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Order-of-magnitude treatment

Consider a simple order-of-magnitude treatment of the vertical structure in the case of

a disc with Thomson opacity and negligible radiation pressure.

p

H
� ρΩ2H,

F

H
� αpΩ,

F � σT 3

κρ

T

H
,

p � kρT

µmmp
.

The surface density,

Σ � ρH,

should be regarded as a given quantity, analogous to the total mass in a stellar structure

calculation.

These relations can be solved to give

H � α1/6Σ1/3Ω−5/6
� µmmp

k � −2/3 � σ
κ � −1/6

.

The other variables follow according to

ρ � Σ

H
,

p � ΣΩ2H,

F � αΣΩ3H2,

T � � µmmp

k � Ω2H2.

Also

ν̄ � αcsH
� αΩH2 � α4/3Σ2/3Ω−2/3

� µmmp

k � −4/3 � σ
κ � −1/3

,

which implies

ν̄ � rΣ2/3.

Full treatment
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Vertical structure of a radiative model with gas pressure and Thomson opacity

Treating the above as a dimensional analysis, define characteristic physical units

UH = α1/6Σ1/3Ω−5/6
� µmmp

k � −2/3 � σ
κ � −1/6

,

Uρ =
Σ

UH
,

Up = ΣΩ2UH ,

UF = αΣΩ3U2
H ,

UT =
� µmmp

k � Ω2U2
H .
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Then introduce dimensionless variables according to

z = z̃ UH , H = H̃ UH , ρ = ρ̃(z̃)Uρ,

p = p̃(z̃)Up, F = F̃ (z̃)UF , T = T̃ (z̃)UT .

The dimensionless equations of vertical structure are then

dp̃

dz̃
= � ρ̃z̃,

dF̃

dz̃
=

9

4
p̃,

F̃ = � 16T̃ 3

3ρ̃

dT̃

dz̃
,

p̃ = ρ̃T̃ .

The boundary conditions are

F̃ (0) = p̃(H̃) = ρ̃(H̃) = T̃ (H̃) = 0.

Finally, the definition of the surface density requires

� H̃

−H̃
ρ̃dz̃ = 1.

These equations have a unique solution that must be obtained numerically. The resulting

profiles are almost indistinguishable from a polytropic model with index n � 2.7.

The vertically integrated viscosity is

ν̄Σ =

� H

−H
µdz

= C1
αUp

Ω
UH

= C1 α
4/3Ω−2/3Σ5/3

� µmmp

k � −4/3 � σ
κ � −1/3

,

where

C1 =

� H̃

−H̃
p̃dz̃

is a dimensionless constant of order unity. Again we find

ν̄ � rΣ2/3.
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1.7. Thermal-viscous instability [non-examinable]

1.7.1. Viscous instability

We return to the diffusion equation for a Keplerian disc,

∂Σ

∂t
=

3

r

∂

∂r � r1/2 ∂

∂r
(r1/2ν̄Σ) � ,

with ν̄ = ν̄(r,Σ). Consider the stability of any given solution Σ0(r, t) of this equation with

respect to small perturbations. Let the surface density be perturbed to

Σ(r, t) = Σ0(r, t) + Σ′(r, t),

where Σ′(r, t) is the Eulerian perturbation (i.e. at a fixed point in space) of surface density.

For �Σ′ ��� Σ, the Eulerian perturbation of ν̄Σ is given by a linear approximation,

(ν̄Σ)′ =
∂(ν̄Σ)

∂Σ
Σ′ = qΣ′.

The perturbed diffusion equation is then

∂Σ′

∂t
=

3

r

∂

∂r � r1/2 ∂

∂r
(r1/2qΣ′) � .

This is a linear diffusion equation for Σ′, with a diffusion coefficient proportional to q. In

particular, for wavelike perturbations with a wavelength short compared to r, we have

∂Σ′

∂t
� 3q

∂2Σ′

∂r2
.

