
Local approximation

● Shearing sheet / local approximation
(Goldreich & Lynden-Bell 1965)

● Local model of a differentially rotating disc
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Local approximation

● Consider an orbiting reference point with cylindrical coordinates
(r, φ, z) = (r0, φ0 + Ω0t, 0) Ω0 = Ω(r0)

● Use as origin of a local Cartesian coordinate system (x, y, z)

radialx = r − r0

y = r0(φ− φ0 − Ω0t)

z = z

azimuthal

vertical

● Orbital motion appears locally as a uniform rotation
plus a linear shear flow

Ω0 = Ω0 ez

u0 = −S0xey

S = −r
dΩ
dr

rate of orbital shear
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Local approximation

● Effective potential in rotating frame
(different from previous effective potential under             )h = cst

= Φ(r, z)− 1
2Ω2

0r
2

− 1
2Ω2

0(r
2
0 + 2r0x + x2)

= Φ(r0, 0) + Φ,r(r0, 0)x + 1
2Φ,rr(r0, 0)x2 + 1

2Φ,zz(r0, 0)z2

expanded to second order in     andx z

= −Ω0S0x
2 + 1

2Ω2
z0z

2

= cst + 1
2 [∂r(rΩ2)− Ω2]0x2 + 1

2Ω2
z0z

2
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Local approximation

● Particle dynamics in local approximation

ẍ− 2Ω0ẏ = 2Ω0S0x

ÿ + 2Ω0ẋ = 0

z̈ = −Ω2
z0z

● Simple orbital motion:

x = cst

ẏ = −S0x
Coriolis force balances effective potential gradient

● Canonical    momentum (per unit mass):y

● General solution involves horizontal and vertical oscillations

py = ẏ + 2Ω0x = cst

● Plays role of specific angular momentum in local approximation

(Keplerian case
S0 = 3

2Ω0

Ωz0 = Ω0

→“Hill’s equations”)

● Has uniform gradient in simple orbital motion:

(without satellite)

py = (2Ω0 − S0)x
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Local approximation

● Symmetries of local approximation:
(higher than those of original disc!)

● Spatial homogeneity (horizontally):
every point in      plane is equivalent (up to Galiliean boost) xy

● Rotation by     about    axisπ z
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Local approximation

Rotational symmetry

● No accretion flow therefore expected

● Local model knows about      (and     ) but not aboutΩ S r

! Ω! Ω

● Direction to central object cannot be determined
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Local approximation

● Boundary conditions of shearing sheet

● Horizontally unbounded or apply (modified) periodic
boundary conditions

● Vertical structure:

● Ignore     completely (2D shearing sheet)z

● Neglect vertical gravity: homogeneous in

● Include vertical gravity: isothermal, radiative, etc. models

z
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Incompressible fluid dynamics in shearing sheet

● Homogeneous incompressible fluid

● 3D system, unbounded or periodic in x, y, z

∂u

∂t
+ u · ∇u + 2Ω0 × u = −∇Φ− 1

ρ
∇p + ν∇2u

● Uniform kinematic viscosity     [discuss its role]ν

∇ · u = 0

● Effective potential Φ = −Ω0S0x
2 + 1

2Ω2
z0z

2

neglect (balanced
by pressure gradient)

● Basic state:

u = u0 = −S0xey

p = p0 = cst

● Uniform viscous stress, but no divergence and so no accretion flow
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Incompressible fluid dynamics in shearing sheet

● Perturbations (not necessarily small):

p = p0 + p′(x, y, z, t)

u = u0 + v(x, y, z, t)

∂v

∂t
+ u0 · ∇v + v · ∇u0 + v · ∇v + 2Ω0 × v = −1

ρ
∇p′ + ν∇2v

∇ · v = 0

● Now drop the subscript    on       and      and let                 :0 Ω0 S0

(
∂

∂t
− Sx

∂

∂y
+ v · ∇

)
vy + (2Ω− S)vx = −∂ψ

∂y
+ ν∇2vy

(
∂

∂t
− Sx

∂

∂y
+ v · ∇

)
vx − 2Ωvy = −∂ψ

∂x
+ ν∇2vx

(
∂

∂t
− Sx

∂

∂y
+ v · ∇

)
vz = −∂ψ

∂z
+ ν∇2vz

ψ = p′/ρ
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Incompressible fluid dynamics in shearing sheet

● Shearing waves (after Kelvin / Thomson 1887):

● Consider a plane-wave disturbance of the form

v(x, t) = Re {ṽ(t) exp[ik(t) · x]}

time-dependent wavevector● Then
(

∂

∂t
− Sx

∂

∂y

)
v = Re

{[
dṽ

dt
+

(
i
dk

dt
· x− Sx iky

)
ṽ

]
exp[ik(t) · x]

}

● If we choose

dk

dt
= Sky ex

then two terms cancel and we are left with
dṽ

dt
● This means

ky = cst kz = cstkx = kx0 + Skyt
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ψ(x, t) = Re
{

ψ̃(t) exp[ik(t) · x]
}



Incompressible fluid dynamics in shearing sheet

ky = cst kz = cstkx = kx0 + Skyt

● Tilting / shearing of wavefronts: x

y
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Incompressible fluid dynamics in shearing sheet

ky = cst kz = cstkx = kx0 + Skyt

x

y

kx

ky

● Dual shear flow in Fourier space:
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Incompressible fluid dynamics in shearing sheet

● Furthermore

v · ∇v = Re
[
ṽ eik·x]

· ∇ Re
[
ṽ eik·x]

= 0

∇ · v = 0 ⇒ ik · ṽ = 0because

● Special result for incompressible fluid

● Nonlinearity doesn’t vanish for a superposition of shearing waves

© GIO 2011

= Re
[
k · ṽ eik·x]

Re
[
iṽ eik·x]



