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Evidence is presented that the pair-potential model of fluids is insufficient in the critical region. In
particular, data on the critical properties of Ne, N2, C~H4, C2H6, and SF6 are shown to exhibit well-

defined trends in the variation of certain nonuniversal critical amplitudes with the critical tempera-
ture T, . Both the slope of the coexistence-curve diameter far from the critical point, and the devia-

tions from linear behavior which appear closer to T„ increase systematically with T„and are direct-

ly correlated with the molecular polarizability. These trends are explained on the basis of the in-

creasing importance of three-body dispersion (Axilrod-Teller) forces in the more polarizable systems,
and a simple mean-field theory is developed which accounts for the observed correlations. The possi-
bility of incorporating the effects of three-body interactions into an effective pair potential is explored
within the context of perturbation theory in the grand canonical ensemble, and it is shown that such
an interaction is explicitly a function of fugacity. In the critical region, this is equivalent to a thermal

scaling field which depends on the bare chemical potential of the system, and ultimately leads to a
breakdown in the classical law of the rectilinear diameter. The magnitude of this field mixing, and

hence of the diameter anomaly, scales with the product of the particle polarizability and the critical
number density, in agreement with experiment.

I. INTRODUCTION

In theories of second-order phase transitions, it is often
possible to describe the singular behavior of complex sys-
tems in terms of the known properties of simpler ones,
but with a change of scaling variables. Such a transcrip-
tion is exact in the case of decorated lattice gases, ' can
hold within the context of a low-order perturbation
theory, or may simply be advanced as a working hy-
pothesis in a phenomenological approach (the "smooth-
ness postulate" ). A well-studied case involving this
change of variables is the relation of the liquid-vapor criti-
cal point of a simple Auid to the critical point of the spin-
—,
' Ising ferromagnet.

While symmetry considerations dictate that the scaling
variables in a magnetic system described by an Ising mod-
el are the reduced temperature and magnetic field, the
lack of a rigorous particle-hole symmetry in a Quid sug-
gests that some asymptotically linear combination of re-
duced temperature and the shift of the chemical potential
from its value on the critical isochore may be more ap-

propriate at the liquid-vapor critical point. Certain exact-
ly solvable lattice ' and continuum models do exhibit
such "revised" ' scaling variables, but, at least in the
former, it is the structure of the underlying lattice rather
than the governing Hamiltonian which is responsible for
the broken symmetry. In general these models provide no
truly microscopic basis for an understanding of the issue
of particle-hole symmetry in Auids. On the other hand,
renormalization-group treatments' of a generalized
Landau-Ginzburg-Wilson Hamiltonian do attribute this
so-called fteld mixing to asymmetric operators in a field-
theoretic Hamiltonian, and in particular to those terms
which contain cubic and higher odd powers of the order
parameter and its gradients.

Irrespective of the origin of field mixing, a common
prediction of such theoretical approaches is the existence
of a weak singularity in the average of the densities of the
coexisting phases, a breakdown of the classical law of the
rectilinear diameter. " We review in Sec. II the mecha-
nism underlying the prediction that, for a one-component
Quid, the coexistence-curve diameter pd behaves like
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pd =—
PI +PU =1+3] t +A[t+. . .

2pc

where p& and p„are the densities of the coexisting liquid
and vapor phases, p, is the critical density, and the re-
duced temperature is t =(T, —T)/T, . A value of
A~ &0 would indicate field mixing, a (=0.11) being
the exponent which characterizes the power-law diver-
gence of the constant-volume specific heat at the critical
point. Far away from the critical point, the linear-
temperature variation described by the third term in (1) is
universally observed.

In spite of intense experimental study over many years,
most fluids actually seem to show no measurable devia-
tions from analytic behavior, ' and the evidence of
anomalies with the predicted exponent is weak in the case
of insulating fluids such as the rare gases, and in binary
mixtures. ' To date, the strongest evidence in any non-
conducting fluid is found in SF6, as reported by Weiner,
Langley, and Ford, ' and further analyzed by Ley-Koo
and Green. ' A quantitative analysis to show the pres-
ence of a singular term of the form in Eq. (1) is difficult
since the exponent 1 —0.=0.89 and is thus su%ciently
close to unity to make a clear distinction between the
singular and linear terms problematic. There are, in addi-
tion, corrections to scaling terms with exponents only
slightly larger than unity, which become important at
larger t. Given data over a wide range of reduced temper-
atures, it should be possible in principle to separate out
the contributions of these different terms; however, the
strongly divergent compressibility near the critical point
introduces gravitational rounding of the transition. '

Even for a very thin fluid sample (-1 mm) this rounding
effect becomes severe for t (2)&10 . There is thus a
very limited temperature range within which a deviation
from an analytic diameter may be observed.

On the other hand, recent high-precision measure-
ments' of the liquid-vapor coexistence curves of the met-
als cesium and rubidium have demonstrated that remark-
ably large anomalies do exist in the simple metals, and
with the expected critical exponent. In view of the fact
that these fluids are metallic in their critical regions, it has
been suggested' that the many-body effects present in
systems with delocalized electrons, in particular those as-
sociated with electronic screening, lead to the same type
of field mixing as found in the solvable lattice models.

It is therefore natural to ask if there exist many-body
effects in insulating fluids which would influence the scal-
ing variables in a similar manner, and this paper is an ac-
count of both theoretical and experimental studies which
suggest that similar effects are indeed present. We re-
port' on analyses of coexistence-curve data for several
simple fluids, Ne, Nq, CqH4, ' C2H6, and SF6, ' and
show that there are striking trends in the properties of the
diameters of these systems. Both the slope of the linear
temperature dependence far away from the critical point
[the coefficient A ~ in Eq. (1)] and the amplitude of the de-
viation from that linear behavior at smaller reduced tem-
perature scale systematically with the critical temperature.
The former is in contrast with the expectations of classical
theories such as the van der Waals theory, which predict

a universal slope of the diameter. The fact that these sub-
stances, in particular the spherically symmetric systems
among them, do not satisfy exactly a law of correspond-
ing states suggests that there is some new energy scale in
the problem, distinct from that set by two-body dispersion
forces.

In Sec. III we propose that this new scale is set by the
strength of many-body forces, and in particular by three-
body forces. It is known from comparison of gas-phase
atom-atom scattering data and condensed-phase proper-
ties that many-body forces contribute at the level of
10—15% to the bulk cohesive energies of rare-gas liquids
and solids. Since triplet interactions involve an odd
number of density operators in the Hamiltonian, it is not
surprising that their presence may have an important
effect on the coexistence-curve diameter, whose behavior
is sensitive to the liquid-vapor symmetry of the fluid.
Among the many-body forces which have been studied,
the three-body dispersion forces of the form derived by
Axilrod and Teller (AT) are usually the dominant ones,
although three-body exchange interactions are important
in the lighter, less polarizable substances. That such in-
teractions are expected a priori to introduce a new energy
scale can be seen in the form of the AT potential; for a
triad of particles at (r~, rq, r3) with 0; the vertex angles of
the triangle they form

o [3 cos(9~)cos(8z)cos(03)+ 1]
&A~(ri, r2, r3) = V3

where the amplitude is V3-Iaz, with I the energy of the
first excited electronic state, usually approximated by the
ionization potential, and a~ the polarizability (the sub-
script of which distinguishes it from the critical exponent
a). In contrast, the two-body dispersion force is, at long
range,

VO
V =— (3)

where Vq -Ia~. The relative importance of the triplet in-

teractions thus scales like

V3 op
0!&pr' (4)

where r is a mean-cubed interparticle spacing in the
fluid, and is proportional to the volume per particle, or
the inverse of the number density p. We thus conclude
that an appropriate measure of the relative strength of
triplet potentials at the cntical point is given by the di-
mensionless critica1 polarizability product

appc ~

with p, the critical number density. The values of this
parameter for the systems considered in this paper are
shown in Table I, where it is seen that its variation from
Ne to SF6 is about a factor of 3. The corresponding in-
crease in critical temperature is roughly an order of mag-
nitude, consistent with the general notion that T, scales
with the strength of the two-body interaction, and hence
like (a~p, ) . That a~p, itself increases like T,' means
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Fluid T, (K) I', (dyne/cm )

TABLE I. Critical parameters and critical polarizability products happ, .

n, (gcm ') ap (A) CXpPc

HD
Ne
N2

C2H4
CpH6
SF6

35.9569
44.4789

126.2143
282.3768
305.2692
318.707

1.506 && 10'
2.72
3.398
5.040
4.194
3.759

0.0481
0.484
0.314
0.215
0.206
0.733

0.798
0.396
1.74
4.25
4.50
6.54

0.00764
0.00571
0.0117
0.0196
0.0186
0.0198

that three-body interactions are relatively more important
in more polarizable fluids with correspondingly higher
critical temperatures. In mean-field theory, the contribu-
tion of n-body dispersion forces to the pressure is, in gen-
eral, proportional to (crap)", and for the systems con-
sidered here, with relatively small azp„we may restrict
attention to n & 3, that is, to the first-order corrections to
pairwise additivity.

