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Abstract A major question in neural development is the origin of the stochastic movement of12

nuclei between apical and basal surfaces of neuroepithelia during interkinetic nuclear migration13

(IKNM). Tracking of nuclear subpopulations has shown evidence of diffusion - mean squared14

displacements growing linearly in time - and has pointed to nuclear crowding from cell division at15

the apical surface being a driver of the slow basalward drift of stochastically moving nuclei.16

However, the emerging hypothesis that IKNM is a diffusive process, driven by nuclear crowding17

from cell divisions at the apical surface, has not yet been validated, and the forces involved are18

yet to be quantified. Here, we employ long-term, rapid light-sheet and two-photon imaging of the19

zebrafish during early retinogenesis to track entire populations of nuclei within the tissue. From20

the time varying concentration profiles, we find clear evidence of crowding effects as nuclei reach21

close-packing and develop a nonlinear diffusional model that provides a quantitative account of22

the observations. Considerations of nuclear motion constrained inside the enveloping cell23

membrane are used to show that concentration-dependent stochastic forces inside individual24

cells, compatible in magnitude with those used for cytoskeletal transport, can offer a quantitative25

explanation of the nuclear movements observed during IKNM.26

27

Introduction28

The vertebrate nervous system arises from a pseudostratified epithelium within which elongated29

proliferating cells contact both the apical and basal surfaces. Within these cells, striking nuclear30

movements take place during the proliferative phase of neural development. More than 80 years31

ago, these movements, termed interkinetic nuclear migration (IKNM), were shown to occur in syn-32

chrony with their cell cycle (Sauer, 1935). Under normal conditions, nuclei of proliferating cells33

undergo mitosis (M) exclusively at the apical surface. During the first gap phase (G1) of the cell34

cycle, nuclei migrate away from this surface to reach more basal positions by S-phase, when DNA35

is replicated. In the second gap phase (G2), nuclei migrate rapidly toward the apical surface where36

they divide again (Del Bene, 2011; Sauer, 1935; Baye and Link, 2007; Leung et al., 2011; Kosodo37

et al., 2011; Norden et al., 2009). The molecular mechanisms that drive the rapid nuclear move-38

ment in G2 have been investigated in a number of tissues (Norden, 2017). In themammalian cortex39

they are thought to involve microtubules as well as various microtubule motors and actomyosin40
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(Xie et al., 2007; Tsai et al., 2007), while in the zebrafish retina, it appears to be the actomyosin41

complex alone that moves the nuclei to the apical surface during G2 (Norden et al., 2009; Leung42

et al., 2011). Nuclear movements during the majority of the cell cycle, in G1 and S phases, have43

been less thoroughly examined. Although similar molecular motors have been implicated (Schenk44

et al., 2009; Tsai et al., 2010), the underlying molecular processeses remain unclear.45

Importantly, IKNM is known to affect morphogenesis and cell differentiation in neural tissues46

(Spear and Erickson, 2012), as retinas with perturbed IKNM are known to develop prematurely and47

to display abnormalities in cell composition (Del Bene et al., 2008). Given this regulatory involve-48

ment of IKNM in retinal cell differentiation, a deeper understanding of the nuclear movements re-49

mains amajor prerequisite for insights into the development of neural systems. On a phenomeno-50

logical level, studies tracking individual nuclei in the zebrafish retina during the G1 and S phases51

have shown their movement to resemble a stochastic process (Norden et al., 2009; Leung et al.,52

2011), particularly in the form of themean squared nuclear displacement versus time. When these53

relations are linear or slightly convex, they indicate a random walk (or persistent random walk),54

much as in ordinary thermal diffusion. During these periods, individual nuclei switch between api-55

cal and basal movements at random intervals, leading to considerable variability in the maximum56

basal position they reach during each cell cycle (Baye and Link, 2007). Similarly, in the mammalian57

cerebral cortex, the considerable internuclear variability in IKNM leads to nuclear positions scat-58

tered throughout the entire neuroepithelium in S-phase (Sidman et al., 1959; Kosodo et al., 2011).59

In addition to the stochastic movements of nuclei during IKNM, there is also a slow basal drift of60

the entire population of nuclei. As variable basalward-biased migration was observed in nuclear-61

sized microbeads inserted in between cells during IKNM in the mouse cortex (Kosodo et al., 2011),62

it seems likely that passive forces are involved in this drift. A number of possible explanations for63

these passive processes have been put forward. These suggestions include the possibility of direct64

energy transfer from rapidly moving G2 nuclei (Norden et al., 2009), as well as nuclear movements65

caused by apical crowding (Kosodo et al., 2011; Okamoto et al., 2013). Here, we present experi-66

ments and theoretical analysis to test both hypotheses, particularly that of apical crowding, and to67

assess quantitatively whether active forces are also necessary for basal drift.68

While a linear scaling of the mean squared displacement with time is a hallmark of diffusive69

processes, there is now growing evidence in disparate systems of dynamics that exhibit such scal-70

ing, yet are decidedly different from conventional diffusion in other respects (Wang et al., 2009;71

Leptos et al., 2009). Thus, a full test of the apical crowding hypothesis requires the study of the72

entire spatio-temporal distribution of nuclei within the retinal tissue. Our work relies on the tracks73

of closely packed nuclei of zebrafish retinal progenitor cells (RPCs). The retina of the oviparous74

zebrafish is easily accessible to light microscopy throughout embryonic development (Avanesov75

and Malicki, 2010) and has been used for several studies of the movements of nuclei during IKNM76

(Baye and Link, 2007; Del Bene et al., 2008; Norden et al., 2009; Sugiyama et al., 2009; Leung et al.,77

2011). We find evidence for IKNMbeing driven by apical crowding and further develop this idea into78

amathematical model. Given the seemingly stochastic nature of individual nuclear trajectories, we79

base themodel on a comparison between IKNM and a simple diffusion process. Themodel reveals80

the remarkable and largely overlooked importance of simple physical constraints imposed by the81

overall tissue architecture and allows us to describe accurately the global distribution of nuclei as a82

function of timewithin the retinal tissue. In this way, we describe IKNMas a tissue-wide rather than83

a single-cell phenomenon. We further develop themodel by examining themotion of nuclei within84

the constrained environment of the enveloping cell membrane. This allows for an estimate of the85

hydrodynamic drag experienced by the nuclei, and hence of their diffusivity if the system were in86

thermodynamic equilibrium. We conclude from the magnitude of the diffusivity extracted from87

the data that basalward migration of nuclei during IKNM cannot be due to thermal diffusion alone.88

Instead themodel indicates that a stochastic force comparable with that which could be generated89

by cytoskeletal transport mechanisms must drive nuclear movements during IKNM. Finally, we ob-90

tain amathematical description of the stochastic trajectories of individual nuclei in the presence of91
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a finite concentration of others. Simulations of these trajectories also confirm that IKNM can only92

be understood when taking interactions between individual nuclei into account and hint at the way93

in which nuclei interact in a tissue-wide fashion. This description raises new questions about how94

cells sense and respond to being crowded, and may shed light on other aspects of progenitor cell95

biology, such as the statistics of cell cycle exit and cellular fate choice.96

Results97

Generating image sets with high temporal resolution98

We imaged fluorescently-labeled nuclei of whole retinas of developing zebrafish at 2 min intervals,99

an optimal time period given the difficulty to track nuclei accurately over long times and the in-100

creased photobleaching with shorter intervals. We compared movies of retinas imaged at 2 min101

and at 20 s intervals over a period of 2 hours and found that the improvement in temporal reso-102

lution made no difference to our analyses. This suggests that it is unlikely that within each 2 min103

interval there were important intervening movements that might complicate the analysis.104

To follow the nuclei of all cells within a portion of the retina we used H2B-GFP transgenic lines105

with GFP expression exclusively in the nuclei (Figure 1A). In order to achieve the desired temporal106

resolution without sacrificing image quality, fluorescence bleaching and sample drift must be min-107

imized as much as possible. The retinas of H2B-GFP embryos were imaged using either a single-108

angle lightsheet microscope (see Figure 1B for a schematic) or an upright two-photon scanning109

microscope. Both of these methods yield images with minimal bleaching compared to other mi-110

croscopic techniques (Svoboda and Yasuda, 2006; Stelzer, 2015). However, while the single-angle111

lightsheet can generate large stacks of images, it is very sensitive to lateral drift due to a small112

area of high resolution imaging. Therefore, some datasets were produced using two-photon mi-113

croscopy, which, despite the limitations of scanning time, could produce areas of high resolution114

images of sufficient size.115

Both lightsheet and two-photon microscopes produced images of at least half the retina with a116

depth of at least 50 µm over several hours in 2 min intervals. The images were processed using a117

suite of algorithms (Amat et al., 2015) to compress them to a lossless format, Keller Lab Block (KLB),118

correct global and local drift, and normalize signal intensities for further processing. Automated119

segmentation and tracking of the nuclei were carried out through a previously published compu-120

tational pipeline that takes advantage of watershed techniques and persistence-based clustering121

(PBC) agglomeration to create segments and Gaussian mixture models with Bayesian inference122

to generate tracks of nuclei through time (Amat et al., 2014, 2015). Two main parameters greatly123

affect tracking results, overall background threshold and PBC agglomeration threshold. To obtain124

best automated tracking results, ground truth tracks were created for a section of the retina over125

