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In tissues as diverse as amphibian skin and the human airway, the cilia that propel fluid are
grouped in sparsely distributed multiciliated cells (MCCs). We investigate fluid transport in this
“mosaic” architecture, with emphasis on the trade-offs that may have been responsible for its evo-
lutionary selection. Live imaging of MCCs in embryos of the frog Xenopus laevis shows that cilia
bundles behave as active vortices that produce a flow field accurately represented by a local force
applied to the fluid. A coarse-grained model that self-consistently couples bundles to the ambient
flow reveals that hydrodynamic interactions between MCCs limit their rate of work so that when
the system size is large compared to a single MCC, they best shear the tissue at low area coverage,
a result that mirrors findings for other sparse distributions such as cell receptors and leaf stomata.

An indication of the importance of fluid mechanics in
biology is the remarkable degree to which the structure of
eukaryotic cilia has been conserved over the past billion
years [1, 2]. These hairlike appendages provide motility
to microorganisms [3, 4] but also direct fluid flow inside
animals during development [5–7] and in mature physiol-
ogy in areas from the reproductive system [8] to the brain
[9]. The two extremes of this organisimal spectrum have
a fundamental distinction. In unicellulars like Parame-
cium, cilia are uniformly and closely spaced on the cell
surface [10], while in animals they are often grouped to-
gether in dense bundles on multiciliated cells (MCCs)
[11] that are sparsely distributed on large epithelia, as in
the trachea and kidney [12, 13]. This difference reflects
the need in animal tissues to share surface area with cell
types having other roles, such as mucus secretion.

The workings of cilia bundles and the significance of
their sparse “mosaic” pattern for fluid transport have
only begun to be investigated, primarily limited to in
vitro or ex vivo studies [14–16]. Here we address the
fluid mechanics of mosaic tissues using embryos of the
amphibian Xenopus laevis in which, by analogy to hu-
man airways, cilia driven flow sweeps away mucus and
trapped pathogens (Fig. 1). To date, the flow has served
as a readout of cilia beating in the study of tissue pattern-
ing and cilia disorders [17–19]; here we take advantage of
the geometry of Xenopus embryos to obtain side views of
cilia bundles and quantify the flows they drive. As those
cilia collectively sweep through cycles consisting of an
extended “power” stroke and compact “recovery” stroke
close to the surface [20], the flow within each bundle ap-
pears as an active vortex. While the flow driven by a
single such vortex decays quickly with distance from the
skin, a coarse-grained model shows that long range con-
tributions of other bundles slows the decay of this endoge-
nous flow and determines the shear stress at non ciliated

cells. From measurements of beating changes induced
by exogeneous flows, we determine linear response coef-
ficients describing the coupling between forces applied
by bundles and the flows they generate; we find that
hydrodynamic interactions between MCCs lead to maxi-
mization at low area coverage of shear at the intervening
tissue. These results thereby suggest an explanation for
the low area coverages observed in nature.

The epidermis of Xenopus has strong similarities with
human mucociliary epithelia. The sparsely located
MCCs whence emanate hundreds of cilia that drive a
homogeneous anterior-to-posterior, A-P or head-to-tail,
flow (Fig. 1) are surrounded by non-ciliated cells secret-
ing mucus-like material [23], including “goblet cells” that
cover most of the tissue, mosaically scattered small cells
[24, 25] secreting serotonin vesicles that modulate the cil-
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FIG. 1. Ectoderm of embryonic Xenopus laevis at tailbud
stages. (a) Schematic side view of MCCs (red) intermixed
with secreting cells. (b) Location of MCCs across the embryo
(adapted from [21, 22]) and cilia-driven flow (blue arrows).
(c) Confocal image of cell membranes (stained by membrane-
RFP), with MCCs segmented in red, in ventral region of skin.



