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Linear case

In the linear case, the general solution may be found as a linear superposition of elemen-

tary solutions. One may look for elementary solutions in which the variables are separated,

Σ = rβσ(r) e−λt.

Here λ is a positive real number, representing the decay rate of the mode. β is a free

parameter to be chosen at our convenience. Then

� λrβσ =
3

r

d

dr

�
r1/2 d

dr
(rβ+1/2ν̄σ) � .

Suppose that ν̄ = constant. Then

r2
d2σ

dr2
+ � 2β +

3

2 � r
dσ

dr
+ β � β +

1

2 � σ +
λ

3ν̄
r2σ = 0.

Choose β = � 1/4 for convenience. Then

r2
d2σ

dr2
+ r

dσ

dr
+ � k2r2 � 1

16 � σ = 0,

where k2 = λ/(3ν̄). This is Bessel’s equation of order 1/4. The general solution is

σ = AJ1/4(kr) +BY1/4(kr).

For small r, the Bessel functions behave as

J1/4(kr) � r1/4, i.e. r1/2ν̄Σ � 0,

Y1/4(kr) � r−1/4, i.e. r1/2ν̄Σ � constant.

The solution with vanishing torque at r = 0 is then

Σ � r−1/4J1/4(kr) e−3ν̄k2t.

Now consider a general initial-value problem. Resolve the initial surface density into

Bessel functions, i.e. let

Σ(r, 0) = � ∞

0
f(k)r−1/4J1/4(kr) dk.
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Green function of the linear diffusion equation, in units such that s = 1 and ν̄ = 1.

The general solution is then found by evolving each mode as above, i.e.

Σ(r, t) = � ∞

0
f(k)r−1/4J1/4(kr) e−3ν̄k2t dk.

Recall the properties of Hankel transforms. The transform pair satisfy

A(r) = � ∞

0
a(k)Jν(kr)(kr)1/2 dk,

a(k) = � ∞

0
A(r)Jν(kr)(kr)1/2 dr,

where ν is the order of the Bessel functions used. We may write

r3/4Σ(r, 0) = � ∞

0
k−1/2f(k)J1/4(kr)(kr)

1/2 dk,

and the inverse relation is then

k−1/2f(k) = � ∞

0
s3/4Σ(s, 0)J1/4(ks)(ks)

1/2 ds.

The general solution may then be written in the form

Σ(r, t) = � ∞

0
G(r, s, t)Σ(s, 0) ds,

where

G(r, s, t) = r−1/4s5/4 � ∞

0
J1/4(kr)J1/4(ks)k e−3ν̄k2t dk
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is the Green function. This may be evaluated explicitly as

G(r, s, t) = r−1/4s5/4 1

6ν̄t
exp � � (r2 + s2)

12ν̄t � I1/4 � rs6ν̄t � ,
where Iν is the modified Bessel function.

Note that the Green function is asymmetrical about r = s. Eventually all the mass

ends up on the central object, while all the angular momentum is carried off to infinity by a

negligible quantity of gas.

Nonlinear case

We will see later that, under certain conditions, viscosity laws of the form ν̄ = AraΣb

can be derived from plausible assumptions. Although we then cannot obtain the general

solution of the nonlinear diffusion equation, there exist special similarity solutions which are

algebraic in form and are thought to be attracting. These are valid if rin � 0, so that there

is no physical length-scale present in the problem.

First, consider the following transformation of the diffusion equation. Let x = r1/2, then

∂Σ

∂t
=

3

4x3

∂2

∂x2 (xν̄Σ).

The total mass of the disc is � rout

0
Σ2πr dr � � xout

0
Σx3 dx.

The total angular momentum of the disc is

� rout

0
Σ(GMr)1/2 2πr dr � � xout

0
Σx4 dx.

Both mass and angular momentum are locally conserved. This is made evident by writing

the diffusion equation in the forms

∂

∂t
(Σx3) +

∂

∂x

� � ∂

∂x
� 3

4
xν̄Σ � � = 0

and
∂

∂t
(Σx4) +

∂

∂x

� � 3

4
x2 ∂

∂x
(ν̄Σ) � = 0. (3)

Now our boundary condition requires xν̄Σ � 0 as x � 0. If xν̄Σ � x as x � 0, there is a

non-vanishing mass flux at x = 0, but zero angular momentum flux. We are looking for a

solution in which mass is accreted at the origin, but no torque is exerted there. The only

globally conserved quantity is then

� xout

0
Σx4 dx = C,
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proportional to the total angular momentum of the disc.

Consider an initial-value problem for the diffusion equation with a viscosity law of the

form ν̄ = AraΣb. The only quantity that is indelibly imprinted on the solution from the

initial condition is the value of the conserved quantity C. Therefore A and C are the only

dimensional constants in the problem. As there are three independent dimensions (mass,

length and time), a unique product of powers of A, C and t will have the dimensions of

(length)1/2. This characteristic scale X(t) will usually increase as a power of t. A similarity

solution is one that has a fixed shape that stretches along with the scale X(t). It can

expressed as a function of the similarity variable ξ = x/X(t), e.g. ν̄Σ � f(ξ).

Now consider a specific example. We will see later that the viscosity law

ν̄ = Ax15/7Σ3/7

arises from the ‘alpha models’ in the case of ‘Kramers opacity’. Start with a dimensional

analysis of the problem. The two dimensional constants in the problem have dimensions

[A] = M−3/7L25/14T−1,

[C] = ML1/2.

The variable

ξ = A−1/4C−3/28xt−1/4

is then dimensionless, and is the similarity variable for this problem. We seek a solution in

which

ν̄Σ = A−1/4C25/28t−5/4f(ξ),

where f is a dimensionless function to be determined. Then

Σ = A−7/8C5/8x−3/2t−7/8f7/10.

Substituting this into the diffusion equation (3), we obtain

ξ−3/2 � � 7

8
f7/10 � 1

4
ξ

d

dξ
f7/10 � =

3

4
ξ−4 d

dξ
� ξ2df

dξ � .

Thus
d

dξ
� 3ξ2df

dξ
+ ξ7/2f7/10 � = 0,

which can be integrated to give

3ξ2df

dξ
+ ξ7/2f7/10 = 0.
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The constant vanishes because we want the solution with f � constant as ξ � 0. Separate

variables and integrate to obtain

f3/10 =
1

25
(ξ

5/2
out

� ξ5/2).

The integration constant ξout can be fixed by evaluating C, which implies

1 = � ξout

0
f7/10ξ5/2 dξ,

and one finds numerically ξout � 3.018.

Narrow-ring and similarity solutions of the nonlinear diffusion equation (see text).

The figure shows two solutions of the nonlinear diffusion equation, in units such that

A = 1. The left-hand panel shows the evolution from a narrow ring of unit radius. The right-

hand panel shows the attracting similarity solution for the same total angular momentum,

C = 1. The plotted variables show the redistribution of angular momentum.
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