We discuss in Sec. III a simple mean-field calculation
which predicts that the diameter slope, outside of the
asymptotic critical region, increases linearly with a~p„
and the experimental data discussed in Sec. IV confirm
this. It is significant that the slope increases with the criti-
cal polarizability product, for this is consistent with a pri-
marily repulsive three-body potential, such as the
Axilrod- Teller interaction. We find that the critical
compressibility factor and the amplitude of the order-
parameter singularity near the critical point also vary
linearly with a~p„ in a way which is completely con-
sistent with the mean-field results. The existence of corre-
lations between such quantities has been noted before,
but is here explained for the first time on a microscopic
level.

The fact that the same systematic trend appears in the
magnitude of the deviations from linear behavior of the
diameter which appear at smaller reduced temperature as
in the slopes far away from the critical point suggests that
they have the same origin. It has been suggested by Reat-
to and Tau that, within a coarse-grained description, the
effective Landau-Ginzburg-Wilson Hamiltonian of a fluid
with triplet interactions has the same form as the asym-
metric model studied by Nicoll et al. ' General field-
theoretic arguments relevant to that Hamiltonian show
that the presence of certain cubic and quintic operators
leads to a revision in scaling variables. From a more glo-
bal perspective, we suggest in Sec. II that revised scah'ng
variables may be seen as consequences of effective inter
molecular potentials which depend on thermodynamic
fields, and we thus consider in Sec. III how three-body in-
teractions may be incorporated into effective pair poten-
tials which are thermodynamic state dependent. We de-
velop this notion within the context of the theory of fluids
by deriving an effective potential which is an explicit func-
tion of the fugacity of the system. This mapping is exam-
ined in more detail in a separate analysis dealing with
certain lattice models, which- confirms the basic ideas ad-
vanced here.

Section IV is a discussion of the experimental results,
and of their consistency with the theory outlined in Sec.

III. In the conclusion, Sec. V, we pose questions about
higher-body interactions and quantum effects at the criti-
cal points of fluids.

EI. FIELD MIXING

A useful starting point for the discussion of the concept
of thermodynamic field mixing is the phenomenological
form proposed by Rehr and Mermin of the scaling equa-
tion of state for a one-component fluid in the critical re-
gion. The critical behavior of the pressure P, as a func-
tion of reduced temperature t and the shift of the chemical
potential from its value on the chiral isochore
p—=p(T,p) —p(T, p, ), is postulated to scale as originally
proposed by Widom, but with revised scaling variables:

P(p, , t)=Pp(g, r)+r' f+(g/r ) . (6)

+(2—a)f (0) r' +O(r) .
Bp

The mean density P=(p +p+)/2 thus deviates from the
critical density as

p=p, +(2—ct)f (0)
a7.

Bp

The weak singularity in the diameter arises thus from the
mixing of the one-body operator p into the thermal scal-
ing field ~. The analytic background Po will contribute a
term linear in t which, far away from the critical point,
gives rise to the analytic diameter seen nearly universally
in fluids. As shown in Fig. 1, the extrapolation of this an-
alytic diameter to t=O suggests a critical density p,

' which

Here Pp is a smooth background term, and r=r(p, t) and

g=g(p, t) are the effective temperature and field, analytic
in their arguments. The scaling functions f+(z), for su-
percritical and subcritical states, are those of a system
having all of the usual symmetry properties associated
with a Hamiltonian possessing asymptotic "particle-hole"
symmetry; e.g. , f(0 ) =f(0+ ), f'(0 ) = f'(0+ ), etc. , —
where a prime indicates differentiation with respect to the
argument z. The exponents a, P„and 6 are also those of a
symmetric system. The thermodynamic densities
p+=(dP/dp)T on the two branches of the coexistence
curve (=0—are found to be

p+=p, +f' (0) ag
Bp
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I I

p, p,

FIG. 1. Schematic illustration of a liquid-vapor coexistence
curve, indicating the deviation of an analytic extension of the
linear diameter from the true singular diameter.

differs from the true p, by an amount bpd. Equation (8)
indicates that Apd —B~/dp.

Another consequence of field mixing is a divergence in
the difference between the liquid and vapor compressibili-
ties, which is found by differentiating Eq. (7) and then
setting (=0—:

Bp
a

vap

(9)

the ellipsis standing for less singular terms. In either
phase, the compressibility itself has a leading divergence
of the form r r. From Eqs. (8) and (9), this phenomeno-
logical theory predicts that if the diameter anomaly is to-
ward lower densities, as in Fig. 1, i.e., B~/Bp & 0, then the
liquid-phase compressibility will be greater than that of
the vapor phase. In Sec. IV we discuss the experimental
status of this prediction.

This phenomenological derivation of the singular diam-
eter is in the context of an equation of state appropriate to
the asymptotic behavior of the free energy near the critical
point, but is in fact motivated by lattice models ' which
show field mixing over the entire phase diagram. A typi-
cal decorated lattice, shown in Fig. 2, consists of a pri-
mary lattice of spins on whose bonds reside the statistical
systems which comprise the secondary lattice. As a
consequence of the one-dimensional coupling of the
decorating spins to those of the primary lattice, the statist-
ical traces over the degrees of freedom of the former may
be performed explicitly and independently, since by con-
struction there are no couplings between the secondary
sites.

For decorated-lattice magnetic models, let F([KI,H)
be the free energy per site of the model with N sites,
where H and [K I are, respectively, the magnetic field and
a set of bare coupling constants. The general relationship
between F and the free energy Fz of the nearest-neighbor
Ising model is

F([KI H)=FI[Kt([KI H) H (1[KI,H)j+G([KI, H) .

(10)

The effective nearest-neighbor coupling KI, magnetic field

HI, and additive term G are all analytic functions of their
arguments, for they are related to the conditional partition
functions of the three-spin system on a lattice bond,
which, by virtue of being finite systems, necessarily have
no singular thermodynamic behavior at finite temperature.

In a way completely analogous to its derivation within
the scaling approach above, the mean magnetization
M = (M +M )/2, with M~ = (BF/BH), is thus

0G
BH

E aKI
+E'

aH

where Et =(1/N)( g(, &s;s/)I is the nearest-neighbor

spin correlation of the Ising model; and the subscript
"coex" means the condition HI ~0—.

It now follows that the presence of a weak singularity
in the diameter arises from the mixing of energylike terms
into the thermodynamic derivative which yields the densi-

ty, for in Eq. (11), it is the nearest neighbor spin--spin
correlation function EI which has a t ' singularity (since
the H=O specific heat diverges with a power law t ).

