Local approximation
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e Shearing sheet / local approximation
(Goldreich & Lynden-Bell 1965)

e | ocal model of a differentially rotating disc
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e Consider an orbiting reference point with cylindrical coordinates
(r, 9, 2) = (ro, ¢ + 0t,0) Qo = Q(ro)

e Use as origin of a local Cartesian coordinate system (z, y, z)
x=17—"g radial
Yy = 1ro(p — ¢g — Qot) azimuthal
Z =z vertical

e Orbital motion appears locally as a uniform rotation €25 = (g e,
plus a linear shear flow up = —5Sox €,

ds?

S =—r o rate of orbital shear
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e Effective potential in rotating frame
(different from previous effective potential under h = cst)
expanded to second order in x and =z

= ®(r, z) — %Q?)TQ

— B(rg,0) + W+ L3, (ro,0)a2 + 1® .. (rg, 0)’

— 105 (r¢ + 2rgr+ 2°)

= cst™+ 2[0,(rQ2%) — Q%]oz” + 102,27
= —0pSpx* + %Q§Oz2
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e Particle dynamics in local approximation
i — 2007 = 2000 (Keplerian case
So = 2
) , .0 =
¢ =z —“Hill's equations”)
e Simple orbital motion: (without satellite)

vt Coriolis force balances effective potential gradient
Yy = —SoT
e General solution involves horizontal and vertical oscillations
e Canonical y momentum (per unit mass):
Py = Y + 2Qpx = cst
e Plays role of specific angular momentum in local approximation

e Has uniform gradient in simple orbital motion: p, = (22¢ — So)z
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e Symmetries of local approximation:
(higher than those of original disc!)

e Spatial homogeneity (horizontally):
every point in zy plane is equivalent (up to Galiliean boost)

e Rotation by 7 about z axis
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Rotational symmetry

e Direction to central object cannot be determined
e No accretion flow therefore expected

e | ocal model knows about 2 (and S ) but not about r
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e Boundary conditions of shearing sheet

e Horizontally unbounded or apply (modified) periodic
boundary conditions

e Vertical structure:
e Ignore z completely (2D shearing sheet)
e Neglect vertical gravity: homogeneous in z

¢ |nclude vertical gravity: isothermal, radiative, etc. models
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omogeneous incompressible fluid

D system, unbounded or periodic In z,y, 2

niform kinematic viscosity v [discuss its role]

O 1
a—rl;+u-Vu+2S20xu:—VCI)——Vp—I—VV2u
0

V- -u=0 neglect (balanced

, by pressure gradient)

2
ZOZ

o Effective potential ® = —QySpz” + 2

e Basic state:
U = Uy = — S0 €,
D = Pg = Cst
e Uniform viscous stress, but no divergence and so no accretion flow
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e Perturbations (not necessarily small):
u = ug +v(x,y,2z,1)
P = Po =+ p/(ﬂf, Y, <, t)

O 1
a—§+u0-Vv+v-Vuo+v-Vv+290><’U:——Vpl+Vv2’U
0

V-v=0
e Now drop the subscript 0 on Q, and Sy and let ©» =p'/p

O O oY 5
— — — .V -~ — 20 S AVAL I
(875 Sxay+v >v Vy 9 vV v

ot oy 0y

0 0 oY 5
(at—Sxa—y+v-V>vz 3, vV-ou,

<2 — sz + - V) vy + (20 — S)v, Y vV3u,
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e Shearing waves (after Kelvin / Thomson 1887):
e Consider a plane-wave disturbance of the form
v(x,t) = Re{v(t) explik(t) - x|}
Y(x, 1) = Re { $(1) explik(t) - ]}

T~

time-dependent wavevector

dt

do ( dk

% o suit,) o] el 51

e If we choose

dk
d_ — Sk'y €.,
t A%

then two terms cancel and we are left with d_f,;

e This means
ky = koo + Skyt k, = cst k. = cst
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ky = koo + Skyt k, = cst

e Tilting / shearing of wavefronts:
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ky = koo + Skyt k, = cst k. = cst

e Dual shear flow in Fourier space:

—> X
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e Furthermore
v- Vv =Re f) 1"”’} VRe[~ 1’““’}