Incompressible fluid dynamics in shearing sheet

● Amplitude equations for shearing waves:

dṽy

dt
+ (2Ω− S)ṽx = −ikyψ̃ − νk2ṽy

dṽx

dt
− 2Ωṽy = −ikxψ̃ − νk2ṽx

dṽz

dt
= −ikzψ̃ − νk2ṽz

k2 = |k|2

ik · ṽ = 0

● Viscous terms are taken care of by a viscous decay factor

Eν(t) = exp
(
−

∫
νk2 dt

)

= exp
{
−ν

[
(k2

x0 + k2
y + k2

z)t + Skx0kyt2 + 1
3S2k2

yt3
]}

● Faster than exponential decay if ky != 0
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Incompressible fluid dynamics in shearing sheet

● Write                                                  to obtain inviscid problem

● Eliminate variables in favour of      to obtain (after algebra)

ṽ = Eν(t)v̂(t), ψ̃ = Eν(t)ψ̂(t)

dv̂z

dt
= −ikzψ̂

dv̂y

dt
+ (2Ω− S)v̂x = −ikyψ̂

dv̂x

dt
− 2Ωv̂y = −ikxψ̂

ik · v̂ = 0

v̂x

d2

dt2
(k2v̂x) + κ2k2

z v̂x = 0 κ2 = 2Ω(2Ω− S)
square of epicyclic frequency
in local approximation
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Incompressible fluid dynamics in shearing sheet

d2

dt2
(k2v̂x) + κ2k2

z v̂x = 0

● Analysis of axisymmetric/unsheared waves               :(ky = 0)

● Constant coefficients, so exponential / sinusoidal solutions

● Oscillations (inertial waves) if κ2 > 0

● Exponential growth if

● Inviscid case:

κ2 < 0

● With viscosity, include factor                             :Eν = exp(−νk2t)

● Damped oscillations if κ2 > 0

● Unstable to sufficiently long wavelengths if κ2 < 0
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Incompressible fluid dynamics in shearing sheet

d2

dt2
(k2v̂x) + κ2k2

z v̂x = 0

● Analysis of non-axisymmetric/sheared waves               :

● Non-constant coefficients; solutions involve Legendre functions

● Asymptotic behaviour as             :

(ky != 0)

t→∞

k2 ∼ k2
x ∼ S2k2

yt2

● ODE has regular singular point at            :t =∞
v̂x ∝ tσ

● Indicial equation:

(σ + 2)(σ + 1)S2k2
y + κ2k2

z = 0

σ = −3
2
±

(
1
4
− κ2k2

z

S2k2
y

)1/2

(v̂y ∝ tσ+1, v̂z ∝ tσ+1, ψ̂ ∝ tσ)
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Incompressible fluid dynamics in shearing sheet

● Three cases to consider:

v̂x ∝ tσ

σ = −3
2
±

(
1
4
− κ2k2

z

S2k2
y

)1/2

(v̂y ∝ tσ+1, v̂z ∝ tσ+1, ψ̂ ∝ tσ)

●                                 :                                    :κ2 > (k2
y/k2

z)(S2/4)

0 < κ2 < (k2
y/k2

z)(S2/4)

κ2 < 0

σ = − 3
2 + imaginary

●                                        :               :σ < −1 |v̂|2 ∝ t2(σ+1) → 0

|v̂|2 ∝ t−1 → 0

●             : one root has              :σ > −1 |v̂|2 ∝ t2(σ+1) →∞

● Therefore inviscid solutions decay when
but grow (in energy norm) when

κ2 > 0
κ2 < 0

● When          , viscous decay factor       kills off any algebraic growthEνν > 0
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Incompressible fluid dynamics in shearing sheet

● Special case of non-rotating shear flow (plane Couette flow)

● Eliminate variables in favour of      to obtain (after algebra)

ik · v̂ = 0

v̂x

dv̂x

dt
= −ikxψ̂

dv̂z

dt
= −ikzψ̂

dv̂y

dt
− Sv̂x = −ikyψ̂

d
dt

(k2v̂x) = 0
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Incompressible fluid dynamics in shearing sheet

● Generic non-axisymmetric disturbances              :(ky != 0)

v̂x ∝ k−2 , ψ̂ ∝ k−4

● As             :t→∞
v̂x ∝ t−2 v̂y → cst, v̂z → cst

● Generic axisymmetric disturbances              :(ky = 0)

ψ̂ = 0 v̂x = cst , v̂z = cst , dv̂y/dt = Sv̂x

● Algebraic growth tempered by viscous decay

● Kinetic energy grows by a factor               in a timeO(Re)2 O(Re)

● Reynolds number Re = S/νk2

● This mechanism plays an essential role in the transition
to turbulence in non-rotating shear flows but is suppressed
in rotating shear flows because of inertial oscillations
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Incompressible fluid dynamics in shearing sheet

● Summary:

● rotating shear flow is linearly stable when

● rotating shear flow is linearly unstable when κ2 < 0

κ2 > 0

● Agrees with stability of circular test-particle orbits

● Agrees with Rayleigh’s criterion for the linear stability of a
cylindrical shear flow                       to axisymmetric perturbationsu = rΩ(r) eφ

● The case             (either non-rotating shear flow or one with uniformκ2 = 0
specific angular momentum) is marginally Rayleigh-stable and
allows algebraic growth in the absence of viscosity

● [Discussion of laboratory experiments and numerical simulations]
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Incompressible fluid dynamics in shearing sheet