The above discussion of magnetic systems also applies
of course to the lattice-gas model of Auids. Turning now
to real filuids in which the pair interactions extend beyond
nearest neighbors, we expect that the general form of the
map will involve an Ising Hamiltonian of the form

(c)
FIG. 2. Decorated-lattice transformation in two dimensions,

and its similarity to the definition of an effective pair potential
which accounts for triplet interactions. The original lattice (a)
consists of primary vertex sites and secondary sites on the lattice
bonds. After tracing over the latter, there remains a primary lat-
tice (b) coupled via effective interactions (wiggly lines). (c) The
efFective two-body potential /~2 (wiggly line) is given by a statisti-
cal trace over a third particle (open circle) which is coupled to
the two particles through a pair potential (solid line) and a triplet
potential (shaded triangle).
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&I= g HI(I K I,H)s;+ —,
' g KI( ~i —j;I K I,H)s;s, ,

(12)

where Kl(
~

i —j ~
) is the general spin-spin coupling con-

stant. Proceeding as before to calculate the magnetization
conjugate to 0, we see immediately that the energylike
term involved is

where t = 5—T, P= —,
' in this mean-field theory,

Ag=(6P()/P30)', and the slope of the diameter is

P21 3 P[iP40 4 pi i

P3Q 5 P3Q 5 P3Q
(17)

For the van der Waals equation of state, in which the free
energy is

(13)
NAF =Nk~Tln

e(V Nb)—
N—aN
V

(18)

In drawing the analogy with the fluid case to be discussed
later, we suggest that the generalization of Eq. (13) to a
continuum system will involve the integral of a chemical-
potential-dependent effective pair potential

(14)
Bp

where p' ' is the two-body distribution function.
The concept of thermodynamic-state-dependent poten-

tials appears quite naturally in a variety of contexts; obvi-
ous examples include theories of electrolyte screening, the
structural and electronic properties of metals, and the
tracing out of angular variables to define a spherically
symmetric effective intermolecular potential. An impor-
tant point to emphasize in applying this notion to systems
near second-order phase transitions is that the effective
potentials involved are most clearly defined in the grand
canonical ensemble, where they are then viewed funda-
mentally as functions of the thermodynamic fields. In
the canonical ensemble they are functions of the conjugate
densities. This distinction is important in the critical re-
gion since the densities themselves may develop singular
behavior, implying potentials which would then be singu-
lar as well. This can be shown to imply thermodynamic
inconsistencies. As emphasized in other contexts, ' the
theory of critical phenomena is most naturally cast in
terms of the governing thermodynamic fields, which take
on common values in coexisting phases.

F3 ——qN
V

(19)

where q is the integrated strength of the three-body poten-
tial P,

q = —,
' f f d r d r'g(r, r', r —r')gg(r, r', r —r') . (20)

with gHs the hard-sphere three-body distribution function.
This is the direct analog of the microscopic definition of
the attractive parameter a in the simple van der Waals
equation (18),

a = ——,
' f d r P(r)gH'q(r), (21)

where g Hs (r ) is the hard-sphere radial distribution func-
tion, taken to be a step function at the hard-core diameter
O.

In the presence of the triplet interactions, it is still pos-
sible to express the critical parameters in closed form, and
we write them in terms of the values which pertain when
q=O, namely,

1
p, = p(x), (22)

with A the thermal wavelength, Ai has the universal
value of —', .

To include three-body interactions at the level of
mean-field theory, we supplement the free energy in Eq.
(18) with the term

'2

III. THREE-BODY INTERACTIONS IN FLUIDS

A. van der Waals theory

P 1 1

,
P .(&p) (&T)",

t

(15)

In any classical theory of the liquid-vapor transition of
a one-component Quid, the expansion for the pressure
near the critical point, in units of the critical pressure P„
takes the form

kii T, = T(x),
27b

P, = P(x),
27b

where

p(x) = —,+ 1 — 1 — +4x3 3 4x
8x 3

T(x)=—', p(x)[1 —xp(x)][1—
—,'p(x)]

1/2

(23)

(24)

(25)

(26)

where the deviation of the number density p=N/V from
p„ its value at the critical point, is hp=(p —p, )/p„and
b, T =(T —T, )/T, . Both the Helmholtz free energy and
the chemical potential possess analogous expansions, with
coefficients F „and p „. From the usual Maxwell con-
struction, one finds that the densities in the two branches
of the coexistence curve differ from the critical density
with the following asymptotic form:

(16)

and

P(x)= — —3p (x)+2xp (x) .
8 T(x)p(x) 2

1 ——,
' p(x)

(27)

x =—q/ab, (28)

which, in mean-field theory, is simply the ratio of three-

The thermodynamic properties of the system all depend
explicitly on the dimensionless parameter
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body to two-body potentials. Since q-a~, a-o.~, and
the critical density is proportional to b ', x is indeed pro-
portional to the product of the polarizability and the criti-
cal number density, a~p„ to leading order in the three-
body interaction. For the systems of interest here, we
need only consider the small-x expansions of the various
thermodynamic quantities: (a) the order parameter ampli-
tude,

Ap=2+ —,x + .

(b) diameter slope,

et aI, different effective potentials arise from considering
different thermodynamic quantities, such as the pair
correlation function and the pressure. In keeping with the
discussion above, in which we emphasized the importance
of framing the smoothness postulate in terms of thermo-
dynamic fields, rather than their conjugate densities, we
find it most natural to determine the effective potential in
a way that preserves the grand canonical partition func-
tion =(T,p, V), or, equivalently, the thermodynamic po-
tential 0,= —k& T ln=.

The interaction Hamiltonian of the fluid is assumed to
be a sum of two-body potentials P and triplet potentials g:

3) ———', + —",, x +
(c) critical compressibility factor,

(30)
(34)

P,
Z. =

p, kg T,
3 1= ———x+
8 8

(31)

The constant of proportionality between the parameter
x and the product o,'~p, is given in terms of the integrals
in Eqs. (20) and (21) which are very sensitive to the
short-range structure of the two- and three-body correla-
tions and of the potentials themselves, which certainly ac-
quire strong repulsive components at small distances.
Rather than approach this complex question numerically,
we may note instead that the van der Waals theory pre-
dicts relationships between the dependence of various
quantities on x which are independent of the constant of
proportionality. For example, from Eqs. (29) to (31), we
find that the slope of the A~ versus a~p, and Z, versus
o.'zp, curves are related by a pure number:

dA)
d exp pc

dz. = ——",,'+0 (x) = —11.73. . . .
dO.

Z pc
(32)

»+» (33)

the slope of which ( —,', ), obtained with no adjustable pa-
rameters, is shown in Sec. IV to be in remarkable quanti-
tative agreement with the data for those same fluids.

B. Perturbation theory for Auids

We next present a simple derivation of an effective pair
potential which accounts for the presence of three-body
interactions in fluids, and which by its explicit fugacity
dependence leads to thermodynamic field mixing and a
singular diameter. The development of this effective two-
body potential proceeds from the enforced equality of a
thermodynamic quantity in a fluid with three-body forces
with the same quantity in a system governed solely by an
effective pair potential. As has been shown by Casanova

While the precise numerical value of this ratio is expected
to be model dependent, its significance lies in both its
magnitude (of order 10) and its sign, for the fact that the
diameter slope increases with positive values of the param-
eter x is in accord with expectations for the Axilrod-Teller
potential, which is repulsive for the majority of the orien-
tational phase space available to the triad of particles.

It is also predicted that the order-parameter amplitude
increases in parallel with the diameter slope. To leading
order in x, we find

In seeking an effective potential P;~ (r;~; T,p ) which
preserves the thermodynamic potential, we may, for in-
stance, keep the fugacity z =exp(tu. /k') T) fixed and vary
only the potential, writing

—ki) T In=(z, P, f)= —k~ T In=(z, g, O) . (35)

X [P(r), r2) —P(r(, r2)]+ . (36)

Denoting with a subscript 0 quantities pertaining to the
"reference" system (that with only the pair potential P),
we have

M(z, p, O) 1 (2)

5$(r), r2) 2!
(37)

where po
' is the reference two-point distribution function.

On the other hand, P may be treated as a perturbation on
the left-hand side of Eq. (35), with the first-order pertur-
bation theory result

n(z, y, q) =n(z, y, o)

f f f dr)dr2dr3po'

&& (r(, rq, r3)g(r), r2, r3)+

(38)

with po
' the three-body distribution function of the refer-

ence system. Equating Eqs. (36) and (38), and using (37),
we find to first order

Alternatively, P may be fixed and only z varied, or yet
again both p and z can be adjusted. If we impose only
the single constraint that the free energy be preserved,
there is no a priori reason to prefer one formulation over
any other. We discuss in detail elsewhere a transforma-
tion which is unique for lattice models, and shall discuss
here an approach based on Eq. (35), for it is not only con-
ceptually the simplest, but it also allows us to make con-
tact with the results obtained previously in the canonical
ensemble.