120 min and were compared to tracks generated over a range of these two parameters. The best126

combination of the two parameters was chosen as the one with highest tracking fidelity and lowest127

amount of oversegmentation over that interval.128

The most optimal combination of parameters yielded an average linkage accuracy, from each129

time point to the next, of approximately 65%. Hence, extensive manual curation and correction130

of tracks were required. Tracking by Gaussian mixture models (TGMM) software generates tracks131

that can be viewed and modified using the Massive Multi-view Tracker (MaMuT) plugin of the Fiji132

software (Wolffet al., 2018; Schindelin et al., 2012). A region of the retinawith the best fluorescence133

signal was chosen and all tracks within that region were examined and any errors were corrected.134

The tracks consist of sequentially connected sets of 3D coordinates representing the centers of135

each nucleus (Figure 1C), with which their movement across the tissue can be mapped over time.136

For example, Figure 1D shows IKNM of a single nucleus tracked from its birth, at the apical surface137

of the retina, to its eventual division into two daughter cells.138
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Figure 1. Imaging and tracking fluorescently labeled nuclei. (A) A transgenic H2B-GFP embryonic retinaimaged using lightsheet microscopy at ∼30 hpf. The lens, as well as apical and basal surfaces are indicated.
(B) A schematic representation of single-angle lightsheet imaging of the retina. Laser light is focused into asheet of light by the illumination objective and scans the retina. Fluorescent light is then collected by theperpendicular detection objective. (C) Track visualization and curation using the MaMuT plugin of Fiji. Alltracks within a region of the retina are curated and visualized. Circles and dots represent centers of nuclei,and lines show their immediate (10 previous steps) track. (D) The position of a single nucleus within theretinal tissue from its birth to its eventual division. The magenta dot indicates the nucleus tracked at varioustime points during its cell cycle. The last 4 panels are at shorter time intervals to highlight the rapidmovement of the nucleus prior to mitosis.
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Analysis of nuclear tracks139

This process yielded tracks for hundreds of nuclei, across various samples, over time intervals of140

at least 200 min. We used custom-written MATLAB scripts to analyze these tracks. The aggregated141

tracks of themain dataset, in Cartesian coordinates, for all tracked lineages are shown in Figure 2A.142

Single tracks for any given time interval can be extracted and analyzed from this collection. In order143

to transform the Cartesian coordinates of the tracks into an apicobasal coordinate system, we drew144

contour curves at the apical surface of the retina (e.g. see Figure 1A) separating RPC nuclei from the145

elongated nuclei of the pigmented epithelium. We then calculated curves of best fit (second degree146

polynomials) in both the XY and YZ planes. Assuming that the apical cortex is perpendicular to the147

apicobasal axis of each cell, displacement vectors of the nuclei at each time point can be separated148

into apicobasal and lateral components. Since, in IKNM, the apicobasal motion is that of interest,149

we used this component for our remaining analyses.150

Figure 2C,D shows the speed and position of tracked nuclei of the same dataset, over the du-151

ration of their cell cycle, for all cells that went through a full cell cycle. While all nuclei behave152

similarly minutes after their birth (early G1) and before their division (G2), their speed of move-153

ment and displacement is highly variable for the majority of the time that they spend in the cell154

cycle (Figure 2C,D). Most daughter nuclei move away from the apical surface, within minutes from155

being born, with a clear basalward bias in their speed distribution (Figure 2C). This abrupt basal156

motion of newly divided nuclei has also been recently observed by others (Shinoda et al., 2018;157

Barrasso et al., 2018). However, immediately after this brief period, nuclear speeds becomemuch158

more equally distributed between basalward and apicalward, with amean value near 0. Such a dis-159

tribution is indicative of random, stochastic motion, which in turn leads to a large variability in the160

position of nuclei within the tissue (away from the apical surface) during the cell cycle (Figure 2B).161

Interestingly, except during mitosis, we find an apical clearing of a few microns for dividing162

cells (Figure 2D). We checked to see if this was an artifact of measuring the distance to nuclear163

centers due to nuclear shape, as nuclei are rounded during M phase but aremore elongated along164

the apicobasal axis at other times. We found no significant difference between average length of165

nuclear long axis when measured for nuclei right before their division compared to nuclei chosen166

randomly from any other time point within the cell cycle, indicating that this clearing is likely to167

have a biological explanation, such as the preferential occupancy of M phase nuclei at the apical168

surface during IKNM.169

Basal movement of nuclei is driven like a diffusive process170

Previous work has shown that when RPCs are pharmacologically inhibited from replicating their171

DNA, their nuclei neither enter G2 nor exhibit rapid persistent apicalmigration that normally occurs172

during the G2 phase of the cell cycle (Leung et al., 2011; Kosodo et al., 2011). A more surprising173

result of these experiments is that the stochasticmovements of nuclei in G1 and S phases also slow174

down considerably during such treatment (Leung et al., 2011). It was, therefore, suspected that the175

migration of nuclei of cells in G2 toward the apical surface jostles those in other phases (Norden176

et al., 2009). We searched our tracks for evidence of such direct kinetic interactions among nuclei177

by correlating the speed and direction of movement of single nuclei with their nearest neighbors.178

These neighbors were chosen such that their centers fell within a cylindrical volume of a height179

and base diameter twice the length of long and short axes, respectively, of an average nucleus.180

Figure 3A shows the lack of correlation between the speed of movement of nuclei and the average181

speed of their neighbors. We further categorized the neighboring nuclei by their position in relation182

to the nucleus of interest (along the apicobasal axis), their direction of movement, and whether183

they were moving in the same direction of the nucleus of interest or not. None of the resulting184

eight categories of neighboring nuclei showed a correlation in their average speed with the speed185

of the nucleus of interest. Furthermore, we considered the movement of neighboring nuclei one186

time point (2 min) before or one time point after the movement of the nucleus of interest. Yet, we187

still found no correlation between these time-delayed and original speeds. These results suggest188
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Figure 2. Analysis of nuclear tracks during IKNM. (A) Extracted trajectories of nuclei in 3 dimensions. Allcurated tracks of the main dataset over 400 minutes in the region shown in Figure 1C are presented. (B) Thedistribution of maximum distances reached away from the apical surface by nuclei during their completed cellcycles. The mean and one standard deviation are shown. (C) The speed distribution of nuclei over completecell cycles. The cell cycle lengths of all nuclei were normalized and superimposed to highlight the early basalburst of speed, as well as pre-division apical rapid migration. The speeds between these two periods arenormally distributed. (D) Position of nuclei as measured by their distance from the apical surface overnormalized cell cycle time. Even though all nuclei start and end their cell cycle near the apical surface, theymove out across the retina to take positions in all available spaces, creating an apical clearing as indicated.
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Figure 3. (A) Average speed of nuclei neighboring a nucleus of interest as a function of the speed of thatnucleus. (B) The positions of two sister nuclei at each time point imaged (red circles) over their complete cellcycle. The black lines are spline curves indicating the general trend of their movements.

that there does not appear to be much transfer of kinetic energy between neighboring nuclei, and189

this is consistent with general considerations of the strongly overdamped character of motion at190

these length scales.191

Another hypothesis advanced for the basal drift in IKNM is that the nuclear movements are192

driven by apical crowding (Kosodo et al., 2011; Okamoto et al., 2013). How apical crowding might193

result in basal IKNM can be understood by comparing IKNM to a diffusive process. In diffusion, a194

concentration gradient drives the averagemovement of particles from areas of high to areas of low195

concentration. However, despite the average movement being directed, each individual particle’s196

trajectory is a randomwalk (Reif, 1965). Similarly, during IKNM a gradient in nuclear concentration197

is generated because nuclei divide exclusively at the apical surface. If basal IKNMwere comparable198

to diffusion, this nuclear concentration gradient would be expected to result in a net movement199

of nuclei away from the area of high nuclear crowding at the apical side of the neuroepithelium200

(Miyata et al., 2015; Okamoto et al., 2013). Indeed, in IKNM each individual nucleus’ trajectory201

resembles a random walk (Norden et al., 2009). Therefore, for the cells in the G1 and S phases202

(which account for more than 90% of the cell cycle time in our system), IKNM has, at least on a203

phenomenological level, the main features of a diffusive process.204

To test further whether we can indeed describe IKNM using a model of diffusion, we first asked205

what would happen to the concentration gradient if we blocked the cell cycle in S phase, which206

inhibits both the apical movement of the nuclei in G2 and mitosis at the apical surface. If the com-207

parison to diffusion were valid, we expect the blockage to abolish the build-up andmaintenance of208

the concentration gradient. We, therefore, compared the normally evolving distribution of nuclei209

in a control retina with that measured from a retina where the cell cycle was arrested at S-phase210

using a combination of hydroxyurea (HU) and aphidicolin (AC) (Leung et al., 2011; Icha et al., 2016).211