● 2D incompressible dynamics

(
∂

∂t
− Sx

∂

∂y
+ v · ∇

)
vy + (2Ω− S)vx = −∂ψ

∂y
+ ν∇2vy

(
∂

∂t
− Sx

∂

∂y
+ v · ∇

)
vx − 2Ωvy = −∂ψ

∂x
+ ν∇2vx

∂vx

∂x
+

∂vy

∂y
= 0

● Introduce streamfunction               :χ(x, y, t) vx =
∂χ

∂y
, vy = −∂χ

∂x
● Instantaneous streamlines are curves χ = cst

● Vorticity perturbation

∇× v =
(

∂vy

∂x
− ∂vx

∂y

)
ez = (−∇2χ)ez = ζ ez
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Incompressible fluid dynamics in shearing sheet

● Curl of equation of motion (to eliminate pressure):
(

∂

∂t
− Sx

∂

∂y
+ v · ∇

)
ζ − S

∂vy

∂y
+

∂vx

∂x

∂vy

∂x
+

∂vy

∂x

∂vy

∂y

+(2Ω− S)
∂vx

∂x
− ∂vx

∂y

∂vx

∂x
− ∂vy

∂y

∂vx

∂y
+ 2Ω

∂vy

∂y
= ν∇2ζ

● Can also be written using Jacobian:
(

∂

∂t
− Sx

∂

∂y

)
ζ =

∂(χ, ζ)
∂(x, y)

+ ν∇2ζ

● Total absolute vorticity is (2Ω− S + ζ) ez

● Solve in conjunction with Poisson equation ∇2χ = −ζ

● Coriolis force drops out of 2D incompressible dynamics!

● Too constrained to allow epicyclic motion / inertial oscillations

● Pure vortex dynamics with background shear
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Incompressible fluid dynamics in shearing sheet

● Multiply by     to obtain enstrophy equation

(
∂

∂t
− Sx

∂

∂y
+ v · ∇

)
ζ = ν∇2ζ

ζ
(

∂

∂t
− Sx

∂

∂y
+ v · ∇

) (
1
2
ζ2

)
= νζ∇2ζ

= ∇ · (νζ∇ζ)− ν|∇ζ|2

● With suitable boundary conditions,

d
dt

∫
1
2
ζ2 dA = −

∫
ν|∇ζ|2 dA

so enstrophy decays

● To maintain vorticity perturbations in the presence of viscosity
requires baroclinic or 3D effects or other source terms
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Incompressible fluid dynamics in shearing sheet

● Shearing-wave solutions                                                     :

(
∂

∂t
− Sx

∂

∂y
+ v · ∇

)
ζ = ν∇2ζ

ζ(x, t) = Re
{

ζ̃(t) exp[ik(t) · x]
}

dζ̃

dt
= −νk2ζ̃

ζ̃ ∝ Eν(t)

(nonlinear term vanishes)

● Kinetic energy ∝ |ṽ|2 ∝ k−2|ζ̃|2 ∝ k−2E2
ν
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0.2

0.4
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0.8

1.0
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0.2
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St St

νk2
y

S
= 0

νk2
y

S
= 0.01
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Incompressible fluid dynamics in shearing sheet

● Elliptical vortex patches

● Set           .  Can vorticity resist shear (nonlinear effect)?ν = 0

● Vortex patch: contour dynamics:

ζ = ζ0

= cst

ζ = 0
Dζ

Dt
= 0

ζ → v → advection of contour (by                        )u = v − Sxey

● Do steady solutions exist?
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Incompressible fluid dynamics in shearing sheet

● Elliptical vortex patch

● Kirchhoff:     induced by      causes ellipse to rotate

a b θ x

y

ζ0

v ζ0

with angular velocity θ̇ =
ab ζ0

(a + b)2

● Shear                       deforms the ellipse according tou0 = −Sxey

ȧ

a
= − ḃ

b
= S sin θ cos θ θ̇ =

S(b2 cos2 θ − a2 sin2 θ)
a2 − b2
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Incompressible fluid dynamics in shearing sheet

● Combine effects:

ȧ

a
= − ḃ

b
= S sin θ cos θ

θ̇ =
S(b2 cos2 θ − a2 sin2 θ)

a2 − b2
+

ab ζ0

(a + b)2

● Area         is conserved.  Rewrite in terms of aspect ratio            :πab r =
a

b
ṙ

r
= 2S sin θ cos θ

θ̇ =
S(cos2 θ − r2 sin2 θ)

r2 − 1
+

r ζ0

(r + 1)2

● 2D autonomous dynamical system

● Chaplygin (1899); Moore & Saffman (1971); Kida (1981)

● Note that      is the vorticity perturbation relative to the backgroundζ0

© GIO 2011



Incompressible fluid dynamics in shearing sheet

● Fixed points:

ṙ

r
= 2S sin θ cos θ

θ̇ =
S(cos2 θ − r2 sin2 θ)

r2 − 1
+

r ζ0

(r + 1)2

θ = 0 without loss of generality (let           if need be)r < 1

S

r2 − 1
+

r ζ0

(r + 1)2
= 0 ⇒ ζ0

S
= − (r + 1)

r(r − 1)

a b θ x

y

ζ0

0.5 1.0 1.5 2.0 2.5 3.0

!20

!10

10

20

r

ζ0

S
cyclonic

anticyclonic
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Incompressible fluid dynamics in shearing sheet

● Stability of fixed point           : linearized equations:θ = 0

δ̇r = 2Sr δθ

δ̇θ = S δr
∂

∂r

[
1

r2 − 1
+

r

(r + 1)2
ζ0

S

]
= S δr

∂f

∂r

f = 0(          at equilibrium)

⇒ δ̈r = 2S2r
∂f

∂r
δr

● Unstable if                 , i.e.

∂f

∂r
= − (r2 + 2r − 1)

r(r2 − 1)2

∂f

∂r
> 0

∂f

∂r
< 0

r <
√

2− 1

r >
√

2− 1● Stable if                , i.e.