The leading order term in a functional Taylor expan-
sion of the right-hand side of Eq. (35) is

Q(z, P, O) = II(z, (5,0)

511(z,$,0)
5$(r), r2
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f f dr&dr2 —,po (r&, rz)[p(r&, r2) —p(r&, rz)] ——, dr3po (1&, r2, 13)1f(l~,ll, r3) =0 .
1 1 (3) (39)

and

:-Opo '(r~, r2) =z exp[ —P(r~2)lks T]+0 (z ) (4O)

:-apo (r~, rl, r3}=z exp[ —[p(r&2)+p(r~3)+$(123)]/ks TI

In this form, it is clear that there is an infinity of choices
for the function P which will satisfy Eq. (39), for P is only
defined to within a function whose integral with the two-
body distribution function vanishes. The choice for P that
is least arbitrary and the one for which previous results
are recovered is the one for which the integrand in large
parentheses is identically zero. Following Rowlinson,
the effective potential is defined in the low fugac-ity iimit as
a trace over all degrees of freedom which are to be elim-
inated (here, the presence of a third particle). We thus in-
voke the fundamental relations

it is present, the effective potential must depend on the
one-body field to which that density is conjugate, namely,
the chemical potential. This tracing out of "intervening"
particles is also analogous to the way in which thermo-
dynamic field mixing enters into the penetrable-sphere
models" and to the screening action of the electron gas in
metals. '

With this effective potential, we may demonstrate the
existence of a singular diameter by considering the ther-
modynamic potential of a fluid with general z- and T-
dependent interactions and effective fugacity. Let a3O(z, p)
be the grand free energy per unit volume of a fluid with
only pairwise interactions, and co = coo[z(z, T),P(z, T)]
+cob(z, T) be the free energy of the three-body fluid under
the approximate map, with cob an analytic background
contribution. The thermodynamic density is

+O(z ) . (41)

The effective potential is thus

p(r~2) =p(r~l)+ —,'z f dr3expI —[p(r&3)+ $(I23)]/k' Tj

X Il(r[2 rj3 r23) (42)

This leading contribution to P is related to the form ob-
tained by Casanova et al. from diagrammatic analyses of
the pair correlation function and of the pressure, as
represented by its virial expansion. Their result is that if
ft2 =exp( —$~2/ks T) 1 is the effe—ctive Mayer f function
desired at density p, it is related to the bare
f~I ——exp( P&2 lk& T) —1 by—
f)2=f)2+(f(2+1) cp f dr3e/3e$3f]23+0(p ) (43)

with f&13 =exp( —g/23lkI3T) —1, and e;1=fJ + 1. The
numerical factor c depends on the thermodynamic proper-
ty under consideration, and is unity for the pair correla-
tion function, and —, for the pressure. Linearization of
Eq. (43) for (p p)lkl3 T and f—lkI3T small gives the lead-
ing order term in Eq. (42), provided the low-density
correspondence z~p is used. These results also agree in
form with those of Sinanoglu, who determined the
effective potential by equating the internal energy of the
fluid with triplet potentials and that with the effective pair
potential, and of Rushbrooke and Silbert, in the context
of the hypernetted-chain equation. It can be shown that
at long range this effective potential decays as r, as
does the bare potential, and therefore does not affect the
universality class of the fluid.

It is instructive to consider a graphical representation of
Eq. (42), as shown in Fig. 2(c), for it emphasizes the simi-
larity between the decorated-lattice transformation and
the perturbation theory just outlined. In both cases, the
effective pair interaction is arrived at by a statistical trace
over an intervening particle. Since the magnitude of the
effect of that third particle depends on the probability that

z ~~b z Bz (()
k, T az; azP' " '

(2) r
2 Bz

where p'"'= (p'"') is the ensemble average of the n-body
density operator. The energylike singularity in the densi-
ty then arises, as discussed before, from the temperature
dependence of the short-range behavior of the two-body
distribution function. It should be remarked that this is
the same mechanism governing the singular behavior both
of the resistivity of a ferromagnet at its Curie point, and
of the dielectric constant of a fluid at its liquid-vapor criti-
cal point. Through Eq. (42) and the observation that T,
scales with the strength of the pair potential, the ampli-
tude of the energy singularity is seen to be proportional to
the relative strength of the triplet to pair interactions, and
hence to the critical polarizability product a&p, .

IV. EXPERIMENTAL RESULTS

In this section we present an analysis of measurements
of the coexistence-curve diameters of Ne, Nq, C2H4, C2H6,
and SF6. We first review briefly the methods used to ob-
tain data; more detailed descriptions have appeared previ-

us ly
1 4) 20 22

Density data on HD, Ne, and N2 were obtained from
the capacitors formed by five coin-shaped parallel elec-
trodes stacked on top of one another. Values of the
dielectric constant determined in these capacitors were
converted to mass densities with the Clausius-Mossotti re-
lation. The diameters of HD, Ne, and N2 were deter-
mined from the vapor density at the top capacitor and the
liquid density at the bottom gap which were separated by
0.64 cm, with a gap width of 0.0076 cm. Density
differences at various heights were used previously to
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determine the shape of the coexistence curve (i.e., the or-
der parameter), the compressibility in the one- and two-
phase regions, and the density as a function of chemical
potential near T, . The critical exponents P and y',
describing the behavior of the order parameter and
compressibility as t ~0, were found in that experiment to
be 0.327+0.002 and 1.24+0.01, respectively, both in ex-
cellent agreement with theoretical predictions. It also
proved possible to make a fairly precise determination of
the corrections-to-scaling exponent 6, of 0.50+0.03, also
in good agreement with theory. The critical temperatures
of Ne and N2, determined as free parameters in a non-
linear least-squares analysis of the data along different
thermodynamic paths, are shown in Table I. The uncer-
tainties in the reported values, reflecting the spread among
the different determinations, are 0.0005 K (HD), 0.0003
K (Ne), and 0.0002 K (Nq). The quoted critical tempera-
tures are relative to an absolute temperature scale, accu-
rate to 25 mK. These previously determined values of I3,

y, 6, and T, are used in the present analysis of the diam-
eter, and with the exponent relation a=2 —2P —), they
yield +=0.11. The data on the coexistence curve of HD
is available only over a limited temperature range, and is
used in this paper only to obtain the slope of the diameter
outside the asymptotic critical region.

Density data on C2H4 and C2H6 were obtained from
measurements of the refractive index using a prism-
shaped sample cell. The index data were converted to
densities using values of the Lorenz-Lorentz coefficient
measured with the same apparatus. ' In both cases the
critical temperature was determined for the present
analysis from a fit of the form

I lr I

r Q V r

pr
Q~

I.008- SF6

9' &0-
rQ 0

I.004- C Hvr 2 6
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FIG. 3. Coexistence-curve diameters as functions of reduced
temperature for Ne, N~, C2H4, C2H6, and SF6. Dashed lines in-
dicate linear fits to the data far from the critical point.

P P g p g p+Q g p+2+
2pc

(45)

with f3 fixed at 0.327 and b at 0.5. The critical tempera-
ture thus determined for CzH6 is slightly different from
that published previously. A complete account of the
C2H4 order-parameter measurements will be published
elsewhere. '

We have also examined the data of Weiner, Langley,
and Ford' on SF6, obtained also from dielectric-constant
measurements. We use the critical temperature as report-
ed in the thesis of Weiner. ' These data, which have also
been analyzed by Ley-Koo and Green, ' and by Nicoll
and Albright' are here reanalyzed over identical tempera-
ture ranges and with the same functional forms as used
for Ne, Nq, CzH4, and C2H6, allowing for a consistent
comparison of the various fluids.

The diameters of Ne, N2, CqH4, C2H6, and SF6 are
shown in Fig. 3, and it is clear that for t (3&10 all
show negative deviations from the linear behavior which
holds at larger t, indicated by the dashed lines (see below),
and that those deviations increase systematically with the
critical temperature (and therefore the polarizability) of
the system.