= Re k =y eik"”] Re [117 ek "3}
=0
because V.- v=0 = ik-v=0
e Special result for incompressible fluid

e Nonlinearity doesn’t vanish for a superposition of shearing waves
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e Amplitude equations for shearing waves:
do,,

dt

do,

dt

dv,

dt
ik-v=0

200, = —ikytp — kD,

- (2Q — 8)b, = —iky,) — vk®D,

— —ikzzz — vk*D,

¢ Viscous terms are taken care of by a viscous decay factor

E,(t) = exp (- / vk? dt)

= exp {—v [(kgo + ky + k2)t + Skaokyt® + 38%kt°] }

e Faster than exponential decay if £, # 0
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o Write © = E, (t)9(t), ¥ = E,(t)1)(¢) to obtain inviscid problem

dd,
dt
do,
dt
do,
dt
ik -9 =0

200, = —ik,1)

- (2Q — 8) b, = —ikyY

= —ik,1)

e Eliminate variables in favour of v, to obtain (after algebra)

2
d—(k%m) + k% k20, = 0 k2 = 2Q(2Q — S)

d¢? . .
square of epicyclic frequency
In local approximation
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e Analysis of axisymmetric/unsheared waves (k, = 0) :
d2 2 A 271.2 A
@(k Uz) + kK°kZ0, =0
e Constant coefficients, so exponential / sinusoidal solutions
e |[nviscid case:
e Oscillations (inertial waves) if k% > 0

e Exponential growth if x* < 0

e With viscosity, include factor E, = exp(—vk*t):

e Damped oscillations if k2 > 0

e Unstable to sufficiently long wavelengths if x* < 0
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e Analysis of non-axisymmetric/sheared waves (k, # 0) :

d2
@(k%x) + k%k20, = 0

e Non-constant coefficients; solutions involve Legendre functions

e Asymptotic behaviouras ¢t — oo :
2 2 21,242
k* ~ ki ~ 57kt

e ODE has regular singular point at ¢t = oo :

by o 17 (0 o<t 0, oc tFL, 4p o t7)
¢ [ndicial equation:

(04 2)(0+1)S°k; + £’k =0

1 kK2 1/2
oc=——=x |- &
2 (4 52/@5)
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by o 17 (0 o<t 0, oc tFL, 4p o t7)

1 k%k? t/2
oc=—==%|- =
2 (4 52/@5)

e Three cases to consider:

A

° Kk° > (k;/kg)(Sz/éL) o = —32 + imaginary : |9’

e 0 < K* < (kg/kg)(52/4) o< —1: |0]? oct?ot) 0

e k2<0:0neroothas o > —1: [9]? ct?°T) - 0

e Therefore inviscid solutions decay when x* > 0
but grow (in energy norm) when &% < 0

e When v > 0, viscous decay factor £, Kills off any algebraic growth
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e Special case of non-rotating shear flow (plane Couette flow)

dd,
dt
do,
dt
do,
dt
ik -9 =0

=

— ik,

e Eliminate variables in favour of v, to obtain (after algebra)

d
il kQAx —
dt( 0z) =0




Incompressible fluid dynamics in shearing sheet © GI0 2011

e Generic non-axisymmetric disturbances (k, # 0):
by o k72, h o kT
e Ast — o0

A A

Dy X 172 vy — cst, U, — cst

e Generic axisymmetric disturbances (k, = 0):
=0 0,=cst, v,=cst, db,/dt=SD,
e Algebraic growth tempered by viscous decay
e Kinetic energy grows by a factor O(Re)” in a time O(Re)
e Reynolds number Re = S/vk?

e This mechanism plays an essential role in the transition
to turbulence in non-rotating shear flows but is suppressed
in rotating shear flows because of inertial oscillations
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e Summary:
e rotating shear flow is linearly stable when x° > 0

e rotating shear flow is linearly unstable when x* < 0

e Agrees with stability of circular test-particle orbits

e Agrees with Rayleigh’s criterion for the linear stability of a
cylindrical shear flow u = rQ)(r) e4 to axisymmetric perturbations

e The case «° = 0 (either non-rotating shear flow or one with uniform
specific angular momentum) is marginally Rayleigh-stable and
allows algebraic growth in the absence of viscosity

e [Discussion of laboratory experiments and numerical simulations]
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e 2D incompressible dynamics