These compounds inhibit DNA polymerase and ribonuclear reductase, respectively, to halt DNA212

replication (Baranovskiy et al., 2014; Singh and Xu, 2016). In the HU-AC treated retina, we counted213

the number of nuclei in a three dimensional section of the tissue containing approximately 100214

nuclei, at equal time intervals, starting with 120 min after drug treatment. The delay ensured that215

almost all cell divisions, from nuclei that had already completed the S phase at the time of treat-216

ment, had taken place. These results are shown in Figs. 4A,C, in which approximate the retinal217

tissue as a spherical shell of apical radius a and introduce the rescaled coordinate � = r∕a. As ex-218

pected from the diffusion model (Figure 4D), over the course of 160 min, the mean of the nuclear219

distribution moved further towards the basal surface in treated retinas, and the concentration220

difference between the apical and basal surfaces diminished (Figure 4B,C). In contrast, in control221
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retinas the mean of the nuclear distribution moved towards the apical surface (Figure 4A,C) as the222

gradient continued to build up. Hence, these results support the suitability of a diffusive model to223

describe the basal nuclear migration during IKNM.224

An analytical diffusion model of IKNM225

To investigate whether a diffusion model provides a quantitative description of IKNM, we focus on226

the crowding of nuclei at the apical side of the tissue. In mathematical terms, crowding creates a227

gradient in nuclear concentration c along the apicobasal direction of the retina. If we assume there228

is no dependence of the nuclear concentration on the lateral position within the tissue then we229

require a diffusion equation for the nuclear concentration c(r, t) as a function only of the apicobasal230

distance r and time t. The retina can be approximated as one half of a spherical shell around231

the lens, and thus we use spherical polar coordinates with the origin of the coordinate system at232

the center of the lens, the basal surface at r = b and the apical surface at r = a (Figure 5B). We233

first study the simplest diffusion equation for this system, in which there is a diffusion constant D234

independent of position, time, and c itself, namely235

)c
)t
= D
r2
)
)r

(

r2 )c
)r

)

. (1)
We seek to determineD from the experimental data on the concentration profile c(r, t). Note that in236

this parsimonious view of modelling we have not included a ’drift’ term of the kind that is expected237

to be present at the very late stages of IKNM, when nuclei return to the apical side.238

In addition to Equation 1, we must specify the boundary conditions appropriate to IKNM. Since239

nuclei only divide close to the apical surface of the tissue, we treat mitosis as creating an effective240

influx of nuclei through the apical boundary. To quantify this influx, we extracted the number241

of cells N(t) as a function of time. As during the stages of development examined here cells are242

neither dying nor exiting the cell cycle (Biehlmaier et al., 2001), we assumed that the number of cell243

divisions is always proportional to the number of currently existing cells. This assumption predicts244

an exponential increase in the number of cells or nuclei, over time, as was recently confirmed by245

Matejčić et al. (2018):246

N(t) = N0e
t∕� , (2)

where N0 is the initial number of nuclei and � = TP∕ ln 2, with TP the average cell cycle length. Fig-247

ure 5A shows the agreement between the theoretically predicted curve N(t) with the experimen-248

tally obtained numbers of nuclei over time. Having obtained N0 and TP from our experimental249

data, the predicted curve has no remaining free parameters and thus no fitting is necessary. Using250

Equation 2, we formulate the influx boundary condition as251

D)c
)r

|

|

|

|

|r=a

= 1
S
)N(t)
)t

=
N0

S�
et∕� , (3)

with S the apical surface area of our domain of interest. In contrast to the apical side of the tissue,252

there is no creation (or depletion) of nuclei at the basal side (Matejčić et al., 2018), and hence a253

no-flux boundary condition,254

)c
)r

|

|

|

|

|r=b

= 0. (4)
Equations 1, 3 and 4 fully specify this simplest mathematical model of IKNM.255

In solving these equations to find the concentration of nuclei c(r, t) in the retinal tissue it is256

convenient to introduce dimensionless variables for space and time,257

� = r
a
, s = Dt

a2
, (5)

and further define the purely geometric parameter � = b∕a < 1. The exact solution for the nuclear258

concentration, whose detailed derivation is given in the Appendix, is259

c(�, s) =
∞
∑

i=1

(

ℎie
−�2i s +

�if0
� + �2i

e�s
)

Hi(�) +
1

1 − �

(1
2
�2 − �� + g0

)

f0e
�s. (6)
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The first terms within parentheses describe the decay over time of the initial condition c(�, s = 0).260

Here, �i are the eigenvalues and Hi(�) the eigenfunctions of the radial diffusion problem, and the261

coefficients ℎi are determined from the experimental initial conditions (see Methods). The second262

terms within the sum and the final term on the right hand side of Equation 6 are constructed such263

that the solution fulfills the boundary conditions 3 and 4. In the last term, the constant g0 was264

obtained using the constraint that the volume integral of the initial concentration yields the initial265

number of nucleiN0. f0, � and �i emerge within the calculation of the solution and are specified in266

the Appendix. Thus, the diffusion constant D in Equations 1 and 6 is the only unknown.267

The linear model is accurate at early times268

To determine the effective diffusion constantD from the data, the experimental distribution of nu-269

clei in the retinal tissue was first converted into a concentration profile. Then, the optimalD-value,270

henceforth termed D∗, was obtained using a minimal-�2 approach. The value obtained within the271

linear model for a binning width of 3 µm and an apical exclusion width of 4 µm is D∗lin = 0.17 ± 0.07272

µm2/min. Using this, we can examine the decay times of the different modes in the first term of273

Equation 6. The slowest decaying modes are the ones with the smallest eigenvalues �i and we274

find that the longest three decay times are T1 ≈ 1325 min, T2 ≈ 350 min and T3 ≈ 158 min. This275

shows that indeed all three terms of Equation 6 are relevant on the timescale of our experiment276

and need to be taken into account when calculating the concentration profile. The corresponding277

plots of c(�, s) are shown in Figure 6A-C. As can be seen from this figure, the diffusion model fits278

the data very well at early times, t ≤ 200 min. However, for t ≥ 200 min the model does not fit279

the data as well; the experimentally observed nuclear concentration levels off at a value between280

4.00 × 10−3 µm−3 and 4.50 × 10−3 µm−3 (Figure 6D), an aspect that is not captured by this model of281

linear diffusion.282

One particular aspect of the biology that the linear model neglects is the spatial extent of the283

nuclei. In a linear diffusionmodel, particles are treated as point-like and non-interacting. However,284

our microscopy images (see Figure 1A) clearly indicate that the nuclei have finite incompressible285

volumes, so that their dense arrangement within the retinal tissue would lead to steric interactions286

once the nuclear concentration is sufficiently high. Moreover, the packing density of nuclei can not287

exceed a maximum value dictated by their geometry. Next, we examined whether accounting for288

these effects leads to a more accurate theory.289
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Figure 6. (A) The initial experimental concentration profile of nuclei at t = 0min as well as the calculatedinitial condition curves (see Methods Equation 17) for the linear (red solid line) and nonlinear (blue dashedline) models. The fit of the models to experimental distribution of nuclei after 100 min (B), 200 min (C), and300 min (D) are shown. For the first three graphs, the best fit over all 100 intervening time points were usedwith the corresponding diffusion constants shown in (A). For t = 300 min, the best fit at that time point onlywas used with the corresponding diffusion constants indicated.
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Nonlinear extension to the model290

When the diffusion equation 1 is written in the following form291

)c
)t
= D 1

r2
)
)r

{

r2c )
)r

[ )
)c
(c ln c)

]}

, (7)
we can identify the term c ln c as proportional to the entropy density S of an ideal gas, and its292

derivative with respect to c as a chemical potential. In an ideal gas, all particles are treated as293

point-like and without mutual interactions. In order to include the spatial extent of particles, we294

must estimate the entropy in a way that accounts for the maximum concentration allowable given295

steric interactions. This is a well-studied problem in equilibrium statistical physics, in which, purely296

as a calculation tool, it is useful to consider space as divided up into a lattice of sites. Each of these297

sites can be either empty or occupied by a single particle. In this “lattice gas” model, The discrete298

sites assure aminimumdistance of approach for particles and thus amaximum concentration cmax299

(Huang, 1987). In this system, a useful approximation to the entropy is300

Slattice gas ∝ c ln c +
(

cmax − c
)

ln
(

cmax − c
)

. (8)
Substituting this expression for the term c ln c in 7, we obtain the nonlinear diffusion equation301

)c
)t
= D 1

r2
)
)r

(

r2
cmax

cmax − c
)c
)r

)

. (9)
Adjusting the boundary conditions at the apical side accordingly leads to302

D
cmax

cmax − c
)c
)r

|

|

|

|

|r=a

=
N0

S�
et∕� , (10)

while the basal boundary condition remains the same as Equation 4. Together, Equation 9 and the303

boundary conditions in Equations 4 and 10 represent an extension to the diffusionmodel for IKNM,304

which now accounts for steric interactions between the nuclei. The maximum concentration cmax305

incorporated in this model was obtained, as described in the Methods, by considering a range of306

nuclear radii and the maximum possible packing density for aligned ellipsoids (Donev et al., 2004).307

Similar to fitting the linear model, we also need to establish a description of the initial condition.308

To make both models consistent with each other, we employ the linear model’s initial condition,309

Equation 6 at s = 0 with ℎi as obtained from Equation 17 (Figure 6A). The concentration profile in310

the nonlinear model and its derivative were obtained numerically using the MATLAB pdepe solver.311

Fitting this concentration profile to the data was bymeans of aminimal-�2 approach, as well. When312

the optimization takes data points up to t = 200 min into account, we find D∗nonlin = 0.09 ± 0.05313