Before interpreting the results on the diameter anomaly
as possible evidence of a singular term representing field
mixing, it is reasonable to consider other possible mecha-
nisms which may give rise to such a negative deviation.
Although those deviations could, in principle, reflect the

presence of a weak critical anomaly in the dielectric con-
stant e or index of refraction, this appears unlikely to be
the case here: It has been shown ' ' for both Ne and SF6
that if there is an anomaly in the dielectric constant, its
magnitude is less than 5 parts in 10 near t=10 . In the
case of CO, a polar fluid, a small increase in e, on the
order of 0.1%, is seen at a reduced temperature of 10
above T, .

Another important effect to be considered is the possi-
ble formation of wetting layers that intrude between the
solid surfaces and the bulk vapor phase. ' For SF6
near its critical temperature, these layers have been
found to be on the order of 200 A thick. With a capaci-
tor gap of 0.0076 cm as in the experiments HD, Ne, and
Nq, and with allowance for the temperature-dependent
density difference between liquid and vapor, we estimate
that the presence of such films on both faces of the gap
should contribute a deviation on the order of 0.005%, in
the temperature range t-5&10 —1)&10 . An effect
of this magnitude is at least a factor of 10 smaller than
the observed deviations in Ne and N2. Such an effect on
the SF6 results should be even smaller, since the capacitor
gap there was 0.02 cm. It is significant that the observed
diameter deviation for ethane, as determined through in-
dex of refraction measurements, is on the same order as
that for Ne, N2, and SF6, for this suggests that intruding
wetting layers, if they exist at all, are not important, given
that the surface to volume ratio in these experiments are
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FIG. 4. Slope of diameter in outer temperature range vs criti-
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prediction of the van der Waals equation of state for a system
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pd = Ap+ A)t . (46)

We find that the value of A ~, shown in the first line of the
Tables, increases systematically with the critical tempera-

263 cm ' (Ne, N2), 100 cm ' (SF6), and 4 cm ' (CqH6).
It has long been known that an incorrect choice of or-

der parameter can introduce a spurious nonanalyticity
into the diameter which carries an exponent of 2P=0.65.
Although there are no rigorous arguments which require
that the number density be the correct order parameter
for a Quid, this quantity is usually considered the ap-
propriate choice, in that it is conjugate to the one-body
operator, the chemical potential, just as the magnetization
of a ferromagnet is conjugate to the external magnetic
field. In the analysis below, the high-precision data on Ne
and N2 appear to favor a 1 —a singularity as the dom-
inant nonanalyticity. In the recent determination of the
coexistence curves of cesium and rubidium, ' it was found
that density is clearly preferred over specific volume as
the order parameter.

The measured diameters as a function of temperature,
over the range 3&10 ~t &2&10 are listed in Tables
II—VII. With the exception of HD, for which the data is
limited, all analyses discussed below were performed on
the data in the full temperature range, which is further di-
vided into what we term the inner (3 && 10 & t & 2
&& 10 ) and outer (8 X 10 & t & 2 X 10 ) regions; the
particular ranges for each fiuid are given in the captions
to Tables VIII —XII, which contain the results of linear
least-squares fits to a variety of functional forms over the
various ranges. Quoted uncertainties represent one stan-
dard deviation.

The first analysis we discuss is that of the data in the
outer region which is fit by the form

ture, as has been noted before. Figure 4 shows this
data, along with that of other Auids as reported in the
literature. It is these linear fits which are shown as the
dashed lines in Fig. 3. Remarkably, as the critical tem-
perature decreases, the slope of the diameter in the outer
range approaches closely the van der Waals value of —',
(with the exception of the helium isotopes; see below), and
there is also clearly a trend toward higher slopes with in-
creasing T„ in accord with the discussion of three-body
effects in Sec. III. There, we suggested that the slope
should be a linear function of the dimensionless polariza-
bility factor a~p„and a test of this is shown in Fig. 5(a).
The relation appears to be borne out by the data, with the
dashed line a weighted least-squares fit of a linear form.
We find

A i =(0.43+0.04)+(23.0+4.6)a~p, . (47)

The variation of the compressibility factor with o.~p, is
shown in Fig. 5(b), and with the exception of HD, a good
linear relationship is found. The deviation of HD from
the trend common to the remaining systems is very likely
to be a quantum-mechanical effect, for as the thermal de
Broglie wavelength increases, so too does the apparent
size of the particles, which will increase the pressure and
lower the number density, thus raising the compressibility
factor. Indeed, a comparison of the compressibility fac-
tors for the isoelectronic series H2, HD, HT, D2, DT, and
T2 does show a general trend toward higher values of Z,
with an increase in the de Boer parameter

FIG. 5. Diameter slope A & and compressibility factor Z, vs
critical polarizability product. Dashed lines are the fitted linear
relations, with the omission of the compressibility factor of HD,
as described in text.
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TABLE II. Coexistence curve of HD. TABLE III. Coexistence curve of Ne.

pU /pc PI ip~ p. /p. pi Ip.

0.005 864
O.OOS 872
0.005 285
0.004 943
0.004 602
0.004 261
0.003 926
0.003 695
0.003 479
0.003 252
0.003 025
0.002 799
0.002 568
0.002 350
0.002 125
0.001 904
0.001 676
0.001 448
0.001 228
0.001 007
0.000 892
0.000 777
0.000 663
0.000 549
0.000 435
0.000 377
0.000 319
0.000 262
0.000 212
0.000 157
0.000 104

0.745 230 1

0.745 158 6
0.754 387 8
0.760 144 0
0.766 106 3
0.772 406 4
0.778 889 8

0.783 513 2
0.788 1147
0.793 065 4
0.798 198 1

0.803 608 8
0.809 405 9
0.815 266 4
0.821 682 2
0.828 402 3
0.835 9440
0.843 948 4
0.852 717 5

0.862 494 3
0.868 181 8
0.874 234 6
0.880 930 8
0.888 380 5
0.896 948 1

0.901 748 7
0.907 084 3
0.912 640 8
0.918 685 1

0.926 200 3
0.935 396 3

1.266 562 9
1.266 S91 7
1.256 683 3
1.250 600 3
1.244 271 9
1.237 659 0
1.230 807 2
1.225 838 7
1.221 072 0
1.215 863 3
1.210 485 8
1.204 809 5

1.198 754 6
1.192 684 7
1.186 045 5

1.178 978 9
1.171 435 6
1.162 856 4
1.153 928 6
1 ~ 143 948 4
1.138 165 1

1.131 919 5

1.125 030 3
1.117461 9
1.108 788 6
1.103 970 5

1.098 479 3
1.092 347 7
1.086 610 6
1.079 013 4
1.069 826 2

0.022 402
0.018 793
0.015 949
0.013 110
0.010983
0.008 865
0.006 754
0.005 342
0.003 939
0.003 240
0.002 678
0.002 259
0.001 907
0.001 558
0.001 313
0.001 070
0.000 825
0.000 722
0.000 650

0.552 318 7
0.578 444 S

0.601 674 8

0.627 734 0
0.649 887 0
0.675 004 5

0.704 303 3
0.727 395 9
0.754 694 6
0.770 719 5

0.785 243 3
0.797 428 3
0.808 855 0
0.821 632 7
0.831 702 6
0.842 959 8

0.856 260 4
0.862 546 0
0.867 175 9

1.473 898 1

1,443 73S 9
1.417 193 1

1.387 593 0
1.362 973 0
1.335 398 4
1.303 536 7
1.278 725 7
1.249 688 0
1.232 781 0
1.217 489 9
1.204 761 4
1.192 888 2
1.179 731 3
1.169 269 2
1.157 701 6
1.144 181 6
1.137 622 2
1.132 866 S

AD =h /o &(me), with o the hard-core diameter, m the
mass, and e the pair-potential well depth. The increase in
Z, from that of Tq (AD =1.00) to that of H2 (AD =1.73) is
on the order of 0.015, which is nearly the amount by
which the compressibility factor of HD lies above the
linear relation obeyed by the other systems. This suggests
that the quantum-mechanical corrections to the equation
of state are the cause of the observed deviation.