2

-20 -10 0 10 20-20 -10 0 10 20 0

10

20

30

40

50

0

10

20

30

40

50
(c) (d)

isolated bundle

Skin

(a)

0 15

0
15

F

0 50 100
0

20

0

100

200(b) vorticity (1/s)

-50

0 2 4 6 8 10 120

0.5

10.1 10

exp exp

above MCC between MCCs

(e) (f)

1

FIG. 2. Flow field around multiciliated cells. (a) Lateral view of an MCC showing (dashed) path of cilia tips and applied force
F. (b) Experimental velocity field and vorticity in a plane normal to skin near several MCCs, with z into fluid and x along
flow. (c) Near an MCC, as in (b), with direction of cilia tip motion (black arrows) on ∂Ωc. (d) Estimated flow field u0 for an
isolated MCC (blue arrows): Stokeslets (red arrows) are used to fit velocity near cilia tips. Lateral velocity as a function of
z at (e) x, y = (0, 0) and (f) (±40µm, 0) in experiment (exp) and theory, with u0 driven by an isolated bundle and uc by a
bundle exposed to the endogenous flow ua (see also Figs. S1-S3 [28]).

iary beat frequency [26], and ionocytes transporting ions
important for homeostasis.

Wild-type Xenopus laevis embryos were obtained via
in vitro fertilization [27, 28], and grown in 0.1× Modified
Barth’s Saline at room temperature (or 15◦ C to reduce
the growth rate, if required). They were imaged at stage
28 [22] after treatment with a minimal dose of anaesthetic
(∼ 0.01% Tricaine) to avoid twitching (without affecting
cilia dynamics [19]). Embryos lie on one of their flat
flanks at this stage, providing a side view of cilia bundles
of ventral MCCs (Fig. 1), whose power strokes are in the
A-P direction (left to right in figures) so cilia and the
flows stay mostly within the focal plane.

In flow chamber experiments, embryos were perfused
with a peristaltic pump while in a Warner Instruments
chamber (RC-31A): a 4 mm × 37 mm channel cut into a
350µm thick silicon gasket sandwiched between two cov-
erslips that keep the embryo in place by pressing against
its sides. The dorsal part of the embryo was positioned
closer to the chamber wall, the anterior region of inter-
est was > 2 mm away, and the A-P axis parallel to the
channel axis, the main direction of the perfusing flow.
Brightfield images of cilia and 0.2− 0.5µm tracers (mass
fraction ∼ 0.01%) were acquired at 2000 frames/s for
≥ 1 s by a high speed camera (Photron Fastcam SA3)
on an inverted microscope (Zeiss Axio Observer) with a
long distance 63× objective (Zeiss LD C-Apochromat).
Images were filtered by subtracting their moving aver-
age. Flow fields u = (u, v, w) were estimated by Particle
Image Velocimetry (PIVlab) and averaged over time.

We set the stage by summarizing the important length

and time scales. MCCs are spaced apart by 40 − 80µm
and uniformly distributed with average density P ≈
2.6×10−4 µm−2, giving an average spacing d =

√
1/P ∼

62µm. With ` ∼ 15µm (¯̀ = 14.52 ± 0.21µm) the cilia
length, the average cellular area ∼ 287± 11µm2 is ∼ `2,
which gives a coverage fraction φ = (`/d)2 ∼ 0.07. The
cilia on MCCs beat at a frequency f ∼ 20 − 30 Hz and
during a power stroke their tips move a distance ∼ 2`
[Fig. 2(a)] in half a period, reaching speeds Vc ∼ 4f` ∼
1 mm/s, so the Reynolds number ρVc`/µ (with ρ the den-
sity and µ the viscosity of water) is ∼ 0.01, well in the
Stokesian regime. Using the fluid speed uv ∼ 0.5 mm/s
between vortices as typical of the periciliary region, the
Péclet number uv`/D > 1 even for small molecules.

Cilia within an MCC are not synchronized; their tips
move in a tank-treading manner [28], generating vorticity
ω ‖ ey perpendicular to the beating plane. Each MCC
is thus an active vortex, as seen in Figs. 2(b,c). The
vorticity can exceed ∼ 150 s−1 ∼ 2Vc/`, is colocalized
with the cilia, and rapidly diffuses at larger z as the flow
becomes parallel to the skin. Above non-ciliated cells
between MCCs, there is a shear flow for z < `, while
further away (z & d), the discreteness of the MCCs is
washed out by viscosity and the horizontal velocity u is
independent of x and falls off slowly with z [Figs. 2(e,f)].