0 0
(a—SZCa—y—F’UV) U;U—QQ”Uy

0 0
(E_Smay v-V)vy (22 — S)v, =

0v,,

ox
. 5%
e Introduce streamfunction x(x,y,t): v, = oy

e Instantaneous streamlines are curves x = cst

e Vorticity perturbation

([ Ovy  Ouy B 5 B
VXU_(@x ay)ez—( Vix)e, = (e,
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e Curl of equation of motion (to eliminate pressure):

) ) GOy O D8, v,
(E_Sxa_y+” V) oy }9{1:/8:13 Q{ay
x avx% 8’Uy% 5
+(292 — 5 % 5 % 9y y = vV<(

e Can also be written using Jacobian:
0 0 A(x; ¢)

_ Yy 2
(5_5%_@/)4‘8(9[:,@/)' Ve

e Solve in conjunction with Poisson equation VZy = —(
e Total absolute vorticity is (22 —S+()e.

e Coriolis force drops out of 2D incompressible dynamics!
e Too constrained to allow epicyclic motion / inertial oscillations

e Pure vortex dynamics with background shear
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0 ) ;

e Multiply by ¢ to obtain enstrophy equation
1
(Q — Sa:3 +v- V) (—¢2> = v(V?%(

=V - (1 CV¢) —v|V()?

ot oy 2

e With suitable boundary conditions,

d 1
£/§g2 dA = —/V|VC\2dA

so enstrophy decays

e To maintain vorticity perturbations in the presence of viscosity
requires baroclinic or 3D effects or other source terms
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% 0 ,

e Shearing-wave solutions ((x,t) = Re {cf () explik(t) - w]} :

i_i = —vk?C (nonlinear term vanishes)

goc E,(t)

e Kinetic energy o |9]? x k7 2|(|? x k™ 2E?
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e Elliptical vortex patches
e Set ¥ = 0. Can vorticity resist shear (nonlinear effect)?

e \Jortex patch: contour dynamics:

¢ =0

( — v — advection of contour (by u = v — Sz e,)

e Do steady solutions exist?
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e Elliptical vortex patch

e Kirchhoff: v induced by (o causes ellipse to rotate

ab Co
(a+b)°

e Shear up = —Sx e, deforms the ellipse according to

a b . S(b?cos? O — a®sin” )

with angular velocity 6 =

a:—BZSSiHQCOSH 0 = — 2
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e Combine effects:
Q b

— —— = Ssinfcosd

b
S(b? cos? § — a? sin” ) - ab(p
a? — b? (a+b)2

0 —

. L . a
e Area mab is conserved. Rewrite in terms of aspect ratio r =

E:
r .
— 25sin6 cos 6

§_ S(cos?  — r? sin” ) |

r2 —1

r Qo
(r4+1)2

e 2D autonomous dynamical system
e Chaplygin (1899); Moore & Saffman (1971); Kida (1981)

e Note that (y is the vorticity perturbation relative to the background
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- 25 sin 0 cos 6
"

. S(cos? @ — r?sin? 0) r (o
0 = |
re —1 (r 4+ 1)2

e Fixed points:
0 = 0 without loss of generality (let » < 1 if need be)

S | r o B @_ (T—l—l)
r2—1'(r—|—1)2_0 ~ S

)

cyclonic

anticyclonic
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e Stability of fixed point 8 = 0 : linearized equations:

or = 2S5r 06

L O 1 | T Co
59_S5T8r .

o5 0F
rr12s| = " ar

(f = 0 at equilibrium)

8f5 of  (r*+2r—1)
or g or r(r? —1)>2
df

* Unstableif —->0,ie. r<v2-—1

=  or = 25%r

e Stable if %«) e r>v2-—1

e Other instabilities exist, e.g. elliptical instability (3D)
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cyclonic

O

stable stable

anticyclonic
stable
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e Particle dynamics in core of steady elliptical vortex

Y

e Jotal streamfunction

(nested elliptical streamlines) a\
2 2
T Yy b .

