving equations of vertical structure except thermal balance,
can calculate      and     as functions ofH C

● In fact      depends only on ν̄ΣH
● Equation of thermal balance defines a curve in the              plane

(Σ, ν̄Σ)

(Σ, ν̄Σ)
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Thermal and viscous stability

● Infinitesimal perturbations:

dH =
dH

d(ν̄Σ)
d(ν̄Σ) dC =

∂C
∂Σ

dΣ +
∂C

∂(ν̄Σ)
d(ν̄Σ)

● Along the equilibrium curve,                 anddH = dC d(ν̄Σ) = qν̄ dΣ

⇒ dH
d(ν̄Σ)

=
1
qν̄

∂C
∂Σ

+
∂C

∂(ν̄Σ)
q =

∂ ln(ν̄Σ)
∂ ln Σ

● Thermal energy content of disc per unit area ∼ pH ∼ (Ω/α)ν̄Σ

● If some heat is added,        increases but      is fixed on ν̄Σ Σ tth

● Unstable if excess heating exceeds excess cooling, i.e. if

dH
d(ν̄Σ)

>
dC

d(ν̄Σ)
1
qν̄

∂C
∂Σ

> 0i.e.

● In practice                      (because, at fixed      ,                               )    ∂C/∂Σ < 0 ν̄Σ Σ ∝ 1/ν̄ ∝ 1/(αT )
so thermal instability occurs (like viscous instability) when q < 0
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Thermal and viscous stability

● Outbursts:

● Radiative disc with gas pressure and Thomson opacity has
ν̄Σ ∝ rΣ5/3                    and is viscously and thermally stable

● For cooler discs undergoing H ionization, instability can occur

“S curve” and limit cycle

ν̄Σ =
Ṁ

3π

[
1−

(rin

r

)1/2
]
≈ Ṁ

3π

for steady accretion:

● Explains outbursts in many cataclysmic variables, X-ray binaries
and other systems

hot

cool
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