A least-squares fit to the compressibility factor data for
the systems other than HD gives the relation

p. /p.

TABLE IV. Coexistence curve of Nq.

pi Ip. pt /pc.

0.017 795
0.016 154

0.014 504
0.012 850
0.011 184
0.009 511
0.008 670
0.006 416
0.006 137
0.005 857
0.005 575
O.OOS 292
O.OOS 008
0.004 727
0.004 444
0.004 248
0.004 049
0.003 877
0.003 705
0.003 535
0.003 365

0.572 898 9
0.586 663 6
0.601 351 7
0.617 457 6
0.635 163 8
0.654 802 7
0.665 592 4
0.698 185 9
0.702 641 1

0.707 429 6
0.712 263 1

0.717 431 0
0.722 677 6
0.728 1108

0.733 813 9
0.737 936 9
0.742 162 2
0.745 949 8

0.749 839 5

0.753 831 3
0.757 858 9

1.452 867 4
1.436 753 7

1.419430 2
1.401 061 6
1.381 041 9
1.358 994 3
1.347 126 2
1.311 108 9
1.306 017 2
1.300 950 8
1.295 571 5

1.290 132 2
1.284 429 1

1.278 566 9
1.272 524 4
1.268 130 6
1.263 560 2
1.259 506 8

1.255 322 4
1.251 093 5

1.246 657 6

0.003 195
0.003 025
0.002 855
0.002 684
0.002 513
0.002 343
0.002 171
0.002 001
0.001 830
0.001 660
0.001 489
0.001 317
0.001 143
0.000 970
0.000 828
0.000 742
0.000 658
0.000 571
0.000 514
0.000 458
0.000 401

0.762 097 2
0.766 538 4
0.771 091 0
0.775 863 9
0.780 799 1

0.785 972 1

0.791 475 S

0.797 167 9
0.803 183 9
0.809 625 0
0.816442 1

0.823 888 7
0.832 051 1

0.841 100 7
0.849 251 1

0.854 597 4
0.860 328 8
0.866 801 6
0.871 247 5

0.876 120 3
0.881 378 6

1.242 190 3

1.237 600 I

1.232 751 1

1.227 711 2
1.222 493 0
1.217 044 7
1.211 3199
1.205 352 7
1.199030 8
1.192 3400
1.185 150 7
1.177 479 8
1.169066 3
1.159 741 2
1.151 217 5

1.145 731 8

1.139 805 3
1.133 384 8
1.128 707 4
1.123 765 6
1.118406 6
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TABLE V. Coexistence curve of C2H4. TABLE VI. Coexistence curve of C2H6.

0.019 560
0.018 779
0.017 478
0.016 816
0.015 584
0.014 802
0.014 202
0.012 892
0.012 727
0.011 578
0.010 770
0.010222
0.008 854
0.008 759
0.007 461
0.006 881
0.006 489
0.005 528
0.004 550
0.003 562
0.003 171
0.002 578
0.002 566
0.002 162
0.001 949
0.001 480
0.001 339
0.001 133
0.000 926
0.000 719
0.000 614
0.000 516
0.000 509
0.000 418
0.000 355

2.5

0.538 588
0.544 812
0.554 155
0.560366
0.571 394
0.578 724
0.585 790
0.598 476
0.599 884
0.611 991
0.622 123
0.628 874
0.647 982
0.647 139
0.667 063
0.675 748
0.682 472
0.700 106
0.719674
0.740 611
0.750 927
0.768 758
0.769 035
0.781 839
0.790 169
0.815 724
0.814 343
0.825 160
0.837 635
0.849 544
0.858 677
0.868 915
0.866 704
0.875 271
0.882 179

pi Ip.
1.498 026
1.491 288
1.475 681
1.469 759
1.457 100
1.448 757
1.440 401
1.425 846
1.423 688
1.408 858
1.398 343
1.390 250
1.369 458
1.369 735
1.348 114
1.338 665
1.330 822
1.311 623
1.290 239
1.267 473
1.256 090
1.237 378
1.237 917
1.223 271
1.214 849
1.188 214
1.187 674
1.177 068
1 ~ 165 093
1.151 486
1.143 577
1.133 774
1.134 866
1.126 141
1.118772

0.021 42
0.019 82
0.018 17
0.01648
0.014 74
0.012 97
0.011 62
0.01024
0.009 063
0.007 877
0.006 668
0.006 178
0.005 686
0.005 186
0.004 687
0.004 197
0.003 679
0.003 172
0.002 917
0.002 660
0.001 988
0.001 835
0.001 677
0.001 521
0.001 418
0.001 313
0.001 210
0.001 103
0.000 999 4
0.000 925 4
0.000 811 7
0.000 707 2
0.000 607 2
0.000 549 0
0.000 498 6
0.000 444 2
0.000 393 1

0.000 338 7
0.000 313 8

p. /p,

0.524 507
0.536 834
0.549 646
0.564 496
0.578 909
0.597 787
0.612 831
0.627 972
0.643 890
0.660 245
0.679 026
0.687 518
0.695 914
0.705 377
0.715 132
0.725 759
0.737 455
0.751 092
0.757 692
0.764 680
0.786 664
0.793 167
0.798 505
0.805 396
0.809 279
0.814 423
0.819 955
0.825 536
0.830 626
0.835 291
0.841 891
0.849 413
0.857 129
0.861 448
0.866 107
0.871 445
0.876 007
0.881 200
0.885 325

pi fp.

1.512 569
1.498 641
1.481 316
1.466 563
1.446 084
1.426 769
1.408 667
1.390 760
1.373 483
1.356 255
1.333 883
1.326 119
1.315 733
1.304 960
1.294 235
1.283 946
1.269 970
1.257 643
1.249 102
1.240 852
1.217 509
1.212 220
1.204 601
1.198 923
1.193 245
1.189 362
1.183 733
1.179 171
1.171 212
1 ~ 167 621
1.160487
1.153 159
1.144 909
1.139911
1.134 330
1.130 350
1.124 284
1 ~ 119092
1.116617

3-body van der Waals=

2.0 — 2-body
Z, =(0.319+0.007)—(2.37+0.44)a~p, . (48)
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FIG. 6. Correlation of the amplitude of the order parameter
(Ap) with the slope of the diameter I' A l ), for a variety of fluids.
The data indicated by open circles are from the present work,
those with solid circles are from the sources cited in Ref. 6.

The experimental value for the ratio of the two slopes in
Eqs. (47) and (48) is therefore

ddt
de~Pc

dZ. = —9.7+2.6 .
dapPc

(49)

The measured value for this ratio is thus consistent, in
both its order of magnitude and its sign, with that from
the van der Waals theory presented above (= —11.7),
lending further strong support to the notion that primarily
repulsive three-body interactions are operative.

There also exists a systematic variation in the amplitude
3p with the critical temperature, like that of the diameter
slope, in accord with the predictions of Eq. (29). Combin-
ing our data with previous studies of a variety of Quids, as
discussed in Ref. 6, we plot in Fig. 6 the amplitude Ap
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0.019052
0.018 108
0.015 453
0.012 704
0.011060
0.009 758
0.006 912
0.006 043
0.006 012
0.004 553
0.003 668
0.003 081
0.002 557
0.002 046
0.001 920
0.001 832
0.001 541
0.001 437
0.001 324
0.001 221
0.001 183
0.001 032
0.001 023
0.001 004
0.000 922
0.000 800
0.000 706
0.000 615
0.000 511
0.000 433
0.000 355
0.000 355
0.000 307

0.530 31
0.537 26
0.560 34
0.587 00
0.607 15
0.620 20
0.661 66
0.676 87
0.677 58
0.704 73
0.726 14
0.741 83
0.756 17
0.773 90
0.778 94
0.782 42
0.794 89
0.799 89
0.804 92
0.810 28
0.811 88
0.820 62
0.820 93
0.822 26
0.826 70
0.835 17
0.841 79
0.848 75
0.857 41
0.865 67
0.873 29
0.873 49
0.880 36

1.513 80
1.503 61
1.475 43
1.442 91
1.422 40
1.402 94
1.357 62
1.340 96
1.340 62
1.308 92
1.286 54
1.268 79
1.252 52
1.234 41
1.228 54
1.225 73
1.212 60
1.206 78
1.201 14
1.195 38
1 ~ 194 13
1.185 06
1.185 01
1.182 66
1 ~ 178 28
1.169 84
1.161 67
1.154 75
1.145 21
1.13746
1.127 33
1.127 63
1 ~ 122 72

TABLE VII. Coexistence curve of SF6, from Ref. 14.

pt /pc

exp[ P(r &, T)/k~—T]= (exp[ P~~ (r&,co;, co—j )]),
where the angular statistical average of any quantity is

(50)

the various fluids were analyzed, the different values of P,
and varying functional forms assumed for the coexistence
curve, some including corrections to scaling, others not.
It is not surprising that the actual magnitude of Ap in the
mean-field theory is larger than the experimental values,
since /3 is —,

' in the former, and nearly —,
' in the latter.