● Other instabilities exist, e.g. elliptical instability (3D)
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Incompressible fluid dynamics in shearing sheet

0.5 1.0 1.5 2.0 2.5 3.0

!20

!10

10

20

r

ζ0

S

cyclonic

anticyclonic
stable

stableunstable
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Incompressible fluid dynamics in shearing sheet

● Particle dynamics in core of steady elliptical vortex

a
b x

y
● Total streamfunction

∝ x2

b2
+

y2

a2

∝ r2x2 + y2

u ∝ (y,−r2x)so

● Let u = A
(y

r
,−rx

)

(∇× u)z = −A

(
1
r

+ r

)
= −S + ζ0 = − (r2 + 1)

r(r − 1)
S

⇒ A =
S

r − 1

(nested elliptical streamlines)
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Incompressible fluid dynamics in shearing sheet

● Motion of particle subject to drag force:

ẍ− 2Ωẏ = 2ΩSx− γ(ẋ− ux)

ÿ + 2Ωẋ = −γ(ẏ − uy)

u = A
(y

r
,−rx

)

A =
S

r − 1● Linear system: solutions                  :x, y ∝ eλt

(λ2 − 2ΩS + γλ)x = (2Ωλ + γAr−1)y

(λ2 + γλ)y = −(2Ωλ + γAr)x

(λ2 − 2ΩS + γλ)(λ2 + γλ) + (2Ωλ + γAr−1)(2Ωλ + γAr) = 0

© GIO 2011

λ4 + 2γλ3 + (κ2 + γ2)λ2 − 2Ωζ0γλ + γ2A2 = 0

λ4 + 2γλ3 + (4Ω2 − 2ΩS + γ2)λ2 +
[
−2ΩS + 2ΩA(r + r−1)

]
γλ + γ2A2 = 0



Incompressible fluid dynamics in shearing sheet

● Limit of small     (weak drag; large particles):γ

λ ∼ ±iκ + c1γ + O(γ2) c1 = −1− Ωζ0

κ2

λ ∼ c2γ + O(γ2) c2 =
Ωζ0

κ2
±

(
Ω2ζ2

0

κ4
− A2

κ2

)1/2

●

●

● For stability (decay to centre), require

−κ2 < Ωζ0 < 0 (must be anticyclonic)

● Limit of large     (strong drag; small particles):γ

●
● λ ∼ ±iA + c4γ

−1 + O(γ−2)

c3 = −1λ ∼ c3γ + O(1)

c4 = Ωζ0 + A2

● For stability (decay to centre), require

Ωζ0 < −A2
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λ4 + 2γλ3 + (κ2 + γ2)λ2 − 2Ωζ0γλ + γ2A2 = 0



Incompressible fluid dynamics in shearing sheet

● For general   , when does marginal stability occur?γ

●             : neverλ = 0

●                                         :λ = −iω, ω ∈ R, ω #= 0

ω4 − (κ2 + γ2)ω2 + γ2A2 = 0

⇒ ω2 = −Ωζ0 (> 0)

2γω3 + 2Ωζ0γω = 0

(Ωζ0)2 + (κ2 + γ2)Ωζ0 + γ2A2 = 0

(must be anticyclonic)

● LHS is negative for all    , so all particles decay to centre, ifγ

A2 < −Ωζ0 < κ2 (agrees with two limits considered)

S2

(r − 1)2
<

(r + 1)ΩS

r(r − 1)
< 2Ω(2Ω− S)
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Incompressible fluid dynamics in shearing sheet

● Keplerian disc:

S2

(r − 1)2
<

(r + 1)ΩS

r(r − 1)
< 2Ω(2Ω− S)

9
4

1
(r − 1)2

<
3
2

(r + 1)
r(r − 1)

< 1

⇒ r > 3
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2D compressible dynamics in shearing sheet

● 2D compressible sheet: inviscid, self-gravitating

● Surface density

● 2D pressure

Σ(x, y, t)

P (x, y, t)

● Relate to vertically integrated quantities

but only a model, not derivable exactly from 3D equations

∫
ρ dz,

∫
p dz

● Basic equations:

∂Σ
∂t

+ ∇ · (Σu) = 0

∂u

∂t
+ u · ∇u + 2Ω× u = −∇Φ−∇Φd,m −

1
Σ

∇P

Φ = −ΩSx2

● Assume barotropic relation                   for simplicityP = P (Σ)

● Disc potential                      satisfiesΦd(x, y, z, t) ∇2Φd = 4πGΣ δ(z)

● Then evaluate in midplane: Φd,m(x, y, t) = Φd(x, y, 0, t)
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2D compressible dynamics in shearing sheet

● Solve Poisson’s equation in Fourier domain:

∇2Φd = 4πGΣ δ(z)

etc.

⇒
(
−k2 +

∂2

∂z2

)
Φ̃d = 4πGΣ̃ δ(z)

⇒ Φ̃d = −2πGΣ̃
k

e−k|z| (k #= 0)

⇒ Φ̃d,m = −2πGΣ̃
k

k = (k2
x + k2

y)1/2

[
∂Φ̃d

∂z

]0+

0−

= 4πGΣ̃so that

●            component gives no horizontal force anywayk = 0
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Σ̃(kx, ky, t) =
∫ ∞

−∞

∫ ∞

−∞
Σ(x, y, t) e−ikxx−ikyy dxdy



2D compressible dynamics in shearing sheet

● Conservation of potential vorticity / “vortensity”:
∂u

∂t
+ u · ∇u + 2Ω× u = −∇Φ−∇Φd,m −

1
Σ

∇P

(∇× u)× u = u · ∇u−∇( 1
2 |u|2)● Use identity                                                          :

P = P (Σ)since

● Use identity                                                                                            :

∂u

∂t
+ [(2Ω + ∇× u)× u] = ∇(· · · )