µm2/min (Figure 6, Table 1). As can be seen, by choosing cmax correctly, an excellent fit to the data314

can be obtained, particularly to the flattened part of the distribution at late times near the apical315

side (� ∼ 1), where the linear model fails. These results show that a lattice-gas based diffusion316

model is indeed suitable to describe time evolution of the nuclear concentration profile of the317

zebrafish retina during IKNM over several hours of early development.318

Basalward IKNM is not due to thermal diffusion but is compatiblewith cytoskeletal319

transport320

This diffusion model, with the calculated diffusion constant D∗nonlin = 0.09 ± 0.05 µm2/min obtained321

from the nonlinear implementation, allows us to probe the physical and biological considerations322

that could set its scale. Notably, at low nuclear densities, c ≪ cmax, the term cmax∕
(

cmax − c
) in323

equation 9 tends to unity, the ordinary diffusion equation 1 withD∗lin = D∗nonlin is recovered. We can324

thus make use of its well-known properties for further evaluation. First, we assess whether nuclei325

in IKNM move due to free equilibrium thermal diffusion in a fluid. If so, the diffusion constant326

obeys the Stokes-Einstein equation (Einstein, 1905)327

Dthermal =
kBT
�
, (11)
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where kB = 1.38 × 10−23 JK−1 is the Boltzmann constant, T is the absolute temperature, and � is328

the drag coefficient for the particle, the constant of proportionality between the speed with which329

it moves and the force applied. For a spherical particle of radius ℜ in a fluid of viscosity �, the330

reference value is �0 = 6��ℜ. If we assume that the particles move in water at 25 ◦C, for which331

� ≈ 9 × 10−4 Pas, and if we approximate the nuclei as spheres with ℜ = 3.5 µm, corresponding to332

the maximum nuclear concentration cmax = 4.12×10−3 µm−3 (as in Figure 6), we obtainDthermal ≈ 4.2333

µm2/min. This value is about 50 times larger than themeasured value ofD∗nonlin, implying that freely334

diffusing nuclei in water would be vastly more mobile than seen during IKNM.335

While the free thermal diffusivity of nuclei serves as a useful reference quantity, nuclei clearly336

do not move in pure water, nor in an unbounded fluid. The viscosity of the cytoplasm is likely337

much higher than that of water due to the high number of organelles and polymeric components338

present; a higher viscosity leads to a lower diffusion constant via the Stokes-Einstein relation (11).339

Similarly, the slender shape of the individual cells within pseudostratified epithelia (Norden, 2017)340

would imply that a considerable amount of energy is required to transport fluid through the narrow341

region between the nucleus and the membrane.342

In order to understand the effects of membrane confinement on fluid transport, it is useful to343

consider a minimal energetic description of the cell shape. That is provided by an energy  that344

incorporates membrane elasticity, through a bending modulus �, and surface tension  ,345

 = ∫ dS
{�
2
2 + 

}

, (12)
where dS is the element of surface area and is themean curvature. For a cylindrically symmetric346

shape given by a function �(z), dS = 2��√1 + �2z and347

 =
�zz

(

1 + �2z
)3∕2

− 1

�
√

1 + �2z
, (13)

where �z stands for d�∕dz, etc. The equilibrium shape of a membrane is that which minimizes348

equation 13 subject to constraints such as boundary conditions and/or a given enclosed volume.349

As first understood in the context of the so-called “pearling instability” of membranes under350

externally imposed tension (Bar-Ziv and Moses, 1994; Nelson et al., 1995; Goldstein et al., 1996),351

narrow necks emerge as characteristic equilibrium structures when the dimensionless ratio R2∞∕�352

is much larger than unity, where R∞ is a characteristic tube radius imposed far from the neck (e.g.353

the nuclear radiusℜ). In this limit, the neck radius is on the order of√�∕ . For fluid membranes it354

is known that � ∼ 20kBT (Helfrich, 1973), while the magnitude of tension (an energy per unit area)355

is such that the surface energy associated with a molecular area is comparable to thermal energy;356

l2∕kBT ∼ 1, where l is a molecular dimension (e.g. 1 nm). Thus,  may be as large as ∼ 10−5 Jm−2357

and ℜ2∕� is very large indeed (∼105).358

To illustrate the kinds of shapes that are energetic minima of (12), we show in Figure 7 that359

which arises when we impose (i) an overall aspect ratio of ∼20 for the cell, as measured byMatejčić360

et al. (2018), (ii) cell radii of 1.98 and 0.94�m at the apical and basal sides of the tissue, respectively,361

as determined from that aspect ratio and the approximate length L of cells in our experiment,362

and (iii) position of the nucleus at the midpoint of the cell, with a radius ℜ = 3.5�m. The details363

of calculations are given in the Appendix. As the necks become extremely narrow in the relevant364

limit, we have taken a smaller value of  to illustrate the basic effect. Because the gap between the365

membrane and the enveloped sphere is so thin, we have set the membrane radius equal to that366

of the sphere over some angular extent and minimized the energy with respect to the position of367

the last contact point, as detailed in the Appendix.368

The similarity of this shape to those described in the literature suggests that this model is a369

useful starting point for the discussion of the fluid dynamics of nuclear motion during IKNM. Re-370

cently, Daniels (2019) considered the transport of a sphere through the fluid contained within a371

13 of 30



Manuscript submitted to eLife

Figure 7. Cell shapes. A) Equilibrium cell shape obtained from minimization of elastic energy, with specifiedradii �a = 1.98�m and �b = 0.94�m at apical and basal sides. Here, the length L of the cell is taken to be 55�m.B) Coordinate system defined in (Daniels, 2019), whereℜ is the nuclear radius andℜtube and � are the radiusof the membrane tube around the nucleus and the opening angle of the membrane, respectively.

cylindrically-symmetric tight-fitting tubular membrane with bending modulus � and surface ten-372

sion  , much like the geometry of cells undergoing IKNM. At a finite temperature T the membrane373

will exhibit thermally-driven shape fluctuationswhich, as shownbyHelfrich (1978), produce a repul-374

sive interaction with the nearby sphere, swelling the gap. In the limit of large tension (appropriate375

to a tight-fitting membrane) the calculation simplifies to yield the result376

�tube = 32�0
(

�
kBT

ℜ2

kBT
)2∕3

, (14)
where, for ease of interpretation, we have written the factors within parentheses as a product of377

two convenient dimensionless ratios. As the nuclear radius is micron-sized, we find ℜ2∕kBT ∼ 107,378

which in turn implies a drag coefficient ratio on the order of 105 and diffusivities Dtube ≈ (1 − 5) ×379

10−6Dthermal. Because of the very close spacing between the membrane and nucleus and the high380

viscous drag associated with such a geometry, these values are about 3 to 4 orders of magnitude381

smaller than the measured D∗nonlin. This is without considering changes in the cytoplasmic viscos-382

ity, which would decrease the value of D even further. Therefore, we conclude that the nuclear383

movements in IKNM cannot be due to thermal diffusion, but must be actively driven, e.g. through384

cytoskeletal transport.385

We can turn to a more microscopic interpretation of the value of the diffusion constant. At386

low nuclear concentrations, when equation 1 holds, the behavior of individual particles can be387

described using the overdamped Langevin equation (compare to Lemons and Gythiel (1997))388

� )r
)t
= F (t) (15)

whereF (t) is a stochastic force. In the standard way, if we average over realisations of the random389

forceF (t) and integrate in time, themean squared displacement ⟨r(t)2⟩ = Γt∕�2 is obtained, where390

Γ = ∫ dqQ(q), with Q = ⟨F (t′)F (t′′)⟩ the correlation function of the stochastic force between time391

points t′ and t′′ and q = t′− t′′. For systems at densities low enough for equation 1 to hold, we know392

further that ⟨r(t)2⟩ = 6Dt, leading to the result393

Γ = 6�2D, (16)
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Figure 8. Mean-squared-displacement (MSD) of the first 40 nuclei that could be tracked beginning with celldivision in the experiment. The black curve is the experimental MSD curve as a function of (cell-internal) timeafter cell division. The shaded areas represent the simulations of different models. In red is the model thatassumes the effect of surrounding nuclei is due to a concentration-dependence of the stochastic force (i.e.has a concentration-dependent Γ). In blue is the model that includes the effect of surrounding nuclei via anadditional force Fexternal. In gray is the model for low nuclear concentration for comparison. In each case, thesame 40 nuclei as the experiment have been simulated, taking their respective environment (i.e. thesurrounding nuclear concentration) into account. In each simulation, the MSD curve was calculated as in theexperiment. For each model, simulations were repeated 2500 times and the shaded areas represent therange of values covered by the individual resulting MSD curves for each model. The experimental MSD curveonly agrees with the model assuming a concentration-dependent stochastic force.

expressing the unknown quantity Γ in terms of the measured diffusion constant and the friction394

coefficient. Using the numerical values quoted above, we find Γ ≈ (1.2×10−18−3.4×10−17)N2s. As the395

units of Γ are force2×time, we can estimate the underlying forces if we know their correlation time.396

As most molecular processes of cytoskeletal components have characteristic time scales of 10ms397

to 1 s, we obtain forces in the range of 1−50 nN. This result is compatible with cytoskeletal transport398

under the assumption that the nucleus is transported either bymultiple molecular motors at once,399

since each molecular motor protein typically exerts forces on the order of several pN, or through400

typical forces arising frompolymerization of cytoskeletal components, which are in the same range401

(Peskin and Oster, 1993; Footer et al., 2007).402

A stochastic model for the movement of individual nuclei reveals a potential mi-403

croscopic mechanism for concentration-dependent IKNM404

Having obtained an interpretation of the diffusion constant D∗ as arising from cytoskeletal trans-405

port throughout the cell cycle, and not only during the apicalward movement of the nuclei during406