For the three-dimensional Ising model with only
nearest-neighbor interactions, the value of Ap is estimat-
ed to be =1.5 —1.6, with highly coordinated lattices
such as the face-centered-cubic lattice at the low end of
the range, and more open lattices like the diamond at the
high end. If we imagine that this value corresponds to
that of a fluid with only pair interactions, then it would
serve as the fluctuation-corrected value of this amplitude
for the van der Waals theory with only two-body forces.
As can be seen in Fig. 6, it is roughly in agreement with
the experimental data.

At first glance, it is surprising that highly polar fluids
like NH3 and H20 follow the same trend (Fig. 6) as the
nonpolar spherically symmetric systems like the rare
gases, especially since the bare polarizabilities of the form-
er are not particularly large [az (NH3) =2.26 A, a~
(H20)=1.48 A ]. Yet, in the absence of any long-range
dipolar correlations, it is known that the dipole-dipole po-
tential Pqq(r;, ,co;,co, ), as a function of the separation r,j
and dipolar angles co; of a pair of particles, may be aver-
aged over angles to arrive at an effective spherically sym
metric potential P(r~, T). At long range, this potential de-
cays like the ordinary dispersion energy, -r, and thus
serves simply to renormalize the amplitude of the van der
Waals energy. The prescription for this tracing out of
orientational degrees of freedom is

versus the diameter slope A [, and compare with the pre-
diction of the van der Waals theory with three-body in-
teractions, Eq. (33). It is clear that the experiments indi-
cate a rather well-defined linear relationship between the
two amplitudes, with a slope in good agreement with that
from the van der Waals theory of —,', =0.45, again sup-

porting the hypothesis of three-body interactions in these
fluids. The scatter in the data is in large part attributable
to the different reduced temperature ranges over which

( )=
~ f f dCO;dCdi( )

(47r)'

In the case of the dipole-dipole potential

Pqq(r;, ~0;,8, , $;,P, )

,
' [2cos(8;)cos(9, )

rjl

—sin(8; )sin(9i )cos(P; P, )], —

(51)

(52)

TABLE VIII. Results of data analysis for Ne. Entry labeled with an asterisk includes a corrections-
to-scaling term with amplitude A I +g =0.62712 I . Outer range is (0.022402~ t ~ 0.008 865), inner
range is (0.002 678 ~ t & 0.000 650), and entire range includes all data points in Table III.

Range of t

outer
inner
inner
inner
entire
entire
entire
entire
entire

Ap

0.999 991(74)
0.999 526(22)
0.999 637(22)
0.999 156{36)
0.999 359(33)
0.999 742(24)
0.999 575(20)
0.999 553(22)
0.999 516(26)

(0)
0.357(7)

(o)
(o)

0.399(2)
(o)

0.173(18)
0.243(25)

(0)

0.588(5)
(0)

0.649(14)
(0)
(0)

0.604(3)
0.342(27)
0.203 (42)
0.527(8)

(0)
(o)
(0)

. 0.102(2)
(0)
(o)
(0)
(0)

0.022(2)

3.122
0.699
0.875
1.114

10.37
6.45
0.995
1.012
1.016
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TABLE IX. Results of data analysis for Nz. Entry labeled with an asterisk includes a corrections-to-
scaling term with amplitude A~ +q =0.6526A~ . Outer range is (0.017995& t &0.008670), inner
range is (0.002 513 & t & 0.000401), and entire range includes all data points in Table IV.

Range of t

outer
inner
inner
inner
entire
entire
entire
entire*
entire

Ap

1.000 094(93)
0.999 448(15)
0.999 564(15)
0.999058(32)
0.999 330(19)
0.999 742(20)
0.999 519(19)
0.999 496(20)
0.999 449(23)

A)

(0)
0.454(5)

(0)
(0)

0.480(2)
(0)

0.259(20)
0.350(25)

(0)

0.716(7)
(0)

0.840(10)
(0)
(0)

0.746{3)
0.344(30)
0.157(43)
0.628(9)

(o)
(0)
(0)

0.124(2)
(0)
(0)
(o)
(o)

0.030(2)

3.72
0.80
0.91
2.24
7.30
9.30
1.74
1.64
1.61

TABLE X. Results of data analysis for C2H4. Outer range is (0.01956 & t & 0.008 759), inner range is
(0.001 949 & t & 0.000 355), and entire range includes all data points in Table V.

Range of t

outer
inner
inner
entire
entire
entire

Ap

1.000 59
1.000 17(26)
1.00028(23)
1.000 08(1 1)
1.000 58(11)
1.000 23(19)

A)

(0)
0.517(121)

(0)
0.579(7)

(0)
0.401(182)

0.883(37)
(0)

0.990(226)
(0)

0.889(11)
0.274(280)

1.20
1.02
0.99
1.14
1.27
1.14

TABLE XI. Results of data analysis for C2H&. Outer range is (0.021424& t & 0.007 877), inner range
is (0.002 660 & t & 0.000 3138), and entire range includes all data points in Table VI.

Range of t

outer
inner
inner
entire
entire
entire

Ap

1.001 59(55)
1.000 13(20)
1.000 27(19)
1.000 17{10)
1.000 62(11)
1.000 10(17)

A)

(0)
0.567(82)

(0)
0.564(8)

(o)
0.661(180)

A)

0.795(38)
(0)

1.053(155)
(o)

0.865(14)
—0.150(276)

1.58
1.00
1.03
1.06
1.44
1.08

TABLE XII. Results of data analysis for SF&. Outer range is {0.019052& t &0.009758), inner range
is (0.002 557 & t & 0.000307), and entire range includes all data points in Table VII.

Range of t

outer
inner
inner
entire
entire
entire

1.0024(13)
1.000 82(20)
1.001 06(20)
1.001 25(19)
1.002 10(20)
1.001 18(39)

A)

(0)
0.801(64)

(o)
0.690(9)

(0)
0.754(281)

1.01(8)
(0)

1.46(13)
(0)

1.034(16)
—0.096(422)

3.08
1.00
1.14
1.54
3.40
1.49
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with p; the dipole moment on particle i, and for which
(Pyq ) =0, the angle-averaged potential is, to leading or-
der in 1/k~T,

~ ~6-

p 1
4

Pqq(r, T)=-
3k~T „6 (53) o 2-

th

~ ~

Similarly, the dipole-induced dipole interaction Pq;q leads,
through angle averaging, to an effective potential of the
form

0 -2- ~ ~

~ ~

2p exp
Pg, y(r) =— (54) (b)

P exp 4 pa~ex = a+ — +—
3 I 9 Ik~r (55)

Since these potentials are attractive and vary as r
they may be interpreted as adding to the Auctuating-
dipole potential V2(r) = —(3Ia~ /4)/r, so that the
effective polarizability is enhanced to the value ca~,

1/2

-8
0

IO

FIG. 7. Residual plots from fits of the diameter of N~ in the
inner temperature range. The fitting function is Ao+ A 2pt in

(a), for which there is systematic variation seen in the residuals,
and A 0+ A 1 t ' in (b), with no systematic trends in the devi-
ations visible.