X |
b2 a?

X 7’2$2 +y2

so u o (y, —r°z)

olet u=A4 (y, —7“:1:)

(" + 1)
r(r—1)
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e Motion of particle subject to drag force:
T — 20y =205 — v(& — uy)
§+ 208 = —y(§ — uy)

e Linear system: solutions z, y oc e :

(A% =208 + Nz = 2O\ + vAr~ )y
(A + 9Ny = —(2O)\ + yAT)z

(A% =28 + AN (A 4+ 9A) + (2O + yAr—H (2O + vAr) = 0

AY 4 290° + (497 — 2QS + 97N + [-2Q85 + 2QA(r + 7 N A + 77 A% =0

AT+ 2907 + (k7 + 7N = 2Q¢0 A + 77 A% =0
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AT+ 2907 + (k2 + 7N = 2Q¢0 A + 77 A% =0

e Limit of small v (weak drag; large particles):

o \~ ik +c1y+ O(Y?) cp = —1

_ %o

K2

o )\~ coy+ O(v?) Co

e For stability (decay to centre), require

—k* < Q <0 (must be anticyclonic)

e Limit of large ~ (strong drag; small particles):
° A\~ c3y+ O(1) c3 = —1
o A~ Z4id+cyy t+ 0> ) cy = Qy + A?

e For stability (decay to centre), require
QC() < —A?
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AT+ 2907 + (k2 + 7N = 2Q¢0 A + 77 A% =0

e For general v, when does marginal stability occur?

e )\=0:never
e \=—-lw,weR, w#0:
w4—(/<:2+72)w2—|—72A2:()

2vw> + 2Q¢pyw = 0

= w?’ = -0 (>0) (must be anticyclonic)

(Q60)* + (k* +7%)Q +~°A% =0
e |LHS is negative for all v, so all particles decay to centre, if

A% < —Q¢ < k*  (agrees with two limits considered)

(" :q )2 < (Z(r i)%s < 2Q(20 - 9)
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C f 7 < (Z; i)%s < 20(20 — S)

e Keplerian disc:

o 1 _
4(r —1)2

= r>J3
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e 2D compressible sheet: inviscid, self-gravitating
e Surface density Y(x,y,1)
e 2D pressure P(z,y,t)

e Relate to vertically integrated quantities / pdz, / pdz

but only a model, not derivable exactly from 3D equations

e Basic equations:

>,
5’u l
a—+u Vu+2Qxu=-—-Vob — Vd)dm—iVP

e Disc potential ®4(z,y, z,t) satisfies V®q = 47GX 6(2)
e Then evaluate in midplane: ®4 . (x,y,t) = ®4(x,¥,0,1)

e Assume barotropic relation P = P(3) for simplicity
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e Solve Poisson’s equation in Fourier domain:

(ks by 1) = / / (2,1, ) e o =ikv0 dz

etc.

Vidy = 47GY §(2)

2 ~ ~
= (—k2 | 0 ) Oy = 47GY 6(2) k= (k2 + k)12

0z2

2rGY 94
T2 okl (K £0)  so that 0%q
k 0z
2TGY )
k

- 0+

— ArGY

d 00—
—> i)d,m —

e k£ =0 component gives no horizontal force anyway
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e Conservation of potential vorticity / “vortensity”:

O 1
a—‘t’“+u.vu+zﬂxu:—V@—V@d,m—ivp

o Use identity (V x u) x u=u-Vu— V(|ul?) :

(2Q24+V xu) xul=V(--) since P = P(X)

a(qu)—l—Vx[(Qﬂ—l—qu)xu]:O

e Useidentity Vx(AxB)=B-VA—-A-VB+AV-B)-B(V-A):

9
<——|—u-V) (2Q+V xu) = —(2Q+ V x u)(V -u) since 2D

ot

:(2§2+V><u)l (Q—Fu-V)Z

>\ Ot
Dq 2€) + (V X ’U,)Z
= — = here g =
Dt W 1 >
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e Conservation of potential vorticity / “vortensity”:

20+ (V X u),
>

Dqg

0 where ¢ =
Dt d

e Recall u=—-5Sre, +v:

20) — »
(Q—Sazg%—v-V)q:O q = 5+ (V xv)

ot oy )y

e Unlike incompressible 2D case, vortex dynamics not the whole story

e Vortical disturbances are coupled to acoustic ones
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e Linear stability of uniform 2D self-gravitating sheet

%+V (Xu) =0 d = —QSz?