G2, we turn to an interpretation of the concentration dependence of IKNM that results fromnuclear407

crowding (equation 9). To this end, we seek an extension to the stochastic dynamics of individual408
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nuclei (equation 15) that corresponds to the concentration evolution in the nonlinear diffusion409

equation 9. In general, there are two different ways to achieve such a correspondence. In the first,410

an additional force Fexternal is introduced into the Langevin equation 15, which describes the aver-411

age effect of surrounding nuclei on the individual nucleus in question and is thus concentration-412

dependent. In the second, we make direct use of the fact that Dnonlincmax∕
(

cmax − c
)

→ Dlin as413

c → 0. Inverting this relationship and applying it to the expression Γ = 62D for the low concentra-414

tion case, we can also extend the Langevin equation 15 by making Γ concentration-dependent, i.e.415

Γ = 62D∗nonlincmax∕
(

cmax − c
).416

Using both models, we can simulate individual nuclei in the experimental environment they417

experience during IKNM, namely the time-varying nuclear distribution across the retinal tissue that418

we found as the solution of the nonlinear model. Simulating several nuclei where each single one419

corresponds exactly to one nucleus in the experiment gives us a means to replicate the processes420

that took place in the tissue over a larger period of time. From such a simulation, we can also421

extract a mean squared displacement curve (MSD curve) that corresponds to the MSD curve which422

can be calculated from the experimental nuclear trajectories. Of course, because our simulations423

are based on a stochastic equation, suitable averaging over realizations of the stochastic force are424

used to obtain statistically significant results.425

Figure 8 shows the range of possibleMSD curves for simulations of the low concentrationmodel426

described by equation 15 and those with the two possible high-concentration extensions, each427

represented by a shaded area. Shown also is the experimental MSD curve obtained from the very428

same nuclei used in the numerics. As can be seen, the experimental curve only agrees with the429

model that assumes a concentration-dependent value of Γ, and not the low-concentration model430

from equation 15. In addition, the experimental curve does not agree with the possibility of in-431

cluding the effects of surrounding nuclei as an independent, additional force. These results have432

two implications. First, they lend further support to the notion raised above that IKNM cannot433

be understood as a single-cell phenomenon. Instead, we can only interpret quantities such as434

MSD curves of nuclei undergoing IKNM correctly if we explicitly take the effects of surrounding435

nuclei into account, even if there seems to be no direct energy transfer between nuclei, as shown436

from our experimental work (Figure 3). Second, the simulation results shown in Figure 8 provide a437

means to distinguish between different ways in which the neighboring nuclei may act on a moving438

nucleus. As the experimental MSD curve only agrees with themodel that assumes a concentration-439

dependent stochastic force, among those considered, the results indicate that cells are, in some440

manner, sensitive to the local nuclear concentration. As we have previously shown, the strength of441

this stochastic force is compatible with cytoskeletal transport. At high nuclear concentrations (i.e.442

when nuclei are packed close to the maximum possible packing density), as is the case closest to443

the apical surface of the retinal tissue, cells may recruit more molecular motors to transport nuclei444

away from this surface faster, leading to a concentration-dependence of the stochastic force.445

Incubation temperature has direct effects on IKNM446

The diffusionmodel may also addressmechanistic questions about IKNM in retinas growing under447

varying experimental conditions. Zebrafish embryos are often grown at different temperatures to448

manipulate their growth rate (Kimmel et al., 1995; Reider and Connaughton, 2014), but it has been449

unclear how the nuclei in the retina behave at these different temperatures. To examine this issue,450

we grew the embryos at the normal temperature of 28.5 ◦C overnight and then incubated them451

at lower temperature (LT) of 25 ◦C or higher temperature (HT) of 32 ◦C during imaging. We could452

directly measure the change in average cell cycle length from experimental data and found that453

in HT, it is 205.5 min, while in LT, it is a much larger 532.78 min. We were then able to use these454

values in the model to investigate whether the change in temperature influences the processes455

that determine the effective diffusion constant of the nuclei. The resulting values for D∗nonlin are456

summarised in Table 1. Based on these values, two-sided t-tests (see Methods) confirmed that457

there is no significant difference between the D-values obtained from the two normal condition458
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Table 1. List of best-fit diffusion constants D∗, their standard deviations and probabilities for the studiedconditions.
D∗nonlin (µm2/min) �D (µm2/min) P� (�2; �)

Normal 0.09 0.05 0.49 - 0.51
Normal (repeat sample) 0.10 0.06 0.47 - 0.48
High T 0.13 0.08 0.42
Low T 0.06 0.05 0.69 - 0.7

data sets. In contrast, D-values for the LT and HT data sets were significantly different from the459

normal ones, with p ≤ 0.01. These results indicate, that aside from its effect on cell cycle length,460

incubation temperature is likely to influence IKNM directly by altering the mobility of nuclei, here461

represented by the effective diffusion constant D.462

Discussion463

In this work, we have shown that high density nuclear trajectories can be used to tease apart the464

possible physical processes behind the apparently stochastic movement of nuclei during interki-465

netic nuclear migration. First, we acquired these trajectories using long-term imaging and tracking466

of nuclei with high spatial and temporal resolutionwithin a 3-dimensional segment of the zebrafish467

retina. Analysis of speed and positional distributions of more than a hundred nuclei revealed a468

large degree of variability in their movements during G1 and S phases. Although this variability had469

been observed before, previous experiments had only considered sparsely labeled nuclei within470

an otherwise unlabeled environment (Baye and Link, 2007; Norden et al., 2009; Leung et al., 2011).471

Thus, our results provide an important account of the variability of IKNM on a whole tissue level. In472

effect, the variability in IKNMmeans that nuclear trajectories appear stochastic during themajority473

of the cell cycle. Previously, it had been suggested that the origins of this apparent stochasticity474

lay in the transfer of kinetic energy between nuclei in G2 exhibiting rapid apical migration to nuclei475

in G1 and S phases of the cell cycle, much as a person with an empty beer glass may nudge away476

other customers to get to the bar (Norden et al., 2009). However, we found no evidence for direct477

transfer of kinetic energy between nuclei and their immediate neighbors. Recently Shinoda et al.478

(2018) have also provided evidence that suggests direct collisions do not contribute to basal IKNM.479

Another possibility is that the stochastic trajectories of G1 and S nuclei could be a result of nu-480

clear crowding at the apical surface (Miyata et al., 2015), which, in effect, gives rise to a nuclear481

concentration gradient from the apical to the basal side of the tissue. This gradient is formed and482

sustained by nuclear divisions taking place exclusively at the apical surface. We confirmed the pres-483

ence of such a gradient by calculating the nuclear concentration along the apicobasal dimension484

within the retinal tissue at various time points. Furthermore, to probe the source of the gradient,485

we treated the zebrafish retina with HU-AC to stop the cell cycle in S phase. While we observed the486

build-up of the nuclear concentration gradient over time in the control retina, the nuclear distribu-487

tion flattened when cell division was inhibited with HU-AC treatment.488

These phenomenological similarities between IKNM and diffusion suggested a model that in-489

cludes two key features: firstly, it focuses on the crowding of nuclei at the apical surface of the490

tissue, here included as the apical boundary condition. Secondly, in the nonlinear extension of491

the model, it incorporates a maximum possible nuclear concentration. This addition provided a492

striking overall improvement to the fits to experimental data over periods of many hours. The re-493

sulting difference in the obtainedD-values between the linear and nonlinear versions of ourmodel494

can be understood heuristically when closely examining the difference between Eqs. 1 and 9. The495

latter introduces the new term cmax∕(cmax − c) which one could think of loosely as corresponding496

to an effective, concentration dependent diffusion constant D̃ = Dcmax∕(cmax − c). In general D̃497

will vary across the tissue thickness and, since c is nonzero for most of the retinal tissue, D̃ > D.498
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Therefore, averaging across the retinal tissue, D̃may actually be in very good agreement with the499

D-value found in the linear model. However, the linear model fails to describe the concentration500

dependent mobility, which is successfully captured in the nonlinear model.501

We made further use of the above correspondence between the linear and nonlinear model502

to obtain a microscopic interpretation of the particular value we obtained for D∗nonlin, since both503

models converge into one another at c → 0. The value of D∗ can neither be understood by assum-504

ing simple thermal diffusion of the nuclei, nor by simply including effects of membrane-hindered505

diffusion. Instead, it appears that both hindering and nonequilibrium driving forces have to be506

included, where nuclear mobility can be slowed-down due to the presence of the membrane and507

cytosolic composition and sped-up through active transport. Assuming membrane effects and ac-508

tive transport in a Langevin-type model for nuclei at low densities provided an estimate for the509

strength of the required transport forces, which is consistent with cytoskeletal transport of the510

nuclei throughout the cell cycle.511

We then extended the Langevin-type model for individual nuclei to include the effects of high512

nuclear packing densities. The resulting models provided a possibility of exploring the properties513

of individual nuclear trajectories under conditions similar to those found in the experiments. Sim-514

ulations using different models suggested that the effects of the dense nuclear packing influence515

the nuclearmobility by locally increasing the strength of the stochastic force. Importantly, theMSD516

curves obtained in the presence of crowding are essentially linear, even though the underlying dy-517

namics is definitely nonlinear. This illustrates clearly the fact that the linearity of an MSD is not, by518

itself, particularly probative of the underlying diffusive dynamics.519

The underlying processes causing IKNM during the G1 and S phases of the cell cycle in pseu-520

dostratified epithelia have been largely elusive. Several partially competing ideas have been put521

forward, ranging from the active involvement of cytoskeletal transport processes to passive mech-522

anisms of direct energy transfer or movements driven by apical nuclear crowding (Schenk et al.,523

