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2.6. The magnetorotational instability: further developments

Reference: Balbus S. A. & Hawley J. F. (1998), Rev. Mod. Phys., 70, 1

2.6.1. Historical note

The magnetorotational instability (MRI) was first discovered by Velikhov (1959) in the

context of vertically magnetized Couette flow between differentially rotating cylinders. His

analysis was generalized by Chandrasekhar (1960) using a variational principle. The first

astrophysical applications were made by Fricke (1969) and Acheson (1978), who considered

differentially rotating stars containing magnetic fields. The instability has also appeared in

geophysical studies. However, the more obvious application to accretion discs was neglected

until the work of Balbus & Hawley (1991). Evidently the Velikhov–Chandrasekhar result had

been widely overlooked or misunderstood; for example, Safronov (1969) explicitly dismissed

it in connection with the evolution of the protosolar nebula. Since 1991, the MRI (or Balbus–

Hawley instability) has acquired great importance in the theory of accretion discs. Many

linear analyses and nonlinear simulations have been carried out, and have revealed several

important properties.

2.6.2. Robustness

� Field configuration: The MRI exists whatever the direction of
�

. In a local analysis, the

important quantity is the Alfvén frequency ωA = (µ0ρ)
−1/2 ��� � , where � is the wavevector.

The most effective perturbations have ωA � Ω. To have ���
� �

= 0, the perturbation must

bend the field lines.

� Field strength: The MRI exists for intermediate magnetic field strengths. The lower limit

is determined by dissipative processes, because the natural length-scale of the instability

scales inversely with field strength. The upper limit is set by the finite size of the disc.

� Other physics: Including compressibility and stratification makes very little difference.

The MRI also exists in weakly ionized gases. Some authors have estimated that an ionization

fraction as low as 10−13 may be sufficient. Whether this can be achieved in the cooler parts

of protoplanetary discs depends on factors such as cosmic-ray ionization and the abundance

of radioactive species.

� Global effects: The MRI is essentially local and does not depend significantly on boundary

conditions. In an extended disc, the fastest-growing normal modes are localized near the

inner radius, where all the time-scales are shortest.
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2.6.3. Nonlinear development

The nonlinear development of the instability can be followed in a simple local model

such as the incompressible shearing sheet. For computational purposes, the MHD equations

must be solved in a finite box,

0 < x < Lx, 0 < y < Ly, 0 < z < Lz,

with some relatively neutral boundary conditions (e.g. periodic boundary conditions). The

equations must also be discretized, either by representing the physical variables on a grid and

applying finite differencing, or by projecting the equations on to a truncated set of functions

such as Fourier modes.

In most implementations, any uniform vertical or azimuthal magnetic field imposed on

the box is exactly conserved and cannot be altered by the internal dynamics. Such an

imposed flux can act as a continuous source of instability, and therefore affects the nonlinear

outcome.

The simplest case is that involving an imposed vertical magnetic flux. If the conditions

for instability are met, the fastest-growing mode dominates the early evolution. This has the

form of a ‘channel flow’ involving alternating layers of inward- and outward-moving fluid.

The amplitude of this solution grows exponentially until it itself becomes unstable to three-

dimensional ‘parasitic modes’ that feed off the gradients of velocity and magnetic field in

the channel flow. The flow rapidly reaches a state of magnetohydrodynamic turbulence. A

similar end-point is obtained in the case of an imposed azimuthal magnetic flux.

When there is no imposed magnetic flux there is no continuous source of linear instability.

However, if a random magnetic field with zero mean is introduced initially into the box, it

can act as a temporary source of instability, and the resulting motion can act to sustain or

amplify the field. This is a nonlinear dynamo process, ‘nonlinear’ because the motion that

sustains or amplifies the magnetic field is driven by the field itself through the MRI. The

nonlinear dynamo process requires a significantly larger magnetic Reynolds number than the

linear instability, but also leads to sustained MHD turbulence.

