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1.4. Viscous evolution of an accretion disc

1.4.1. Introduction

The evolution of an accretion disc is regulated by two conservation laws: conservation

of mass, and conservation of angular momentum. These laws are embodied in the three-

dimensional equations of fluid dynamics, but we must first reduce them to one-dimensional

versions. The equation of mass conservation is

∂ρ

∂t
+
���

(ρ � ) = 0,

where ρ is the density and � the velocity of the fluid. The equation of motion is

ρ
D �
Dt

= � ρ � Φ � � p+
���

T,

where
D

Dt
=

∂

∂t
+ � ���

is the Lagrangian time-derivative following the fluid flow, Φ is the gravitational potential, p

is the pressure and T is the stress tensor. We adopt cylindrical polar coordinates (r, φ, z)

for all calculations, such that the central mass is at r = z = 0 and the mid-plane of the disc

is z = 0.

The origin of the stress T is a matter of central importance in accretion disc theory. It

may be a turbulent stress, most likely involving tangled magnetic fields. There may also be

contributions from large-scale magnetic fields, or from waves in the disc. These possibilities

will be explored later in the course. In the classical theory, the stress is parametrized as a

viscous stress.

1.4.2. Conservation of mass

Define the surface density Σ(r, t) according to

Σ =
1

2π

� 2π

0

� ∞

−∞

ρdz dφ.

The mass contained between r1 and r2 is then� r2

r1

Σ2πr dr.
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The equation of mass conservation is

∂ρ

∂t
+

1

r

∂

∂r
(rρur) +

1

r

∂

∂φ
(ρuφ) +

∂

∂z
(ρuz) = 0.

Integrate with respect to φ and z, over the full extent of the disc, to obtain

2π
∂Σ

∂t
+

1

r

∂ �
∂r

= 0,

where � (r, t) is the radial mass flux, defined by

� =

� 2π

0

� ∞

−∞

rρur dz dφ,

and we assume that there is no vertical loss of mass to z = ��� . One can also define a

(density-weighted) mean radial velocity ūr(r, t) according to� = 2πrΣūr.

We then have
∂Σ

∂t
+

1

r

∂

∂r
(rΣūr) = 0, (1)

which expresses the conservation of mass in one dimension.

1.4.3. Conservation of angular momentum

The azimuthal component of the equation of motion is

ρ

�
Duφ

Dt
+
uruφ

r � = � ρ
r

∂Φ

∂φ
� 1

r

∂p

∂φ
+

1

r2
∂

∂r
(r2Trφ) +

1

r

∂Tφφ

∂φ
+
∂Tφz

∂z
.

In the case of an axisymmetric potential, it follows that

ρ
D

Dt
(ruφ) =

1

r

∂

∂r
(r2Trφ) +

1

r

∂

∂φ
( � rp+ rTφφ) +

∂

∂z
(rTφz).

Therefore angular momentum is conserved, but is transported radially outwards by a negative

shear stress Trφ. Such a stress is necessary for accretion.

Now assume that the azimuthal velocity in the disc is given by uφ = rΩ, where Ω(r)

is the angular velocity of circular orbits in the potential Φ. We return to examine this

approximation later. Then

ρur
dh

dr
=

1

r

∂

∂r
(r2Trφ) +

1

r

∂

∂φ
( � rp+ rTφφ) +

∂

∂z
(rTφz),

where h = r2Ω is the specific orbital angular momentum. Multiply by r and integrate with

respect to φ and z to obtain � dh

dr
= � ∂ �

∂r
,
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where � (r, t) is the viscous torque, defined by

� = �
� 2π

0

� ∞

−∞

r2Trφ dz dφ,

and we assume that there is no vertical loss of angular momentum to z = � � .

In astrophysical discs the molecular viscosity is much too small to account for the torque.

Nevertheless, it is conventional to parametrize the torque in terms of an effective viscosity.