2009; Tsai et al., 2010;Norden et al., 2009; Kosodo et al., 2011). The fact that inanimatemicrobeads524

migrate much like nuclei during IKNM in the mouse cerebral cortex (Kosodo et al., 2011) suggests525

that active, unidirectional intracellular transportmechanisms are not directly responsible for these526

stochastic movements. Instead, we showed that a passive diffusive process which takes steric in-527

teractions between nuclei into account produces an excellent representation of the time evolution528

of the actual nuclear distribution within the retinal tissue during early development. Consequently,529

our work builds on earliermodels of apical crowding based on in silico simulations of IKNM (Kosodo530

et al., 2011). However, in contrast to earlier studies, we explicitly account for the dense nuclear531

packing within the zebrafish retina. Furthermore, we provide an interpretation for the general532

scale of the diffusion constant (D ∼ 0.1 �m2/min) frommicroscopic considerations, similar to those533

used to relate random walks to diffusion (Goldstein, 2018). The results of these microscopic con-534

siderations strongly suggest that nuclei are moved by means of cytoskeletal transport throughout535

the entirety of the cell cycle. However, this transport appears not to be unidirectional but highly536

stochastic during basal IKNM.537

Finally, an extension of the single nuclei equations to high concentrations and the results of538

stochastic simulations of nuclear trajectories suggest that the stochastic forcing of nuclei itself is539

concentration-dependent. On a microscopic scale, this can be interpreted, for example, under the540

assumption that cells can sense the nuclear packing density. If they recruited more molecular mo-541

tors to areas where nuclei are particularly densely packed, the strength of the stochastic transport542

forces would be concentration-dependent. Nuclei would thus be transported away from areas of543

high nuclear packing faster. In addition to these microscopic considerations, our work reveals the544

importance of simple physical constraints imposed by the overall tissue architecture, which could545

not be explored in previous studies which tracked sparse nuclei, and thus lacked the means to546

explore the effect of such 3-dimensional arrangements. Hence, we paid special attention to the547

spherical shape of the retina and the concentration of nuclei in that space. Examining the evolution548

in distribution of nuclei over time unveils the importance of spatial restriction due to the curvature549
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of the tissue. Additionally, the size of the nuclei in comparison to the tissue leads to the emergence550

of a maximum nuclear concentration which must be taken into account to model IKNM accurately.551

By inhibiting cell cycle progression or changing temperature, we used themodel to shed light on552

properties and mechanisms of the stochastic movements of nuclei during IKNM. From our results553

and previous studies, we know that cell cycle length is affected by change in incubation tempera-554

ture (Kimmel et al., 1995; Reider and Connaughton, 2014). However, our results also indicate a sig-555

nificant influence of temperature on the mobility of nuclei and thus the underlying processes con-556

trolling their movement. This is reasonable in the light of our microscopic interpretations, which557

suggested that nuclei move due to cytoskeletal transport through the entire cell cycle in IKNM. The558

fact that the speed and dynamic properties of both the microtubule and actomyosin systems are559

temperature dependent may explain the changes in the diffusion constant that we see as a func-560

tion of temperature (Hartshorne et al., 1972; Hong et al., 2016), especially as thermal diffusion is561

dependent on absolute temperature so the changes in temperature used in these experiments562

would have little effect on thermal diffusion. However, a much closer examination of molecular563

mechanisms driving stochastic nuclear movements is required to understand better the connec-564

tions between these phenomena, as we are far from understanding the nature of all the different565

forces involved in this process. Furthermore, the diffusion constant reported here reflects all types566

of nuclear movement during IKNM as it is derived from the changing nuclear concentration profile567

over time. It is not immediately clear how rapid apical migration contributes to this overall diffu-568

sion constant. Nonetheless, despite the large displacement during rapid apical migration at G2,569

this phase only accounts for about 8% of the cell cycle (Leung et al., 2011). Therefore, the good570

agreement of our calculated diffusion constant with those previously reported in the literature for571

individual nuclei (Leung et al., 2011) suggests that the proposedmodel describes tissue-wide IKNM572

quite well. At the same time, it raises interesting new questions, such as how cells sense such con-573

centrations and themechanisms that increase the stochastic force on nuclear movement at higher574

concentrations.575

The physiological consequences of nuclear arrangements and IKNM associated with all pseu-576

dostratified epithelia are not well understood. Our results provide a quantitative description of577

the stochastic distribution of the nuclei across the retina. This distribution has been implicated578

in stochastic cell fate decision making of progenitor cells during differentiation (Clark et al., 2012;579

Baye and Link, 2007; Hiscock et al., 2018). Our observations would fit with previous suggestions580

that a signalling gradient, such as Notch, exists across the retina and location-dependent exposure581

to it is important for downstream decision-making (Murciano et al., 2002;Del Bene et al., 2008;His-582

cock et al., 2018; Aggarwal et al., 2016). Thus, our results not only have important implications for583

understanding the organisation of developing vertebrate tissues, but may also provide a starting584

point for further exploration of the connection between variability in nuclear positions and cell fate585

decision making in neuroepithelia.586

Methods and Materials587

Animals and Transgenic Lines588

All animal work was approved by Local Ethical Review Committee of the University of Cambridge589

and performed in accordance with a Home Office project license PL80/2198. All zebrafish were590

maintained and bred at 26.5 ◦C. All embryos were incubated at 28.5 ◦C before imaging sessions.591

At 10 hours post fertilization (hpf), 0.003% phenylthiourea (PTU) (sigma) was added to the medium592

to stop pigmentation in the eye.593

Lightsheet microscopy594

Images of retinal development for the main dataset were obtained using lightsheet microscopy.595

Double transgenic embryos, Tg(bactin2:H2B-GFP::ptf1a:DsRed) were dechorionated at 24 hpf and596

screened positive for the fluorescent transgenic markers prior to the imaging experiment. The597
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embryo selected for imaging was then embedded in 0.4% low gelling temperature agarose (Type598

VII, Sigma-Aldrich) prepared in the imaging buffer (0.3x Daniau’s solution with 0.2% tricaine and599

0.003% PTU (Godinho, 2011)) within an FEP tube with 25 µm thick walls (Zeus), with an eye facing600

the camera and the illumination light shedding from the ventral side. The tube was held in place by601

a custom-designed glass capillary (3 mm outer diameter, 20 mm length; Hilgenberg GmbH). The602

capillary itself was mounted vertically in the imaging specimen chamber filled with the imaging603

buffer. To ensure normal development, a perfusion systemwas used to pumpwarmwater into the604

specimen chamber, maintaining a constant temperature of 28.5 ◦C at the location of the specimen.605

Time-lapse recording of retinal development was performed using a SiMView light-sheet micro-606

scope (Tomer et al., 2012) with one illumination and one detection arm. Lasers were focused by607

Nikon 10x/0.3 NA water immersion objectives. Images were acquired with Nikon 40x/0.8 NA water608

immersion objective andHamamatsuOcra Flash 4.0 sCMOS camera. GFPwas excitedwith scanned609

light sheets using a 488 nm laser, and detected through a 525/50 nm band pass detection filter610

(Semrock). Image stacks were acquired with confocal slit detection (Baumgart and Kubitscheck,611

2012) with exposure time of 10 ms per frame, and the sample was moved in 0.812 µm steps along612

the axial direction. For each time point, two 330 x 330 x 250 µm3 image stacks with a 40 µm hori-613

zontal offset were acquired to ensure the coverage of the entire retina. The images were acquired614

every 2 min from 30 hpf to 72 hpf. The position of the sample was manually adjusted during imag-615

ing to compensate for drift. The two image stacks in the same time point were fused together to616

keep the combined image with the best resolution. An algorithm based on phase correlation was617

subsequently used to estimate and correct for the sample drift over time. The processing pipeline618

was implemented with MATLAB (MathWorks).619

Two photon microscopy620

Images for the repetition dataset and all other conditions were obtained using a TriM Scope II621

2-photon microscope (LaVision BioTec). A previously established Tg(H2B-GFP) line, generated by622

injecting a DNA construct of H2B-GFP driven from the actin promoter (He et al., 2012), was used for623

all these experiments. Embryos were dechorionated and screened for expression of GFP at 24 hpf.624

An embryo was then embedded in 0.9% UltraPure lowmelting point agarose (Invitrogen) prepared625

in E3 medium containing 0.003% PTU and 0.2% tricaine. The agarose and embryo were placed lat-626

erally within a 3D printed half cylinder of transparent ABS plastic, 0.8 mm in diameter, attached to627

the bottom of a petri dish, such that one eye faced the detection lens of the microscope. The petri628

dish was then filled with an incubation solution of E3 medium, PTU, and tricaine in the same con-629

centrations as above. For the experiment involving cell cycle arrest, hydroxyurea and aphidicolin630

(Abcam) were added to the incubation solution right before imaging, to a final concentration of 20631

mM and 150 µM, respectively. The imaging chamber was maintained at a temperature of 25 ◦C,632

28.5 ◦C, or 32 ◦C, as required, using a precision air heater (The Cube, Life Imaging Services).633

Green fluorescence was excited using an Insight DeepSee laser (Spectra-Physics) at 927 nm.634

The emission of the fluorophore was detected through an Olympus 25x/1.05 NA water immersion635

objective, and all the signal within the visible spectrumwas recorded by a sensitive GaAsP detector.636