%—u—l—u Vu+2Q0xu=-Vo& — VCIde—iVP

V204 = 41GX 6(2)

e Basic state: X =cst, u=—-Sze,
e Linearized equations for perturbations ', v, etc.:

(g—SZEg)E/—FZV’U:O P/:USZZ/

ot oy

0 0 / 1 l/
B —Sxa—y v—Suzey +20Xv=-V&, — EVP

V2P, = 4nGY) (%) sound speed vy
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e Solutions are shearing waves:

' (z,1) = Re {5’:'( ) explik(t) - w]} etc.
e Amplitude equations:

4>’

dt

do,, X , . >
iy 20, = —ik, (CI)él,m + vsz)

dvy

- Y
P - (20 = S)v, = —ik,y, (CI)g,m + USQE)

~ oG

v = ()

d,m L

L, ikyDy, — ik, (20— S)X

e \ortensity perturbation ¢ = > Y2
~/

satisfies d—i = 0 as expected [exercise]
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e Consider axisymmetric waves: k, = 0, k; = cst, k = |k,|

—iwt

e Amplitudes o« e

—iwd + Xik, 0, = 0

orGY\ X’
—iwi, — 208, = —ik, <v§ i > il

Koz |
—iwv, + (202 — S)v, =0

e Multiply second equation by iw and eliminate X’ and 9, :

w2, — 20(2Q — 8)7, = k2 (v

5 277GZ> .
T |kl

e Deduce dispersion relation for “density waves”:

w? = k* = 27nGY|k,| + vik:

e Also vortical solution w =0, v, = 0 : zonal flow / geostrophic flow
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e Dispersion relation for density waves:
w? = Kk — 2rG8|ky| + v2E2
inertial acoustic (restoring forces)
self-gravity (destabilizing)
e “Acoustic-inertial waves”
e Disc is unstable to axisymmetric disturbances if w? < 0 for some k,

e w” is minimized with respect to |k, | when

TG

2
Us

0= —2nGXY +2f082|kx\ = k| =

(@i = 2 = T (1 - i)

QQ
e Gravitational instability if @@ <1, where Q =
(Toomre stability parameter)

2
Us
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Vs K

e Gravitational instability if Q <1, where @ =
TG

e Toomre stability parameter Q :
e An inverse measure of self-gravity

e A measure of temperature

product of stabilizing effects

0 v,k «—  (short and long scales)
- 7GX
" T Jestabilizing effect
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W
IaY Q:OO
2r Q=2
Q=1
| ‘ | k%
-2 —1 1 K
L
Vg K
@

B TG
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e Occurrence of gravitational instability:

o If () <1, disctends to form rings
(axisymmetric instability, exponential growth)

o If 1 <@ < 1.5, disc tends to form spiral waves or clumps
(hon-axisymmetric instability, transient growth)

e Since () x vg T2 , thermostatic regulation is possible:

instability & motion — dissipation (shock/viscous) — heating

e Two possible outcomes of gravitational instability:

e Fragmentation: formation of gravitationally bound objects
(clumps...moonlets / planets / stars)

e Gravitational turbulence: sustained activity of non-axisymmetric
density waves (e.g. “self-gravity wakes” in Saturn’s rings)

e Efficient cooling promotes fragmentation, or enhances the efficiency
of gravitational turbulence, since cooling balances viscous heating
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e Common problem:

e Orbiting companion, e.g. on circular orbit within disc

e Gravitational (rather than hydrodynamic) interaction with disc
e Perturbs orbital motion and excites waves
e Calculate exchanges of energy and angular momentum

e Determine orbital evolution of satellite (migration, etc.)