In the case of NH3, with a~ =2.26 A, p=1.47D, and
I=10.2 eV, the three terms in parentheses in Eq. (55)
are, respectively, 5.11, 0.79, and 2.27 A at the critical
temperature, giving ca~ =2.86 A . Thus, the induction
and orientational contributions to the effective polarizabil-
ity, while significant, are not dominant over the bare
dispersion energy az. With crap, =0.024, compared to
a~p, =0.019, the experimental diameter slope A ~ and
order-parameter amplitude A p for NH3 follow quite
closely the trend obeyed by the nonpolar fluids, lending
support to the notion of a dipole-enhanced effective polari-
zability. For H20, we find a~ =(2.19+0.67+2. 89) A,
or az ——2.40 A, and it is clearly necessary to go beyond

0

the leading-order dipolar corrections to define accurately
the effective polarizability. Nevertheless, the first-order
calculations give cx~p, =0.0259, compared with a~p,
=0.0160, bringing the critical amplitudes as function of
the critical polarizability product more nearly coincident
with the trend shown by the nonpolar fluids.

The Axilrod-Teller potential is not the only important
three-body contribution to the thermodynamic properties
of fluids, for, as we remarked in the Introduction, three-
particle exchange forces are relatively more important
among the smaller, less polarizable fluids whose critical
temperatures fall below -20 K. In particular, as we see
in Fig. 4, the diameter slopes of the helium isotopes are
extremely small, ' far below the van der Waals predic-
tion of A ~

———', . Yet, they do follow well the same trend in

Ap versus A~ that all of the other fluids do, and this is
suggestive of the presence of an attractive triplet potential,
in contrast to the repulsive triple-dipole interaction which
acts to increase the slope from the value —,'. Indeed,
quantum-mechanical calculations do suggest that the ex-
change interactions dominate the dispersion forces in heli-
um, and are of the opposite sign. On the other hand,
from the de Boer parameters of the helium isotopes, and
the discussion in Sec. IV on the properties of HD, it is
certain that quantum corrections to the equation of state
are large. Their full effect on the thermodynamic proper-
ties in the critical region remains an open question.

We next describe the analysis of the diameter anomalies

q .0

Og+ ~

~lo
~t ~0--—

O

~y
2 ~0 ~ ~„I

~ ~

~ ~ ~
0

-6 -

—10
0

I

I

IO t

2 0

(b)

FIG. 8. Residual plots from fits of the diameter of N~ over
the entire temperature range. In (a) the diameter is taken to
have the form Ao+ A ~ t ' + A l t, while in (b) a correction-
to-scaling term Al +~t' + is added, with A l +q/A 1

=0.6526.

for the five fluids. The significantly smaller scatter
present in the data on neon and nitrogen allows a more
detailed analysis than for the other fluids. In no cases
were more than three adjustable amplitudes used in any
of the fits, there being insufficient data to make accurate
determinations of any more. The critical exponent a was
fixed at 0.11 in all of the least-squares fits, with only the
amplitudes A as the variable parameters, entering linearly
into the analysis. In the inner temperature region, the
measured diameters are found to be consistent with both
the functional form A 0+ A i t and A 0 + A

~
t ', the

latter almost always preferred based on its 1 value. Evi-
dence for the curvature of the diameter is the fact that the
amplitude A

&
fit in the inner region is always larger than

that obtained in the outer region. The amplitudes A ~ and
A~ obtained in the inner-region fits also exhibit the
same trend with respect to the critical temperature as ex-
hibited by the slope in the outer region. Examination of
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Bp

ilq

Bp

Bp
)0, (56)

the extrapolations to t=0 of the deviations from linear di-
ameters confirms the existence of diameter anomalies scal-
ing with the critical polarizability product.

The residual plots for nitrogen in Fig. 8 and the g
values for neon and nitrogen also show clearly that in the
inner temperature region, a functional form Ap+ A2pt ~

is not consistent with the data. In contrast to the fit of
the form Ho+A~ t' [Fig. 7(b)], the fit with the t ~

term [Fig. 7(a)] shows systematic residual variation.
However, the inclusion of a linear term into the former
(last entries in Tables II and III) improves the fit consid-
erably, making it comparable to that with a 1 —a anoma-
ly. Since 2P is not very different from 1 —a, it is not
surprising that the fits of these two forms are not substan-
tially different, and we cannot definitively rule out the
presence of a 2/3 anomaly.

Over the entire temperature range, simple fitting func-
tions with only the constant and either the Ait or the
Ai t terms are not by themselves sufficient. In-
stead, a functional form of Ap+ A i t + A ] t or
Ap+ Ai ~t' + A&t+ A& ~+&t' + is required. In
the so-called extended linear model equation of state, the
ratio A i +~ /A i can be calculated via parameters ob-
tained from the asymptotic equation of state of the fluid. '

These ratios, 0.6271 and 0.6526 for Ne and Nq, respec-
tively, are used to reduce the number of free parameters
in the fits to the data. The variations of the amplitudes A

upon the addition of the linear and corrections-to-scaling
terms show that it is difficult to separate the contribution
of each of these terms over the limited temperature range
available. For the most accurate data on Ne and Nq,
however, the coefficient of the leading singular term,
A i, is relatively insensitive to the inclusion of
corrections-to-scaling terms, as seen in Tables VIII and
IX, and this, along with the absence of systematic devia-
tions in the residual plots, Figs. 8(a) and 8(b), strongly
suggests the existence of an energylike diameter anomaly.

Finally, from the data on N2, which is of the highest
quality, we have determined the difference between the

corn pressibilities in the coexisting phases, a quantity
which is predicted to diverge in the presence of field mix-
ing. This difference is computed by comparison of the
densities at different heights in the capacitor stack. The
data clearly show that

our expectations based on the role of three-body interac-
tions.

V. CONCLUSIONS

We have shown that a variety of observed trends in
properties relevant to the liquid-vapor symmetry of pure
fluids can be understood to be a consequence of relatively
weak three-body dispersion forces. The slope of the
coexistence-curve diameter outside the critical region, the
amplitude of singular anomaly in the diameter near T„
the critical compressibility factor, and the order-parameter
amplitude all scale with the critical polarizability product
a~p„a dimensionless measure of the relative importance
of three- versus two-body interactions. In explaining the
origin of the diameter anomalies, we suggest that by a
suitable map in the grand canonical ensemble, triplet in-
teractions may be accounted for with appropriate
thermodynamic-state-dependent pair potentials. In the
critical region, this state dependence is the analog of ther-
modynamic field mixing, which, in solvable lattice and
continuum models, led to the original predictions of the
breakdown in the law of the rectilinear diameter. The
correlations other than that of the anomaly amplitude are
explained semiquantitatively with a simple van der Waals
model of a fluid with pair and triplet interactions. A
more detailed study of the role of many-body interactions
at second-order phase transitions, both from the point of
view of the equilibrium theory of fluids, and with field-
theoretic methods, is desirable.

Finally, having identified the critical polarizability
product asap, as a convenient dimensionless measure of
the relative importance of three-body interactions, we pose
the question of the importance of even higher-order in-
teractions in extremely polarizable fluids. Mercury, for
example, while a metal at room temperature, is thought to
be a semiconductor at its critical point, and we might im-
agine that a large part of its cohesive energy is due to
dispersion forces. %ith a gas-phase polarizability of
a~ =5.1 A and a critical density of —5.8 g/cm, its criti-
cal polarizability product is 0.089, a factor of =4.5 larger
than that of SFq. One expects, therefore, that even four-
and higher-body interactions will be important, and this
should have measurable consequences in condensed
phases. Indeed, preliminary evidence suggests the pres-
ence of a very large amplitude diameter anomaly near the
critical point of Hg.

and there is good evidence of a critical divergence, al-
though there is severe rounding close to the critical tem-
perature (t 5 10 ). We recall the discussion in Sec. II, in
which it was pointed out that the inequality in Eq. (56) is
expected to hold in the presence of diameters whose
anomalies are in the direction found for the fluids studied
here, that is, p, &p,

' (Fig. 1). Mulholland et al. found
for He, Ar, and NH3 that the amplitude of the compres-
sibility difference increases approximately linearly with
the diameter slope, and this is completely consistent with
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