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PART 1: CLASSICAL THEORY OF ACCRETION DISCS

1.1. Orbital dynamics

Reference: Lynden-Bell D. & Pringle J. E. (1974), Mon. Not. R. Astron. Soc., 168, 603

Consider the orbital motion, according to Newtonian dynamics, of a test particle in the

gravitational potential Φ of a massive body (star, black hole, galaxy, etc.). Let (r, φ, z)

be cylindrical polar coordinates and assume the potential is axisymmetric, symmetric and

‘convex’ , i.e.

Φ = Φ(r, z), Φ(r, � z) = Φ(r, z), Φ,zz(r, 0) > 0,

where the subscript comma denotes partial differentiation. Often we will assume the poten-

tial to be that of a point mass M (or the exterior potential of a spherical mass),

Φ = � GM(r2 + z2)−1/2.

The orbits are then Keplerian orbits.

The equation of motion of the test particle is

¨� = ��� Φ.

The constants of the motion are the specific energy,

ε̃ = 1
2 ˙� 2 + Φ,

and the specific angular momentum,

h̃ = r2φ̇.

The conservation of angular momentum may be used to reduce the equation of motion to

the two-dimensional problem

r̈ = � Φeff
,r , z̈ = � Φeff

,z ,

where

Φeff = Φ +
h̃2

2r2

is the effective potential. Then

ε̃ = 1
2(ṙ2 + ż2) + Φeff .
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Suppose that the particle is able to dissipate energy (e.g. by radiation) but the angular

momentum is conserved. The orbit of minimal energy for a given angular momentum h̃ is a

circular orbit ṙ = ż = 0 in the mid-plane z = 0 at the radius r at which Φeff
,r (r, 0) = 0. Then

0 = Φ,r(r, 0) �
h2

r3

and

ε = Φ(r, 0) +
h2

2r2
,

where ε(r) and h(r) are the energy and angular momentum of the circular orbit at radius r.

Note that
dε

dr
=

h

r2
dh

dr
� dε

dh
=

h

r2
= φ̇ = Ω,

the angular velocity.

For Keplerian orbits in a point-mass potential we find

Φeff(r, 0) = � GM
r

+
h̃2

2r2
,

and so

h = (GMr)1/2, ε = � GM
2r

, Ω =

�
GM

r3 � 1/2

.

[See example 1.1 for a more detailed revision of Keplerian orbits.]

1.2. Oscillations about minimal-energy orbits

For a minimal-energy orbit, � Φeff = 0. Consider small perturbations (δr, δz) about such

an orbit, at fixed angular momentum. The equation of motion becomes approximately

δ̈r = � κ2 δr, δ̈z = � Ω2
z δz,

where κ(r) is the epicyclic frequency and Ωz(r) the vertical frequency, defined by

κ2 = Φeff
,rr(r, 0), Ω2

z = Φeff
,zz(r, 0).

Thus

κ2 = Φ,rr(r, 0) +
3h2

r4
=

d

dr � h2

r3 � +
3h2

r4
=

1

r3
dh2

dr
.

This is often written as

κ2 = 4Ω2 + 2rΩ
dΩ

dr
.

Also

Ω2
z = Φ,zz(r, 0).
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Horizontal and vertical oscillations about a circular Keplerian orbit

For a point-mass potential we find

κ = Ωz = Ω.

This commensurability means that either horizontal or vertical oscillations about a circular

orbit result in closed figures. These are simply eccentric or inclined Keplerian orbits.

1.3. Angular momentum redistribution and energy dissipation

Consider two particles of masses m1, m2 in circular orbits of specific angular momenta

h1, h2. Can the energy be further reduced by the exchange of angular momentum? The

total energy and angular momentum are

E = E1 + E2 = m1ε1 +m2ε2,

H = H1 +H2 = m1h1 +m2h2,

and so
dE = m1Ω1 dh1 +m2Ω2 dh2,

dH = m1 dh1 +m2 dh2,

where we have used dε/dh = Ω. Subject to the constraint dH = 0,

dE = (Ω1
� Ω2) dH1.

Thus energy is released by transferring angular momentum to the particle with smaller

Ω. Since dΩ/dr < 0 in practice, this invariably means an outward transfer of angular

momentum.
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Now generalize the argument to allow mass to be exchanged as well. The total mass and

angular momentum are fixed, so

dM = dm1 + dm2 = 0,

dH = dH1 + dH2 = 0,

where

dH1 = m1 dh1 + h1 dm1,

etc. Thus
dE1 = m1Ω1 dh1 + ε1 dm1,

= Ω1 dH1 + (ε1 � h1Ω1) dm1,

and so

dE = (Ω1
� Ω2) dH1 + [(ε1 � h1Ω1) � (ε2 � h2Ω2)] dm1.

Now
d

dr
(ε � hΩ) = � h

dΩ

dr
.

Since dΩ/dr < 0 in practice, (d/dr)(ε � hΩ) > 0. Thus energy is released by transferring

angular momentum outwards and mass inwards. This is the basis of an accretion disc.
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