Satellite—disc interaction o Gl 201

e Test particle dynamics in xy plane, in local approximation
(fluid dynamics more difficult, but results are similar in some ways)

oV

x — 20y = 205
ox

e Satellite on circular orbit at reference radius (zs = ys = 0):

U = —GMS(5132 + y2)_1/2
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ow
0x

x — 20y = 205

e General solution in absence of satellite potential:

T = —40%% + 208t = —Kk’%

= x = xg + A;coskt + A;sinkt = xg + Re [A e_im}

Yy = 1Yo — STt — % Re [iA e_i"’t}

e Guiding centre (zg,yo — Szot)

e Complex epicyclic amplitude A = A, + iA4;
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e To express “orbital elements” in terms of position and velocity:
r = o + Re [A e_i“t]
r = Re [—iliA e_i“t] = rkIm [A e_i“’t]
i = —k*Re [A e_i’ﬂ

= Ae 't —
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e Canonical ¥ momentum (per unit mass):

2

py:y—l—QQx:;—Qaﬁozcst

e Energy (per unit mass):

1
e = —(* +9°) — QSa”

2

40)?
o Use r?|A|* = 1% s (y 4+ Sx)* :

20)? 1
(y + Sz)? + 53)2 — QS2?

1
e = —Kk*|A|?
2

1
. —RZ‘A‘Q
2

/12
S
— (5 + 2Q)°

p
2 Py

1
—/ﬁ;Q‘A‘Q

— cst
2
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¢ |[n the presence of a satellite potential:

2Q) oW 10_\11
k%2 0y Kk Ox
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e Consider the unperturbed “circular” orbit (A = 0)
T = g = CSt
Yy = —S$0t

e Calculate AA in linear approximation:

- 2000 i 0V .
A: - 1kt \Ij:_ Ms 2 2 —1/2
(/432 Oy /iﬁaz)e GMs(@™+y7)

= GM,(z* + yQ)_?’/Q <2Qy i:z:) elrt

K2 K

M 2() .
~ il (14 §2¢2)73/2 (1 i St> e

KT§ K

A dt

i— (14 §2¢2)=3/2 (eos Kkt + — Stsin /i?f) dt
[ K

— OO
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Mg [° 20
AA = iG 5 (14 S2t%)=3/2 (COS kt + —Stsin mf) dt

R K

— OO

o Let f( ):/_OO (1+x2)_3/2coskxdw:Zkﬁl(k) (k> 0)

modified Bessel function

e Then

AA = —iC G M

K 20, (K
kST C=17 (g) B ?f (g)
e For Keplerian orbits (x/S = 2/3), C = 3.359

e So encounter with satellite excites an epicyclic oscillation
at first order
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e | ong before and after the encounter, ¥ — 0

e Since ¢ + V is exactly conserved, Ac = 0 in the encounter

L 5 0 Q5 , 2 K 2
° But e = r7|A[" — —py, 50 Alpy) = 5= A(IA])
e Assume a “circular” orbit before the encounter:

/{.,2

A=0, p,= Exo
e Then, after the encounter:
G M. kA 4 GM.\°
Ar —iC——, p.~ —xf - C—
Seszz v T 020 T o0g ( /438:6%)

N K (CGM,)?
N —To
Py ’ 253 %7
J

L

NV
Ap, correct to second order

e |rreversibility / dissipation implicit in assuming circular initial orbit
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Satellite—disc interaction

FRAAAN

0.8

LAY
R
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e Simplified version: “impulse approximation”

GM, 1
:1:(2) S

A’UJ_FL‘

A(v) + A(vi) =0  (energy)

P

<GMS

2
ST

2
) + QSZCQAUH ~ (

(GM,)?
25327

Av) & (lacks C* factor)
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e y force on disc per unit = at location x:

(CG My)?
T 2935 2 |5

!
] encounter rate
surface density

x £~ % sgn(zx)
e Torgque per unit radius Is the same Xy
e Satellite experiences an equal an opposite torque
e Effect is of second order in M,

e Similar result for density waves (response of a fluid disc)

e 2~ * divergence is moderated within |z| < H (or Hill radius)
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e Gravitational interaction is “repulsive”!