Image stacks with step size of 1 µmwere acquired with exposure time of 1.35ms per line averaged637

over two scans. The images were recorded every 2 min for 10-15 hours starting at 26-28 hpf. The638

same post processing procedure for data compression and drift correction was used on these raw639

images as on those from lightsheet imaging.640

Obtaining experimental input values for the model641

The radial coordinates rn of nuclei were calculated by subtracting ln from a, wherein ln is the distance642

from the center of a nucleus n to the apical surface and a is the distance from the center of the643

lens to the apical surface. We estimated a total uncertainty of Δr = ±3 µm for each single distance644

measurement of rn. This value is a result of uncertainty in detecting the center of the nucleus and645

in establishing the position of the apical surface.646
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Because each nuclear position has an error bar Δr, binning the data leads to an uncertainty647

in the bin count. In order to calculate this uncertainty, we considered the probability distribution648

of a nucleus’ position. In the simplest case, this probability is uniform within the width of the649

positional error bar and zero elsewhere. The probability, pn,bin, of finding a given nucleus n within650

a given bin, is proportional to the size of the overlap of probability distribution and bin. It follows651

that the expectation value for the number of nuclei within a bin is given as E(Nbin) =
∑

n pn,bin.652

Correspondingly, Var(Nbin) =
∑

n pn,bin(1 − pn,bin) is the variance of the number of nuclei within this653

bin. Thus, the error bar of the bin count is �y,bin = √Var(Nbin). The nuclear distribution profile654

N(r, t) is not expected to be uniform or linear, therefore the expectation value E(Nbin) does not655

correspond to the number of nuclei at the center of the bin. Since the position of the expectation656

value is unknown a priori, it is still plotted at the center of the bin with an error bar denoting its657

positional uncertainty. Here we assume this error bar to be the square-root of the bin size Δrbin,658

i.e. �x,bin =√

Δrbin.659

In order to obtain the experimental nuclear concentration profile c(r, t), and its error bars, from660

the distribution of nuclei N(r, t), the volume of the retina also has to be taken into account, since661

c = N∕V . The total retinal volume within which nuclei tracking took place was estimated directly662

from the microscopy images. To this end, we outlined the area of observation in each image slice663

using the Fiji software andmultiplied this area with the distance between successive images. Given664

the total volume, Vtotal, we proceeded to calculate the volume per bin, which depends on the radii665

at the inner and outer bin surfaces. In general, the volume of part of a sphere, e.g. a spherical666

sector, is given as Vsector = 1
3
Ωr3sector, where Ω denotes the solid angle. Knowing the apical and basal667

tissue radii, r = a and r = b, one can thus calculate Ω as Ω = 3Vtotal∕(a3 − b3). This gives the volume668

of each bin as Vbin = 1
3
Ω
(

r3bin,outer − r3bin,inner
), where rbin,outer and rbin,inner denote the outer and inner669

radii of a bin, respectively. Similarly, we calculated the effective surface area S through which the670

influx of nuclei occurs (see Equation 3) from the solid angle Ω. This surface area is simply given as671

S = Ωa2.672

To retrieve the average cell cycle time TP for each of the data sets, we used two different ap-673

proaches. In the case of the main data set, sufficient number of nuclear tracks consisting of a674

whole cell cycle were present. Thus we directly calculated the average cell cycle duration from675

these tracks. For the other datasets, we make use of the fact that the number of nuclei follows an676

exponential growth law depending on TP (see Equation 2). Knowing the initial number of tracked677

nuclei N0 for each data set, we obtained TP from fitting the following equation to the number of678

nuclei as a function of time in a log-lin plot: lnN(t) = lnN0 + t∕� = lnN0 + (ln 2∕TP )t. Then TP was679

deduced from the slope of this fit.680

In order to determine the maximum nuclear concentration cmax for the nonlinear model, we681

first randomly selected 100 nuclei from our dataset of tracked nuclei and measured the size of682

their longest diameter in both XY and YZ planes. From these measurements we established that683

the size of the principal semi-axis of each nucleus is likely to lie in the range of about 3 µm to 5 µm,684

where the nuclear shape is regarded to be ellipsoidal. This led to the range of possible maximum685

concentrations cmax, although we did not measure the precise nuclear volume. The lower limit for686

the nuclear volume is set by the volume of a sphere of radius 3 µm, the upper limit by a sphere687

of radius 5 µm. Taking into account the maximum possible packing density of nuclei, which for688

aligned ellipsoids is the same as that of spheres (Donev et al., 2004), �∕(3√2) ≈ 0.74, we obtained689

a range of 1.41 × 10−3 µm−3 ≤ cmax ≤ 6.55 × 10−3 µm−3.690

Obtaining the initial condition691

We determined the prefactors ℎi from the experimental nuclear distribution at the start of the692

experiment, cexp(�, 0). For convenience, we chose to determine first ℎ̃i = ℎi + �if0∕(� + �2i ) and then693

obtained ℎi by subtracting �if0∕(� + �2i ) from the results. The ℎ̃i can be calculated from the data,694
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using Equation 6 for s = 0, as695

ℎ̃i =
∑

m
�2mHi(�m)cexp(�m, 0)Δ�m −

f0
1 − � ∫

1

�
�2Hi(�)

(1
2
�2 − �� + g0

)

d�, (17)
where m denotes the m-th binned data point, �m its position and Δ�m the width of bin m. As in696

Equation 6, the index i denotes the i-th eigenfunction or -mode.697

The concentration profile in the nonlinear model698

The non-linear concentration profile was determined numerically from the same initial condition699

as used for the linear model, Equation 6, at s = 0 with ℎ̃i as in Equation 17. Time evolution of the700

initial condition, according to Equation 9, was performed using the pdepe solver in MATLAB.701

Fitting the model702

The range of sizes of the nuclear principal semi-axes was used to determine the range of data to703

be included in our fits. Any data closer than 3 µm to 5 µm from the apical or basal tissue surfaces704

was not taken into account for fitting because the center of a nucleus cannot be any closer to a705

surface than the nuclear radius. Thus, all data collection very close to the apical or basal tissue706

surfaces must have been due to the above mentioned measurement uncertainties Δr.707

In principle, the full solution for c(�, s) is composed of infinitely many modes. However, in prac-708

tice, we truncated this series and only included the first 8 modes in our fits. This is due to the fact709

that we have a finite set of data points, so adding too many modes could lead to over-fitting. Fits710

with a wide range of numbers of modes were found to result in the same optimal D-values.711

For fitting, we first rescaled the data in accordance with the non-dimensionalisation of the the-712

oretical variables r and t (see Equation 5). Thus we obtain cexp(�, s) from cexp(r, t). Then both models713

were fitted to the experimental data using a minimal-�2 approach. The goodness of fit param-714

eter �2 = ∑

m

(

cexp(�, s) − c(�, s)
)2 ∕�2m, where ∑

m denotes the summation over all bins m. Since715

binning resulted in uncertainties �y,bin and �x,bin in the y- and x-directions, both had to be taken716

into account when calculating �m and �2. The combined contribution of x- and y- uncertainties is:717

�2m = �2y,m + �
2
y,indirect,m with �y,indirect,m = �x,m (dc(�, s)∕d�)

|

|

|�=�m
(Bevington and Robinson, 2003). In our718

fits, the value �2 was calculated for a large range of possible diffusion constants D, from D = 0.01719

µm2/min to D = 10 µm2/min. By finding the value of D for which �2 became minimal for a given720

data set and time point, we established our optimal fit.721

Theminimal-�2 approach furthermore enabled us to determine the optimal binning widthΔrbin722

or Δ�bin and width of data exclusion for the fits. In order to do so, fits of the normal data set were723

performed for different data binning widths and exclusion sizes of 3 µm to 5 µm. For each of these724

fits the �2-value and the number of degrees of freedom �, i.e. the number of data points minus725

the number of free fit parameters (here number of data points minus 1), were registered. From726

�2 and � we calculated the reduced �2 value, �2� = �2∕� (Bevington and Robinson, 2003). Using �727

and �2� , the probability P� (�2; �) of exceeding � for a given fit can be estimated, which should be728

approximately 0.5 (Bevington and Robinson, 2003). Therefore, we found our optimal data binning729

width of 3 µm to 4 µm as the width that resulted in a P� (�2; �) as close to 0.5 as possible for all the730

different time points when fitting the nonlinear model. The exact choice of exclusion width was731

found not to influence the fitting result for the nonlinear model.732

In addition to finding the optimal D-value for individual time points, we also modified the733

minimal-�2 routine to find the value of D that fits a whole data set (i.e. all time points simulta-734

neously) in the best possible way. In order to do so, we summed the �2-values obtained for eachD735

over all time points, in this way producing a∑t �2(D)-curve. Theminimumof this curve indicatesD∗736

for the whole time series. Furthermore, dividing∑t �2(D) by the number of time points included in737

the optimization yields an average �2- and reduced �2-value corresponding to this D∗. In addition,738

thewidth of this time averaged curve at �2 = �2min+1 indicates the standard deviation of the optimal739

D-value, �D. By approximating the minimumwith a quadratic curve, we obtain an estimate for this740
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standard deviation as �D = ΔD
√