∂

∂t
(∇× u) + ∇× [(2Ω + ∇× u)× u] = 0

since 2D

⇒ Dq

Dt
= 0 q =

2Ω + (∇× u)z

Σ
where

© GIO 2011

∇× (A×B) = B · ∇A−A · ∇B + A(∇ · B)−B(∇ · A)
(

∂

∂t
+ u · ∇

)
(2Ω + ∇× u) = −(2Ω + ∇× u)(∇ · u)

= (2Ω + ∇× u)
1
Σ

(
∂

∂t
+ u · ∇

)
Σ



2D compressible dynamics in shearing sheet

● Conservation of potential vorticity / “vortensity”:

q =
2Ω + (∇× u)z

Σ
where

Dq

Dt
= 0

● Recall                            :u = −Sxey + v
(

∂

∂t
− Sx

∂

∂y
+ v · ∇

)
q = 0 q =

2Ω− S + (∇× v)z

Σ

● Unlike incompressible 2D case, vortex dynamics not the whole story

© GIO 2011

● Vortical disturbances are coupled to acoustic ones



2D compressible dynamics in shearing sheet

● Linear stability of uniform 2D self-gravitating sheet

● Basic state: Σ = cst, u = −Sxey

● Linearized equations for perturbations            etc.:Σ′, v,

∂Σ
∂t

+ ∇ · (Σu) = 0

∂u

∂t
+ u · ∇u + 2Ω× u = −∇Φ−∇Φd,m −

1
Σ

∇P

Φ = −ΩSx2

∇2Φd = 4πGΣ δ(z)

(
∂

∂t
− Sx

∂

∂y

)
Σ′ + Σ∇ · v = 0

(
∂

∂t
− Sx

∂

∂y

)
v − Svx ey + 2Ω× v = −∇Φ′

d,m −
1
Σ

∇P ′

∇2Φ′
d = 4πGΣ′ δ(z)

P ′ = v2
s Σ′

vssound speed
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2D compressible dynamics in shearing sheet

● Solutions are shearing waves:

Σ′(x, t) = Re
{

Σ̃′(t) exp[ik(t) · x]
}

etc.

● Amplitude equations:

dΣ̃′

dt
+ Σ ik · ṽ = 0

dṽx

dt
− 2Ωṽy = −ikx

(
Φ̃′

d,m + v2
s
Σ̃′

Σ

)

dṽy

dt
+ (2Ω− S)ṽx = −iky

(
Φ̃′

d,m + v2
s
Σ̃′

Σ

)

Φ̃′
d,m = −2πGΣ̃′

k

● Vortensity perturbation q̃′ =
ikxṽy − iky ṽx

Σ
− (2Ω− S)Σ̃′

Σ2

satisfies                as expected [exercise]
dq̃′

dt
= 0
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2D compressible dynamics in shearing sheet

● Consider axisymmetric waves:

● Amplitudes ∝ e−iωt

−iωΣ̃′ + Σ ikxṽx = 0

−iωṽx − 2Ωṽy = −ikx

(
v2
s −

2πGΣ
|kx|

)
Σ̃′

Σ

ky = 0, kx = cst, k = |kx|

−iωṽy + (2Ω− S)ṽx = 0

● Multiply second equation by       and eliminate      and      :iω Σ̃′ ṽy

ω2ṽx − 2Ω(2Ω− S)ṽx = k2
x

(
v2
s −

2πGΣ
|kx|

)
ṽx

● Deduce dispersion relation for “density waves”:

ω2 = κ2 − 2πGΣ|kx| + v2
s k2

x

● Also vortical solution                         : zonal flow / geostrophic flowω = 0, ṽx = 0
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2D compressible dynamics in shearing sheet

● Dispersion relation for density waves:

ω2 = κ2 − 2πGΣ|kx| + v2
s k2

x

inertial acoustic (restoring forces)

self-gravity (destabilizing)

● “Acoustic-inertial waves”

● Disc is unstable to axisymmetric disturbances if              for someω2 < 0 kx

●       is minimized with respect to       when|kx|ω2

0 = −2πGΣ +2 v2
s |kx| ⇒ |kx| =

πGΣ
v2
s

(ω2)min = κ2 − (πGΣ)2

v2
s

= κ2

(
1− 1

Q2

)

● Gravitational instability if            , whereQ < 1 Q =
vsκ

πGΣ
(Toomre stability parameter)
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2D compressible dynamics in shearing sheet

● Gravitational instability if            , whereQ < 1 Q =
vsκ

πGΣ
● Toomre stability parameter     :Q

● An inverse measure of self-gravity

● A measure of temperature

Q =
vsκ

πGΣ

product of stabilizing effects
(short and long scales)

destabilizing effect

© GIO 2011
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ω̂

κ

k
vs

κ

Q =∞
Q = 2

Q = 1

Q =
vsκ

πGΣ
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2D compressible dynamics in shearing sheet

● Occurrence of gravitational instability:

● If            , disc tends to form ringsQ < 1
(axisymmetric instability, exponential growth)

● If                      , disc tends to form spiral waves or clumps1 < Q ! 1.5
(non-axisymmetric instability, transient growth)

● Since                         , thermostatic regulation is possible:Q ∝ vs ∝ T 1/2

instability → motion → dissipation (shock/viscous) → heating

● Two possible outcomes of gravitational instability:

● Fragmentation: formation of gravitationally bound objects
(clumps...moonlets / planets / stars)

● Gravitational turbulence: sustained activity of non-axisymmetric
density waves (e.g. “self-gravity wakes” in Saturn’s rings)

● Efficient cooling promotes fragmentation, or enhances the efficiency
of gravitational turbulence, since cooling balances viscous heating

© GIO 2011



Satellite–disc interaction

● Common problem:

● Orbiting companion, e.g. on circular orbit within disc

● Gravitational (rather than hydrodynamic) interaction with disc

● Perturbs orbital motion and excites waves

● Calculate exchanges of energy and angular momentum

● Determine orbital evolution of satellite (migration, etc.)