—_ —_
transfer of p, (or angular momentum)

e One-sided torque leads to gap opening if Mg large enough
and v small enough

e Asymmetry leads to net torque on satellite and to migration
(usually inwards)
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e Now include periodic nature of y coordinate (L, = 27ry) :

- 2000 i 0V .
A = -7 1kt
(/432 Oy /iﬁaz)e

= F(t) el

o
E : fn e—lnwt emt

n=——aoo

e Add damping of epicyclic motion:

A _ i fn e—inwt eifﬁ:t - ,YA

¢ | ong-term response:

o0 —inwt mt
ifne

>

n=——aoo

(nw — k) + i

. ) X l k
e “Lindblad resonances” where — = — —
ro nS

27'('7“()

S|z

27T 5‘330’
W = — —
ik T0

A—

, resolved by damping
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. 1
e Lindblad resonances: Lk
To n S

¢ |[n a Keplerian disc, LRs correspond to orbital commensurabillities

&_ n
Qo_n—l

¢ |n a fluid disc, density waves are launched there
(wave emission resolves singularity in response)
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e Homogeneous incompressible fluid

e | ocal approximation (shearing sheet / box)

e 3D system, unbounded or periodic in z,y, z

e Uniform kinematic viscosity v and magnetic diffusivity n
ou

1 1
~  tu-Vu+209xu=-Vd— —_VII- B.-VB+ 1V
ot p fop

B
a@t -u-VB =B -Vu+nV°B II=p

V.ou=0 V-B=0 neglect (balanced
by pressure gradient)
» Effective potential & = 052 + 0227

e Basic state:
d By

u=1uy=—-5Sre, B = By(t) with ek — 5B, e,

IT =11 0 — cst Bx() = cst By() = Ccst — SBx()t Bz() = cst

|BJ°
| 210
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B.o = cst B,y = cst — SBot B.o = cst

e Tilting / shearing of magnetic field:
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e Perturbations in the form of shearing waves:
u = ug + Re{v(t) explik(t) - x|}
B = By + (nop)”*Re {b(t) explik(1) - ]
dk

[T =II o 4 pRe {@Z( ) explik(t) - :1:]} with — = Sk, e,

e Nonlinear terms vanish because

v- Vb =Re[6e*] - VRe [be*®

= Re k v eik'w] Re {15 eik'w}
=0
because V.- v=0 = ik -v=0
and similarly for v- Vv, b- Vv, b-Vb
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e Amplitude equations:
dv,
dt
do,
dt
dv,
dt
db,
dt
db,
dt
db,

dt
ik-D=1ik-b=0

20, — —ikyt) + iwaby — VE2D,

- (2Q — 8)D, = —ikyt) + iwab, — vE>D,
— —ikzﬂ -+ iwagz — vk*D,

W,V — nk21~)

—Sb, + 1wa Uy — nkQI;

— 1w, U, — 77/@2(;

o Alfvén frequency w, =k - v, = (uop) %k -
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e Alfvén frequency is constant:

d d By
—(k-B)) = — -Bn+ k- —2
dt( 0) @ oot dt

= Sk, e, - Bg+ k- (—SByoey)
=0
e Alfvéen frequency measures the restoring effect of magnetic tension
(amount of bending of field lines)
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e General shearing waves require numerical solution

e Consider purely horizontal disturbances with a vertical wavevector:
ky =k, =0 b, =b, =1 =0

e Amplitude equations have constant coefficients

e Solutions o e " | instability if Im(w) > 0

~

—iwd, + (2Q — 8)¥, = iwab, — vk,

—iwl;a; — W, Uy — nk%
—iwI;y — —Sb, + 1w Dy — nkzg
e Set determinant to zero: magnetorotational dispersion relation

(W + ivk?) (w + ink?) — w2]* — 2Q(2Q — 9)(w + ink?)? — 2QSw? = 0
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(W +ivk?)(w +ink?) — w2]? — 2Q(2Q — S)(w + ink*)* — 2QSw? = 0

L J
-~

%2

e Case of zero magnetic field (or no bending of field, w, = 0):

w = +x — ivk? (epicyclic oscillation with viscous damping)
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(W + ivk?) (w + ink?) — w2]* — 2Q(2Q — 9)(w + ink?)? — 2QSw?2 = 0