If q > 0, small perturbations will diffuse and dissipate. However, if q < 0, small perturbations

will grow rapidly on short length-scales. The criterion for viscous instability is therefore

∂(ν̄Σ)

∂Σ
< 0.

1.7.2. Thermal instability

So far we have assumed that a thermal balance between heating and cooling holds in the

energy equation. Thus �
= � ,
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where �
=

9

4
ν̄ΣΩ2

is the vertically integrated viscous heating rate, and� = 2F+

is the cooling rate (F+ being the energy flux density leaving the upper surface of the disc).

Suppose that α � 1 so that tdyn � tth � tvisc. What happens if vertical thermal

balance is not imposed, and the disc is allowed to vary on the thermal time-scale? Vertical

hydrostatic equilibrium will still hold because tdyn � tth. Mass migrates radially on the

time-scale tvisc � tth, so each annulus retains its surface density Σ on the thermal time-

scale.

Consider a single annulus at radius r. Solving the equations of vertical structure other

than the equation of thermal balance, we can determine

�
and � as functions of the in-

dependent variables Σ and ν̄Σ. In fact

�
depends only on ν̄Σ. The equation of thermal

balance,

�
= � , defines a curve in the (Σ, ν̄Σ) plane, which determines the equilibrium

relation between ν̄Σ and Σ at fixed r. In general,

d

�
=

d

�
d(ν̄Σ)

d(ν̄Σ),

d � =
∂ �
∂Σ

dΣ +
∂ �

∂(ν̄Σ)
d(ν̄Σ).

Along the equilibrium curve d

�
= d � and d(ν̄Σ) = q dΣ. Thus

d

�
d(ν̄Σ)

=
1

q

∂ �
∂Σ

+
∂ �

∂(ν̄Σ)
. (1)

The thermal energy content of the disc per unit area is � pH � (Ω/α)ν̄Σ. If the

equilibrium is perturbed by increasing the energy content slightly, ν̄Σ increases, but recall

that Σ is fixed on the thermal time-scale. The system will run away if the excess heating

exceeds the excess cooling, i.e. if
d

�
d(ν̄Σ)

>
∂ �

∂(ν̄Σ)
.

The criterion for thermal instability is therefore (applying equation 1)

1

q

∂ �
∂Σ

> 0.

Therefore both viscous and thermal instabilities depend on the sign of q. In practice ∂ � /∂Σ <

0, so both instabilities occur when q < 0.
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1.7.3. Outbursts

As we have seen, a radiative model with alpha viscosity, gas pressure and Thomson opac-

ity has ν̄Σ � rΣ5/3 and is thermally and viscously stable. The same is true when Kramers

opacity dominates. However, for cooler discs undergoing hydrogen ionization, instability can

occur.

When the equilibrium curve in the (Σ, ν̄Σ) plane has an S-shape, limit-cycle behaviour

can occur. There is then a range of ν̄Σ for which no stable solution is available. For a steady

state to exist in a binary star, we must have

ν̄Σ =
Ṁ

3π � 1 �
� rin
r � 1/2 � � Ṁ

3π
for r � rin,

yet the value of Ṁ in a steady state is fixed externally, by the rate at which the companion

star overflows its Roche lobe. For a certain range of mass-supply rates, no stable, steady

state is possible.

On the upper stable branch, the viscous torque is too great and the surface density

becomes depleted on the viscous time-scale. On the lower stable branch, the viscous torque

is too small and the surface density accumulates. The result is a limit cycle.

Σ

νΣ

Thermal-viscous instability: S-curve and limit cycle

This cyclical behaviour is the accepted explanation for the outbursts seen in many cat-

aclysmic variables, and may also apply in some X-ray binaries. The disc cycles between a

cool, poorly ionized state and a hot, highly ionized state.
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Optical light-curve of the cataclysmic variable SS Cyg, from http://www.aavso.org

Thermal-viscous instability may also occur in the innermost parts of luminous discs

around neutron stars and black holes, where radiation pressure and Thomson opacity domi-

nate. Whether instability occurs here depends on exactly which form of the alpha viscosity

prescription is adopted.
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