© GIO 2011



Satellite–disc interaction

● Test particle dynamics in       plane, in local approximationxy

(fluid dynamics more difficult, but results are similar in some ways)

ÿ + 2Ωẋ = −∂Ψ
∂y

● Satellite on circular orbit at reference radius                      :

Ψ = −GMs(x2 + y2)−1/2

(xs = ys = 0)

ẍ− 2Ωẏ = 2ΩSx− ∂Ψ
∂x

© GIO 2011



Satellite–disc interaction

ÿ + 2Ωẋ = −∂Ψ
∂y

● General solution in absence of satellite potential:

ẍ− 2Ωẏ = 2ΩSx− ∂Ψ
∂x

...
x = −4Ω2ẋ + 2ΩSẋ = −κ2ẋ

● Guiding centre

⇒ x = x0 + Ar cos κt + Ai sinκt = x0 + Re
[
A e−iκt

]

A = Ar + iAi● Complex epicyclic amplitude

y = y0 − Sx0t−
2Ω
κ

Re
[
iA e−iκt

]

(x0, y0 − Sx0t)
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Satellite–disc interaction

● To express “orbital elements” in terms of position and velocity:

⇒ A =
[
−2Ω

κ2
(ẏ + Sx) +

iẋ
κ

]
eiκt

x = x0 + Re
[
A e−iκt

]

ẋ = Re
[
−iκA e−iκt

]
= κ Im

[
A e−iκt

]

ẍ = −κ2 Re
[
A e−iκt

]

⇒ A e−iκt = − ẍ

κ2
+

iẋ
κ

x0 = x +
ẍ

κ2
= x +

2Ω
κ2

(ẏ + Sx) =
2Ω
κ2

(ẏ + 2Ωx)
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Satellite–disc interaction

● Canonical    momentum (per unit mass):y

py = ẏ + 2Ωx =
κ2

2Ω
x0 = cst

● Energy (per unit mass):

ε =
1
2
(ẋ2 + ẏ2)− ΩSx2

κ2|A|2 = ẋ2 +
4Ω2

κ2
(ẏ + Sx)2

ε =
1
2
κ2|A|2 − 2Ω2

κ2
(ẏ + Sx)2 +

1
2
ẏ2 − ΩSx2

=
1
2
κ2|A|2 − ΩS

κ2
(ẏ + 2Ωx)2

=
1
2
κ2|A|2 − ΩS

κ2
p2

y = cst

● Use                                                :
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Satellite–disc interaction

● In the presence of a satellite potential: 

ṗy = −∂Ψ
∂y

ε + Ψ = cst

Ȧ =
[
−2Ω

κ2
(ÿ + Sẋ) +

iẍ
κ
− 2iΩ

κ
(ẏ + Sx)− ẋ

]
eiκt

=
[
−2Ω

κ2
(ÿ + 2Ωẋ) +

i
κ

(ẍ− 2Ωẏ − 2ΩSx)
]

eiκt

=
(

2Ω
κ2

∂Ψ
∂y

− i
κ

∂Ψ
∂x

)
eiκt
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Satellite–disc interaction

● Consider the unperturbed “circular” orbit (          )

x = x0 = cst

y = −Sx0t

A = 0

● Calculate        in linear approximation:∆A

Ȧ =
(

2Ω
κ2

∂Ψ
∂y

− i
κ

∂Ψ
∂x

)
eiκt Ψ = −GMs(x2 + y2)−1/2

= GMs(x2 + y2)−3/2

(
2Ωy

κ2
− ix

κ

)
eiκt

≈ −i
GMs

κx2
0

(1 + S2t2)−3/2

(
1− i

2Ω
κ

St

)
eiκt

= −i
GMs

κx2
0

∫ ∞

−∞
(1 + S2t2)−3/2

(
cos κt +

2Ω
κ

St sin κt

)
dt

∆A =
∫ ∞

−∞
Ȧ dt
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Satellite–disc interaction

∆A = −i
GMs

κx2
0

∫ ∞

−∞
(1 + S2t2)−3/2

(
cos κt +

2Ω
κ

St sinκt

)
dt

● Let f(k) =
∫ ∞

−∞
(1 + x2)−3/2 cos kxdx = 2kK1(k) (k > 0)

modified Bessel function

● Then

∆A = −iC
GMs

κSx2
0

C = f
( κ

S

)
− 2Ω

κ
f ′

( κ

S

)

C ≈ 3.359κ/S = 2/3● For Keplerian orbits (                 ),

● So encounter with satellite excites an epicyclic oscillation
at first order
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Satellite–disc interaction

● Long before and after the encounter, Ψ→ 0

● Since           is exactly conserved,              in the encounterε + Ψ ∆ε = 0

ε =
1
2
κ2|A|2 − ΩS

κ2
p2

y● But                                    , so ∆(p2
y) =

κ4

2ΩS
∆(|A|2)

● Assume a “circular” orbit before the encounter:

A = 0, py =
κ2

2Ω
x0

● Then, after the encounter:

A ≈ −iC
GMs

κSx2
0

, p2
y ≈

κ4

4Ω2
x2

0 +
κ4

2ΩS

(
C

GMs

κSx2
0

)2

⇒ py ≈
κ2

2Ω
x0 +

(CGMs)2

2S3x5
0

∆py

{

correct to second order

● Irreversibility / dissipation implicit in assuming circular initial orbit
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Satellite–disc interaction
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Satellite–disc interaction

● Simplified version: “impulse approximation”

x0

Sx0

∆(v2
⊥) + ∆(v2

‖) = 0

∆v‖ ≈ −
(GMs)2

2S3x5
0

∆v⊥ ≈
GMs

x2
0

1
S

(
GMs

Sx2
0

)2

+ 2Sx0∆v‖ ≈ 0

(energy)