According to the Navier–Stokes equation, we have a viscous stress

T = µ
� � � + (

� � )T � + (µb � 2
3µ)(

� � � )1,

where µ is the viscosity and µb the bulk viscosity. (Recall that the dynamic viscosity µ and

the kinematic viscosity ν are related by µ = ρν.) In the case of circular orbital motion, the

only stress component is

Trφ = Tφr = µr
dΩ

dr
,

i.e. the viscosity multiplied by the shear rate. Define the (density-weighted) mean kinematic

viscosity ν̄(r, t) according to

ν̄Σ =
1

2π

� 2π

0

� ∞

−∞

µdz dφ.

Then we find � = � 2πν̄Σr3
dΩ

dr
.

Although this form is derived from a Navier–Stokes viscosity, the torque can always be

parametrized in this form for some suitable function ν̄(r, t).

We then have

Σūr
dh

dr
=

1

r

∂

∂r

�
ν̄Σr3

dΩ

dr � , (2)

which expresses the conservation of angular momentum in one dimension.

1.4.4. Diffusion equation for surface density

Equations (1) and (2) may be combined to eliminate ūr, leading to

∂Σ

∂t
+

1

r

∂

∂r

� �
dh

dr � −1 ∂

∂r

�
ν̄Σr3

dΩ

dr ��� = 0.

For a point-mass potential (Keplerian disc), we have

Ω =

�
GM

r3 � 1/2

, h = (GMr)1/2,
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and so
∂Σ

∂t
=

3

r

∂

∂r � r1/2 ∂

∂r � r1/2ν̄Σ ��� .
This has the character of a diffusion equation for the surface density.

This may be interpreted as follows. Viscous torques cause the redistribution of angular

momentum, and therefore there is a viscous ‘spreading’ or diffusion. Most of the mass goes

to smaller radii to be accreted by the central object, but some goes to larger radii in order

to take up the angular momentum that is transported there.

An alternative form, more obviously related to the classical diffusion equation, is

∂ �
∂t

= ν̄r2
dh

dr

�
� dΩ

dr � ∂2 �
∂h2 ,

which describes the torque diffusing in the space of specific angular momentum. This form

is valid only if ν̄ is independent of t.

1.5. Analysis of the diffusion equation

1.5.1. Inner boundary condition

The inner boundary condition depends on the nature of the central object. There are

three important possibilities.

Weakly magnetized star

If the central object is a non-magnetic (or weakly magnetized) star, the disc may extend

to the stellar surface. Usually the star rotates at only a fraction of the Keplerian angular

velocity at its surface, i.e.

Ω∗ <

�
GM

R3
∗ � 1/2

.

This is because the star is mainly supported by pressure, not by the centrifugal force.

The angular velocity of the fluid makes a rapid transition from the Keplerian value to

the stellar value, in a viscous boundary layer. Somewhere in the boundary layer is a radius

rin at which the shear rate vanishes, and therefore the viscous torque � = 0. This may be

regarded as the inner radius of the accretion disc. To a good approximation, rin � R∗.

Black hole

If the central object is a black hole, the disc does not extend to the event horizon. This

is because of the existence of a marginally stable circular orbit at r = rms. For r < rms,

circular orbits are unstable and the gas spirals rapidly into the black hole without need for

a viscous torque.
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Angular velocity profile for accretion from a disc on to a star

Accretion from a disc on to a black hole

For a non-rotating (Schwarzschild) black hole, the marginally stable orbit is at rms =

6GM/c2, while the event horizon is at rS = 2GM/c2. To obtain this result properly, of

course, requires a relativistic treatment of orbital motion.

In order to conserve mass, the surface density Σ decreases very rapidly just inside rms

as the gas accelerates into the hole. The viscous stress is then essentially zero at rms.
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Strongly magnetized star

If the central object is a strongly magnetized star, the inner part of the disc may be

disrupted by the strong magnetic field. The disc terminates at a magnetospheric radius which

depends on complicated (and controversial) physics. The accretion flow is then channelled

along the magnetic field lines on to the magnetic poles of the star.

Accretion from a disc on to a strongly magnetized star

In summary, the inner boundary condition can usually be considered to be

� = 0 at r = rin.

If the angular velocity is treated as Keplerian throughout the disc, this implies

r1/2ν̄Σ = 0 at r = rin.
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