L J
-~

/-432

e Case ofideal MHD (v =71 =10):

w* — (2w? + KH)w? + wi (w2 — 208) =0

2002\ 1/2
- <1 I 16wz ) )

K4

e Assume that x* > 0, otherwise system is hydrodynamically unstable

e Both roots for w? are real and at least one is positive
e |nstability occurs if and only if product of roots < 0, I.e.
0 < w? <208

(Chandrasekhar’s criterion for “magnetorotational instability / MRI”)
(Velikhov 1959; Chandrasekhar 1960; ... ; Balbus & Hawley 1991)
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e Unstable root:

202\ 1/2
- (1 I 16wz ) )
A

e Maximize growth rate with respect to % :
Ow? 40)° ( 16w20? ) /2 5
= 14 = W

=1

0 —
Ow? K2

K4 a

s 5

= (W) min = so maximum growth rate is >

4
e Keplerian disc: energy grows by exp(37) ~ 12392 per orbit

. [ 16 vq,
e Optimal wavelength 27 T UQ x B,
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v/

0.7
0.6
0.5
0.4
0.3

0.1

ky ks =0

by /KEnat O

2.0

(k- v,)/Q
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e As B, — 0 diffusion becomes more important
e Non-ideal MHD: if v = n (for simplicity) then
W = Wideal — iNk* (reduces growth rate)

e |[f £ can take any value then instability persists for small &
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e Effect of vertical boundaries:

Tir
= — Z
e Suppose k o S

e n = 0 mode gives no instability, so consider n = 1 :

e |nstability in ideal MHD when

2v3
0 < w? <208 = 0< v, < —\fﬂﬂ (Keplerian)
70

Diffusive damping rate of n = 1 mode = n(7/2H)"
deal growth rate ~ w, = v,(7/2H)

nstability occurs for an intermediate range of field strengths,

roughly % < V. S G
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e Summary:
e Hydrodynamic instability when
200(22 — 5) <0  (Rayleigh)
e Magnetohydrodynamic instability (weak field, ideal MHD) when
—205 <0 (Chandrasekhar)
e Paradox of |B| — 0 resolved by going to non-ideal MHD

e |n cylindrical geometry:

d 2 . d
—(r*|92)) <0 (Rayleigh) versus —[Q| <0 (MRI)

e Usual situation in astrophysical discs:
Rayleigh-stable but MRI-unstable
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e Physical interpretation / mechanical analogy:
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o Effective potential ® = —Q.5z? has a maximum at = = 0

e Gyroscopic stabilization is defeated by the tension force,
allowing instability
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Optimal “channel mode”:
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e Nonlinear outcome:

e With imposed magnetic field: sustained MHD turbulence
(intensity depends on imposed magnetic field)

e Without imposed magnetic field: nonlinear dynamo?
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e Mechanisms of activity and angular momentum transport
iIn astrophysical discs:

e Viscous transport

e Hydrodynamic instability
e Vortex dynamics

e Gravitational instability

e Satellite—disc interaction

e Magnetorotational instabillity
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e Viscous transport

e Relevant for planetary rings (macroscopic particles)

e Hydrodynamic instability

e Mostly thought to be absent or ineffective in standard discs
(but controversial)

e Can be present in non-circular or warped discs
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e Vortex dynamics
e Can be effective if vortices can be produced and maintained
e \ortices excite density waves that transport angular momentum
e Production:
e “Baroclinic instability”
e “Rossby vortex instabllity”, etc.
e Destruction:
e Elliptical instabillity, etc.
¢ [nward migration

e May be relevant in protoplanetary discs
(also for planet formation)
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e Gravitational instability
e Occurs in sufficiently massive and cool discs
e May produce turbulence or fragmentation depending on cooling

e Relevant for outer parts of protoplanetary discs
and discs around black holes in active galactic nuclel

e Also relevant for planetary rings

e Satellite—disc interaction

e Embedded or external satellites excite waves and induce
induce angular momentum transport

e Applications are quite specific and localized
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e Magnetorotational instability
e Occurs in sufficiently ionized discs

e Relevant for high-energy (plasma) accretion discs
and for sufficiently ionized layers of protoplanetary discs

e Questions remain over efficiency of dynamo and transport