(lacks      factor)C2

Ms
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Satellite–disc interaction

●     force on disc per unit     at location    :y x x

=
(CGMs)2

2S3x5
Σ |Sx|

encounter rate
surface density

∝ x−4 sgn(x)

● Torque per unit radius is the same ×r0

● Satellite experiences an equal an opposite torque

● Effect is of second order in

● Similar result for density waves (response of a fluid disc)

Ms

●        divergence is moderated within              (or Hill radius)x−4 |x| ! H
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Satellite–disc interaction

● Gravitational interaction is “repulsive”!

transfer of      (or angular momentum)py

● One-sided torque leads to gap opening if       large enough Ms

and     small enoughν

● Asymmetry leads to net torque on satellite and to migration
(usually inwards)
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Satellite–disc interaction

● Now include periodic nature of    coordinate                     :y (Ly = 2πr0)

Ȧ =
(

2Ω
κ2

∂Ψ
∂y

− i
κ

∂Ψ
∂x

)
eiκt

= F (t) eiκt

=
∞∑

n=−∞
fn e−inωt eiκt

● Long-term response:

A =
∞∑

n=−∞

ifn e−inωt eiκt

(nω − κ) + iγ

● Add damping of epicyclic motion:

Ȧ =
∞∑

n=−∞
fn e−inωt eiκt − γA

● “Lindblad resonances” where                  , resolved by damping

T =
2πr0

S|x0|

ω =
2π

T
=

S|x0|
r0

x

r0
=

1
n

κ

S

© GIO 2011



Satellite–disc interaction

● Lindblad resonances:

● In a fluid disc, density waves are launched there
(wave emission resolves singularity in response)

● In a Keplerian disc, LRs correspond to orbital commensurabilities
Ω
Ω0

=
n

n− 1

x

r0
=

1
n

κ

S
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● Homogeneous incompressible fluid

● 3D system, unbounded or periodic in x, y, z

● Uniform kinematic viscosity     and magnetic diffusivityν

∇ · u = 0

● Effective potential

neglect (balanced
by pressure gradient)

● Basic state:

Magnetorotational instability

η

● Local approximation (shearing sheet / box)

∇ · B = 0

∂B

∂t
+ u · ∇B = B · ∇u + η∇2B Π = p +

|B|2

2µ0

Π =Π 0 = cst

B = B0(t) with

∂u

∂t
+ u · ∇u + 2Ω× u = −∇Φ− 1

ρ
∇Π +

1
µ0ρ

B · ∇B + ν∇2u

Φ = −ΩSx2 + 1
2Ω2

zz
2

u = u0 = −Sxey
dB0

dt
= −SBx0 ey

Bz0 = cstBx0 = cst By0 = cst− SBx0t
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● Tilting / shearing of magnetic field: x

y

Magnetorotational instability

Bz0 = cstBx0 = cst By0 = cst− SBx0t
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● Perturbations in the form of shearing waves:

● Nonlinear terms vanish because

dk

dt
= Sky exwith

= 0

∇ · v = 0 ⇒ ik · ṽ = 0because

v · ∇b = Re
[
ṽ eik·x]

· ∇ Re
[
b̃ eik·x

]

and similarly for v · ∇v, b · ∇v, b · ∇b

Magnetorotational instability

u = u0 + Re {ṽ(t) exp[ik(t) · x]}

B = B0 + (µ0ρ)−1/2Re
{

b̃(t) exp[ik(t) · x]
}

Π =Π 0 + ρ Re
{

ψ̃(t) exp[ik(t) · x]
}

© GIO 2011

= Re
[
k · ṽ eik·x]

Re
[
ib̃ eik·x

]



● Amplitude equations:

dṽx

dt
− 2Ωṽy = −ikxψ̃ + iωab̃x − νk2ṽx

dṽy

dt
+ (2Ω− S)ṽx = −ikyψ̃ + iωab̃y − νk2ṽy

dṽz

dt
= −ikzψ̃ + iωab̃z − νk2ṽz

db̃x

dt
= iωaṽx − ηk2b̃x

db̃z

dt
= iωaṽz − ηk2b̃z

db̃y

dt
= −Sb̃x + iωaṽy − ηk2b̃y

ik · ṽ = ik · b̃ = 0

● Alfvén frequency ωa = k · va = (µ0ρ)−1/2k · B0

Magnetorotational instability © GIO 2011



● Alfvén frequency is constant:

● Alfvén frequency measures the restoring effect of magnetic tension

d
dt

(k · B0) =
dk

dt
· B0 + k · dB0

dt

= Sky ex · B0 + k · (−SBx0 ey)

= 0

Magnetorotational instability

(amount of bending of field lines)
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● General shearing waves require numerical solution

● Consider purely horizontal disturbances with a vertical wavevector:

kx = ky = 0 ṽz = b̃z = ψ̃ = 0

● Amplitude equations have constant coefficients

● Solutions               , instability if∝ e−iωt Im(ω) > 0

Magnetorotational instability

−iωṽx − 2Ωṽy = iωab̃x − νk2ṽx

−iωṽy + (2Ω− S)ṽx = iωab̃y − νk2ṽy

−iωb̃x = iωaṽx − ηk2b̃x

−iωb̃y = −Sb̃x + iωaṽy − ηk2b̃y

● Set determinant to zero: magnetorotational dispersion relation

[(ω + iνk2)(ω + iηk2)− ω2
a ]2 − 2Ω(2Ω− S)(ω + iηk2)2 − 2ΩSω2

a = 0{

κ2
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● Case of zero magnetic field (or no bending of field,            ):

