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1.6.3. Isothermal and polytropic models

We return to the equation of vertical hydrostatic equilibrium,

∂p

∂z
= � ρΩ2

zz.

Simple solutions can be obtained if the pressure is a known function of the density. These

are known as barotropic models.

In the case of a vertically isothermal model,

p = c2sρ,

where cs is independent of z. Then

1

ρ

∂ρ

∂z
= � z

H2 ,

where

H =
cs
Ωz

is the isothermal scale-height. The solution is

ρ(r, z) = ρ(r, 0) e−z2/2H2

,

where ρ(r, 0) is the mid-plane density. Both density and pressure have Gaussian distributions

centred on the mid-plane, and H represents the ‘standard deviation’. Formally, the disc

extends to
�
z
��� �

, and the thin-disc approximations break down once z/r is no longer

small, but there is essentially no mass at such heights.

In the case of a vertically polytropic model,

p = Kρ1+1/n,

where K is independent of z, and n is the polytropic index (positive but not necessarily an

integer). Define the pseudo-enthalpy

w = (n+ 1)Kρ1/n,

so that
dp

ρ
= dw.
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Then
∂w

∂z
= � Ω2

zz,

with the solution

w =
1

2
Ω2

z(H
2 � z2),

where H is the true semi-thickness of the disc. Therefore

ρ(r, z) = ρ(r, 0)

�
1 �

z2

H2 � n

,

p(r, z) = p(r, 0)

�
1 �

z2

H2 � n+1

,

for
�
z
���

H. Note that there is a true surface at z = H, at which the pressure and density

go to zero. Above that is a vacuum.

Isothermal models apply in the case of an ideal gas if the temperature is independent

of z. This might apply if the disc were very optically thin (transparent). Polytropic models

resemble optically thick (opaque) discs, but would also apply in the case of an ideal gas if the

specific entropy were independent of z. In that case 1 + 1/n = γ is the adiabatic exponent,

or ratio of specific heats, and w is the true specific enthalpy.

1.6.4. Radiative models

A radiative model is one in which the energy dissipated by viscosity is carried away by

radiation (rather than by convection). If the disc is optically thick the radiation is locally

close to a black-body distribution and may be treated in the diffusion approximation. The

radiative energy flux density is then directed down the temperature gradient,�
= � 16σT 3

3κρ � T,
where κ is the Rosseland mean opacity.

In general, the thermal energy equation for an ideal gas is�
1

γ � 1 � � Dp

Dt
� γp

ρ

Dρ

Dt � = T : �	� � ��
 � ,
where

γ =

�
∂ ln p

∂ ln ρ � s

is the adiabatic exponent of the gas. The left-hand side of this equation is proportional to

the rate of change of entropy of the fluid. The right-hand side represents heating by the

‘viscous’ stress and cooling by radiation.
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Provided that the disc is steady on the thermal time-scale, viscous heating and radiative

cooling must balance in the thermal energy equation:

0 = µ

�
r
dΩ

dr � 2
� ∂Fz

∂z
.

The other components of � 
 � are much smaller because, in a thin disc, vertical derivatives

of most quantities are much larger than horizontal derivatives. Thus

Fr

Fz

� H

r
and

1

r

∂

∂r
(rFr)

�
∂Fz

∂z
� �

H

r � 2

.

Hereafter we write simply F for Fz. Other terms in the thermal energy equation are also

much smaller, e.g.�
1

γ � 1 � ur
∂p

∂r

�
µ

�
r
dΩ

dr � 2 � (ν̄/r)(p/r)

ρν̄Ω2
� c2s
r2Ω2

� �
H

r � 2

.

The full set of equations governing the vertical structure of a Keplerian disc is then

∂p

∂z
= � ρΩ2z,

∂F

∂z
=

9

4
µΩ2,

F = � 16σT 3

3κρ

∂T

∂z
,

together with an equation of state, p = p(ρ, T ), and a specification of the effective viscosity

µ and opacity κ. These equations are closely analogous to those of stellar structure. Here,

however, the potential is due to the central mass and not to the self-gravitation of the gas.

There are no geometrical factors associated with spherical geometry. Also, the energy is

generated here by viscous dissipation rather than nuclear reactions.

The two potentially important contributors to the pressure are the ideal gas pressure

and the radiation pressure:

p =
kρT

µmmp
+

4σT 4

3c
,

where k is Boltzmann’s constant, mp the mass of the proton, and µm the mean molecular

weight (2 for molecular hydrogen, 1 for atomic hydrogen, 0.5 for fully ionized hydrogen and

about 0.6 for ionized matter of cosmic abundances). Radiation pressure is usually negligible

except in the innermost part of luminous discs around neutron stars and black holes, where

it can dominate.
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The viscosity is parametrized using the alpha prescription,

µ =
αp

Ω
,

and we usually assume that α is independent of z.

The solution should be symmetrical about the mid-plane, such that

F = 0 at z = 0.

At the upper surface, the solution should properly be matched to an atmospheric model at the

photosphere z = H where the gas becomes optically thin. However, a good approximation

for an optically thick disc is obtained by assuming that

p = ρ = T = 0 at z = H.

These zero boundary conditions are also used in stellar structure. Like a polytropic model, a

radiative model with zero boundary conditions has a definite surface, with vacuum outside.

Opacity

The opacity κ is a complicated function of the density and temperature of the gas, and

also depends on the chemical composition. It requires extensive numerical calculations based

on atomic physics, and is available only as a tabulated function. However, there are certain

regimes in which one opacity process is dominant and a simple power-law relation holds.

Thomson opacity holds when electron scattering is the dominant process:

κ = constant � 0.33 cm2 g−1.

Kramers opacity holds when free-free and bound-free transitions are dominant:

κ = CκρT
−7/2, Cκ � 4.5 � 1024 cm5 g−2 K7/2.

These opacity laws hold fairly well in ionized accretion discs, Kramers opacity in the outer

parts and Thomson opacity close to the central object if it is a compact star or black hole.

The opacity in cooler discs is entirely different, and may be due to dust, molecules, etc.
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