2.6.4. Statistical properties of the turbulence

The turbulent state has well-defined statistical properties and can be considered ideally

to be statistically steady. Any fluctuating fluid property X can be regarded as the sum of

its mean value plus a fluctuation of zero mean,

X = X̄ +X ′,
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where X̄ = � X � , � X ′ � = 0 and the angle brackets denote a suitable averaging process. The

mean value of a product is then

� XY � = X̄Ȳ + � X ′Y ′ � ,
the second term being the correlation between the fluctuations.

Consider the equation of motion for an ideal, incompressible fluid in the shearing box,

ρ

�
∂ �
∂t

+ � ��� � + 2Ω ���	� = 
 � Π +
1

µ0

� ��� � .
There are two nonlinear terms, � ��� � and

� ��� � . The averaged equation can be written

in the form

ρ

�
∂ ¯�
∂t

+ ¯� ��� ¯� + 2Ω � ¯� � = 
 � Π̄ +
1

µ0

¯� ��� ¯� + � � T,
where

T =
� � ′
�

′ �
µ0


 ρ �� ′ � ′ �
is the mean turbulent stress, and we have used � � � ′ = � � � ′ = 0. The first, magnetic

contribution is the turbulent Maxwell stress, and the second, kinetic contribution is the

turbulent Reynolds stress. These arise from correlations between fluctuating components of

the magnetic and velocity fields.

As we have seen, the effective viscosity of accretion discs requires a stress Trφ < 0. In the

shearing sheet this means Txy < 0. In turbulence generated by the MRI, the mean turbulent

stress always has this property, and the magnetic contribution always dominates.

In the turbulent state, the shear energy of the basic flow is continuously tapped by

the instability. This energy goes into the kinetic and magnetic energies of the turbulent

fluctuations. It is converted into heat by viscosity and resistivity at small length-scales.

2.6.5. Alpha viscosity?

In summary, the MRI is widely applicable to gaseous accretion discs. Only a modest

degree of ionization and a seed magnetic field are required. The instability saturates locally

in a state of MHD turbulence, generating a mean turbulent stress that has the correct sign

to explain the effective viscosity of accretion discs.

An important question: does the mean turbulent stress scale with the pressure, as as-

sumed in the alpha viscosity prescription, and, if so, what is the value of alpha?

The simplest interpretation of the available facts is as follows. This is a best guess, not

to be taken as definitive.

� When ν and η are made sufficiently small, their values do not affect the stress. The

diffusivities merely provide an energy sink at small scales.
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Development of statistically steady MHD turbulence in a incompressible shearing box with a weak

imposed vertical magnetic field Bz = (200)−1/2. Units are such that Lx = Ly/4 = Lz = Ω = ρ = µ0 = 1.

The shear is Keplerian (A = 3/4) and small diffusivities are included (ν = η = 0.001). The instability initially

grows exponentially from low-amplitude random perturbations but saturates in the nonlinear regime. The

volume-averaged turbulent energy greatly exceeds that of the imposed magnetic flux (0.01). The xy-stress

is dominated by the Maxwell component.

� When the horizontal dimensions of the box are increased, keeping Lz constant, the stress

tends to a finite value. This limit represents the physical situation in a thin disc. The stress

certainly depends on the value of Lz, which can be identified with the disc thickness 2H.

� When there is no imposed magnetic flux, the typical velocity fluctuations scale as � � ′ � �
ΩH, for purely dimensional reasons. The Reynolds stress then scales as

�Txy � � ρ(ΩH)2 � p,

as assumed in the alpha viscosity prescription. The Maxwell stress is similar.

� The stress is larger in the presence of an imposed magnetic flux, which acts as a continuous

source of instability, provided it is not so strong as to suppress the instability.
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In conclusion, the turbulent stress does resemble an alpha viscosity. Estimates of α �

0.01 have been made when there is no imposed magnetic flux, increasing to α � 0.1 
 1 when

there is an imposed magnetic flux. These values are in the same range as those deduced

from observations of time-dependent behaviour in accretion discs.
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