2
(

�2D∗−ΔD − 2�
2
D∗ + �

2
D∗+ΔD

) (Bevington and Robinson, 2003) where741

ΔD is the step size between individual fitted D-values, here ΔD = 0.01 µm2/min. Lastly, based on742

the average reduced �2-values, we also compared several cmax-values for each data set to find the743

fit with probability P� (�2; �) the closest to 0.5 in each case.744

All fits were performed using custom MATLAB routines. Horizontal error bars were plotted745

using the function herrorbar (van der Geest, 2006).746

Nuclear radius for interpretation of D747

The average nuclear radius used to calculate the friction coefficient and thermal diffusion coeffi-748

cient of IKNM nuclei was the radius corresponding to the maximum concentration cmax obtained749

from the fitting procedure.750

Experimental nuclear birth times and mean-squared-displacement curve751

Among all the nuclei tracked in the experiments, we selected those nuclei where tracking data752

was available beginning right from cell division and also over a sufficiently long period of time to753

cover a substantial part of the cell cycle (at least 75 time steps, i.e. 150 min). For these nuclei,754

we extracted their respective birth times within the experiment from the full tracks and sorted755

the nuclei accordingly. The first 40 nuclei were chosen for further analysis, as these were nuclei756

with a minimum of 150 min of tracking data completely within the first 200 min of experiments,757

corresponding to the time frame used for D-optimisation in the non-linear diffusion model. The758

exact distribution of their birth times was stored for use in the individual nuclei simulations.759

Further, the nuclear tracks of the chosen 40 nuclei were transformed from being a function of760

experimental time to being a function of cell cycle time by simply subtracting a nucleus’ individual761

birth time from the experimental time for each step of its tracking data. Then the experimental762

mean squared displacement curvewas calculated from the so obtained cell cycle dependent tracks.763

Calculation of the shapes of retinal cell shapes764

Here we give more information on the numerical calculation of cell shapes. Further details can be765

found elsewhere (Herrmann, 2020). Minimisation of the elastic energy (12) leads to the equilibrium766

condition on the shape, expressed in terms of the mean curvature  and the Gaussian curvature767

 (Zhong-can and Helfrich, 1989),768

− + 2�
(

3 −
)

+ �Δ = 0, (18)
where, for an axisymmetric shape �(z),769

 = −
�zz

�
(

1 + �2z
)2

(19)
and Δ is the Laplacian operator,770

∇2 = 1

�
√

1 + �2z

)
)z

⎛

⎜

⎜

⎜

⎝

�
√

1 + �2z

)
)z

⎞

⎟

⎟

⎟

⎠

. (20)

The resulting shape equation is fourth order in z-derivatives and thus requires four boundary con-771

ditions. Given the symmetry of the system, we solve for the shape in the left half of the domain772

z = (0, L∕2) and impose �(0) = �a and �z(0) = 0 at the apical surface. Imposing boundary conditions773

like �(L∕2) = ℜ and �z(L∕2) = 0 at the top of the nucleus usually leads to solutions that are incom-774

patible with the presence of the nucleus (i.e. the resulting membrane shapes would cut through775

the nucleus). Therefore, we further divide the domain z = (0, L∕2) into a region away from the776

nucleus and a region where the membrane is in close contact with it. In the latter region, we as-777

sume themembrane to be bent into a spherical arc around the nucleus, leaving a small equilibrium778
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gap as estimated by Daniels (2019). The contact point zcontact between the two regions is adjusted779

until the membrane radius and its derivative are continuous through the contact point. The mem-780

brane shape away from the nucleus is then found using the MATLAB bvp5c solver. As can be seen781

from energy minimization using (12), the solution in each case turns out to be the one for which782

zcontact has been chosen such that the resulting  in z ∈ [0, zcontact] is equal to circle = −1∕ℜtube for783

z→ zcontact , whereℜtube is the radius of the membrane arc around the nucleus.784

Simulations of individual nuclear trajectories785

Simulations of nuclear trajectories for each of the three Langevin-type models were performed786

using a custom Python 3 routine. Time discretisation of the stochastic differential equations was787

achieved via the Euler-Maruyama method. Simulations were performed using 0.2 min time steps788

and were checked against those with smaller time steps to ensure that this choice was sufficiently789

small.790

In each run of a simulation, 40 nuclei were simulated and their birth times within the simulation791

were chose to be the same birth times as those obtained from the nuclei within the experiments.792

Each nucleus was simulated for a total of 150min, corresponding to the chosen experimental data.793

The value for the diffusion constant in these simulationswas set to be the previously obtained value794

D∗nonlin. For simulations with nuclear concentration-dependent Langevin equations, cmax and the795

average nuclear concentration field c(r, t) were similarly extracted from the results of the previous796

fits using the non-linear diffusion equation. Herein, c(r, t) was provided for each time step of the797

simulation. As c(r, t) can only be provided for discrete spatial coordinates r but the Langevin-type798

simulations were continuous in the spatial coordinate r, c was averaged over the values at the two799

closest spatial points whenever a nucleus’ position did not exactly coincide with a point where the800

value for c was provided.801

The resulting simulated nuclear trajectories were treated in the sameway as the experimentally802

obtained ones. I.e. the nuclei’s birth times were subtracted from the trajectories to obtain cell cycle803

dependent tracks. Then, the mean squared displacement curve was calculated from the resulting804

set.805

For each model, the same simulation was repeated 2500 times to obtain the range of distribu-806

tions of the resulting mean squared displacement curves. For each cell cycle time step, the min-807

imum and maximum of the mean squared displacement values out of all 2500 repetitions were808

calculated to obtain the areas depicted in Figure 8.809

t-tests810

To compare results between data sets, the values D∗ and corresponding �D from the overall fits811

were considered. It should be noted that these values were not obtained by averaging several812

data sets of the same experimental condition but instead each value results from one data set813

only. However, the sample size for each data set was set to 100 because 100 time points were taken814

into account for each overall optimization. These timepointsmight not be completely uncorrelated,815

limiting the predictive power of the t-test. Two sided tests, specifically unequal variances t-test, also816

known as Welch’s t-test, (Precht and Kraft, 2015), were performed in order to determine whether817

samples differ significantly from each other.818
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Appendix970

Full solution of the linear diffusion equation971

After rescaling space and time as in Equation 5 and introducing � = b∕a < 1, Equation 1 and the972

boundary conditions 3 and 4 read973

)c(�, s)
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(21)

where we have defined f0 = aN0∕DS� and � = a2∕D�. We transform this homogeneous differen-974

tial equation with inhomogeneous boundary conditions into the problem of solving an inhomoge-975

neous differential equation with homogeneous boundary conditions by writing c(�, s) as a sum of976

two contributions,977

c(�, s) = �(�, s) +  (�, s), (22)
where we require �(�, s) to satisfy the inhomogeneous boundary conditions978
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These conditions are satisfied if �(�, s) has the form979
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where g0 is a constant of integration to be determined later. The remaining problem to solve for980
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with homogeneous boundary conditions982
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We can further write  (�, s) as the sum of two contributions,983

 (�, s) =  ℎ(�, s) +  p(�, s), (27)
where  ℎ is the general solution of the homogeneous problem984
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and  p is a particular solution of the full inhomogeneous problem 26. The full solution of the985

homogeneous problem is given as a series of linearly independent eigenfunctions, each of the986

form987

e−�2sW (�) = e−�2s
(

A
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�

+ B
cos ��
�

)

, (29)
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where the eigenvalues � can be found from simultaneous solution of the boundary conditions,988

A (� cos � − sin �) − B (� sin � + cos �) = 0
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which yields the transcendental relation989

tan � (1 − �) =
� (1 − �)
�2� + 1

, (31)
for which each eigenvalue �i is a solution corresponding to one of the linearly independent eigen-990

functions (only �i > 0 need to be taken into account). We can further deduce from the Equation 30991

that Bi = �iAi, where992
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and we normalize the obtained expression forWi(�) from Equation 29993
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Thus, the homogeneous solution  ℎ is995
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∞
∑

i=1
ℎiHi(�)e−�

2
i s, (35)

with prefactors ℎi to be determined from the initial condition.996

In order to find a particular solution of the inhomogeneous problem, we first rewrite 26 as997
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Now, we express (�, s), as well as the unknown inhomogeneous solution  p(�, s) in terms of the998

normalized eigenfunctionsH(�, s) of the homogeneous problem,999
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and1000

 p(�, s) =
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Ci(s)Hi(�). (38)

Substituting these forms into 36, and noting that each term in the series must vanish separately1001

we obtain1002
)Ci(s)
)s

+ �2iCi(s) − Ri(s) = 0. (39)
From the form of (�, s) it follows that Ri(s) = �if0e�s with some purely numerical prefactors �i, so1003

we expect Ci(s) ∝ pie�s and find1004

pi =
�if0
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. (40)
Finally, we determine the �i by reconsidering Equation 37. Wemultiply both sides by �2Hj(�), where1005

Hj(�) is one specific but arbitrary eigenfunction of the homogeneous problem, and then integrate1006

over the whole volume V . By the orthogonormality of these eigenfunctions we obtain1007
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and all the �i can be calculated explicitely. Thus, the full solution of the linear problem is1008

c(�, s) =
∞
∑

i=1

(

ℎie
−�2i s +

�if0
� + �2i

e�s
)

Hi(�) +
1

1 − �

(1
2
�2 − �� + g0

)

f0e
�s. (42)

The constant g0 can now be calculated from the requirement that ∫ c(�, s = 0)dV = N0. Here we1009

make use of the fact that ∫ Hi(�)�2d� = 0 if �i satisfies Equation 31, thus1010
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