Magnetorotational instability

[(ω + iνk2)(ω + iηk2)− ω2
a ]2 − 2Ω(2Ω− S)(ω + iηk2)2 − 2ΩSω2

a = 0{

κ2

ωa = 0

ω = ±κ− iνk2 (epicyclic oscillation with viscous damping)
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Magnetorotational instability

[(ω + iνk2)(ω + iηk2)− ω2
a ]2 − 2Ω(2Ω− S)(ω + iηk2)2 − 2ΩSω2

a = 0{

κ2

● Case of ideal MHD (                 ):ν = η = 0

ω4 − (2ω2
a + κ2)ω2 + ω2

a(ω2
a − 2ΩS) = 0

⇒ ω2 = ω2
a +

1
2
κ2

[
1±

(
1 +

16ω2
aΩ2

κ4

)1/2
]

● Assume that            , otherwise system is hydrodynamically unstableκ2 > 0

● Both roots for      are real and at least one is positiveω2

● Instability occurs if and only if product of roots        , i.e.< 0

0 < ω2
a < 2ΩS

(Chandrasekhar’s criterion for “magnetorotational instability / MRI”)
(Velikhov 1959; Chandrasekhar 1960; ... ; Balbus & Hawley 1991)
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Magnetorotational instability

● Unstable root:

ω2 = ω2
a +

1
2
κ2

[
1−

(
1 +

16ω2
aΩ2

κ4

)1/2
]

● Maximize growth rate with respect to    :k

0 =
∂ω2

∂ω2
a

= 1− 4Ω2

κ2

(
1 +

16ω2
aΩ2

κ4

)−1/2

⇒ ω2
a = Ω2 − κ4

16Ω2

⇒ (ω2)min = −S2

4
so maximum growth rate is

S

2
● Keplerian disc: energy grows by                             per orbitexp(3π) ≈ 12392

● Optimal wavelength 2π

√
16
15

vaz

Ω
∝ Bz
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Magnetorotational instability
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Magnetorotational instability

● Non-ideal MHD: if            (for simplicity) then

(reduces growth rate)

● As              diffusion becomes more importantBz → 0

ν = η

● If     can take any value then instability persists for smallk k

ω = ωideal − iηk2
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Magnetorotational instability

● Effect of vertical boundaries:

2H

● Suppose k =
nπ

2H
, n ∈ Z

●           mode gives no instability, so consider           :n = 0 n = 1

● Instability in ideal MHD when

0 < ω2
a < 2ΩS ⇒ 0 < va <

2
√

3
π

HΩ (Keplerian)

● Diffusive damping rate of           moden = 1 = η(π/2H)2

● Ideal growth rate ∼ ωa = va(π/2H)

● Instability occurs for an intermediate range of field strengths,
η

H
! va ! csroughly
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Magnetorotational instability

● Summary:

● Hydrodynamic instability when

(Rayleigh)2Ω(2Ω− S) < 0

● Magnetohydrodynamic instability (weak field, ideal MHD) when

−2ΩS < 0 (Chandrasekhar)

● In cylindrical geometry:

d
dr

(r2|Ω|) < 0
d
dr

|Ω| < 0(Rayleigh)  versus                    (MRI)

● Usual situation in astrophysical discs:
Rayleigh-stable but MRI-unstable

● Paradox of                 resolved by going to non-ideal MHD|B| → 0
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dΩ

dr
< 0

d(r2Ω)

dr
> 0

Magnetorotational instability

● Physical interpretation / mechanical analogy:
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dΩ

dr
< 0

d(r2Ω)

dr
> 0

Magnetorotational instability © GIO 2011



dΩ

dr
< 0

d(r2Ω)

dr
> 0

Magnetorotational instability © GIO 2011



dΩ

dr
< 0

d(r2Ω)

dr
> 0

Magnetorotational instability © GIO 2011



dΩ

dr
< 0

d(r2Ω)

dr
> 0

Magnetorotational instability © GIO 2011



Magnetorotational instability © GIO 2011

● Effective potential                      has a maximum at x = 0Φ = −ΩSx2

● Gyroscopic stabilization is defeated by the tension force,
allowing instability



Magnetorotational instability

Optimal “channel mode”:
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Magnetorotational instability

● Nonlinear outcome:

● Without imposed magnetic field: nonlinear dynamo?

B u

● With imposed magnetic field: sustained MHD turbulence
(intensity depends on imposed magnetic field)
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Summary

● Mechanisms of activity and angular momentum transport
in astrophysical discs:

● Viscous transport

● Hydrodynamic instability

● Vortex dynamics

● Gravitational instability

● Magnetorotational instability

● Satellite–disc interaction
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Summary

● Viscous transport

● Hydrodynamic instability

● Relevant for planetary rings (macroscopic particles)

● Mostly thought to be absent or ineffective in standard discs
(but controversial)

● Can be present in non-circular or warped discs
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Summary

● Vortex dynamics

● Can be effective if vortices can be produced and maintained

● Production:

● “Baroclinic instability”

● “Rossby vortex instability”, etc.

● Destruction:

● Elliptical instability, etc.

● Vortices excite density waves that transport angular momentum

● Inward migration

● May be relevant in protoplanetary discs
(also for planet formation)
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Summary

● Gravitational instability

● Satellite–disc interaction

● Occurs in sufficiently massive and cool discs

● May produce turbulence or fragmentation depending on cooling

● Relevant for outer parts of protoplanetary discs
and discs around black holes in active galactic nuclei

● Also relevant for planetary rings

● Embedded or external satellites excite waves and induce
induce angular momentum transport

● Applications are quite specific and localized
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Summary

● Magnetorotational instability

● Occurs in sufficiently ionized discs

● Relevant for high-energy (plasma) accretion discs
and for sufficiently ionized layers of protoplanetary discs

● Questions remain over efficiency of dynamo and transport
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