The first step toward understanding the coupling be-
tween cilia beating and fluid flow involves quantifying the
contribution of a single MCC. We introduce a bound-
ary ∂Ωc enclosing the volume Ωc of the active vortex
[Fig. 2(a)], and extrude it in y ∈ [−10µm, 10µm], the
measured size of the vortex. The Stokes equations in
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the complement Ω′c, are solved using an envelope ap-
proach [29, 30] in which the dynamics of the cilia tips
determine the flow, noting that the flow from an isolated
cilium is well-approximated in the far field as that of a
point force (Stokeslet) [31]. We position N Stokeslets
at sn = (xn, yn, hn) in Ωc and find their strengths fn =
(fn,x, 0, fn,z) by fitting the velocity on ∂Ωc and a no-slip
boundary at z = 0 [Fig. 2(d)]. This gives an estimate of
the flow u0 driven by a bundle in an otherwise quiescent
fluid. The x-components are of interest, as they alone
contribute to net AP flow. For z > 2l, the component
u0 falls off for z � h like the flow us(z) ∼ 3Fh2/4πµz3

above a single Stokeslet parallel to and a distance h above
a no-slip wall [32] (Fig. S1 [28]). The data in Figs. 2(e,f)
show a much weaker fall-off than z−3 for z > 2l. This
slow decay arises from the long range contribution of
more distant MCCs, as we now show.

The flow us due to a force fx can be approximated
by its far field limit. In cylindrical coordinates (ρ, z)
centered at the bundle, us ≈ hfxS̃11(ρ, z), with

S̃11(ρ, θ, z) =
3

2πµ

zρ2 cos2 θ

(ρ2 + z2)5/2
. (1)

The Stokeslet contributions can be lumped into an effec-
tive force Fc = `−1

∑
n hnfn,x, which, applied at z = `,

matches the far field us ≈ `FcS̃11. This also applies for
an effective local moment (rotlet) Γc = 2`Fc [33].

The observed velocity u(z)ex in the region z > d is
independent of x (Fig. S2 [28]) and can be described most
simply in a model of the skin as a uniform distribution
of x-directed Stokeslets with area density P. Summing
the contributions of all bundles up to a cutoff radius Λ
that incorporates finite embryo size, we obtain

ufar(z; Λ) = PFc
∫ 2π

0

∫ Λ

0

ρ dρ dθ S̃11(ρ, θ, z), (2)

which has the scaling form ufar = V G(z/Λ), with

G(χ) = 1− 3χ+ 2χ3

2(1 + χ2)3/2
(3)

and V = PFcl/µ. G decreases monotonically from
G(0) = 1 to G(∞) = 0. For any fixed z, as the or-
ganism size Λ → ∞, χ → 0, giving a flow independent
of z with speed V [34], while for any fixed lateral scale
Λ, the asymptotic flow field vanishes as z/Λ → ∞. For
the fitted parameters V ' 0.64 mm/s and Λ = 300µm,
ufar provides an almost perfect fit of the data in Figs.
2(e,f) for z > 2d (also Fig. S2 [28]). Direct summation
of discrete Stokeslets on a lattice produces nearly identi-
cal results, validating the approximation of a continuous
distribution for the far-field flow (Fig. S3 [28]). For this
value of V and the observed density P, we have the far-
field estimate Fc ' 159 pN. A slightly larger effective
force F0 ' 200 pN is obtained by solely fitting the veloc-
ity at the cilia tips (Fig. 2d), which is to be expected as

this approach does not account for the endogenous flow
uaex to which a bundle is self-consistently exposed.

We estimate the endogeneous ambient flow ua by sub-
tracting from ufar the contribution from a single cilia bun-
dle, taken as a distribution of radius d/2,

ua ≈ V [G(z/Λ)−G(2z/d)]. (4)

As uc = u − ua represents the contribution of a single
bundle, we test the far-field estimate with a near-field fit
of uc in Ω′c by means of Stokeslets within Ωc. Doing so for
the volume (−15 < x < 15,−10 < y < 10, 0 < z < d),
the superposition uc + ua gives an excellent fit to the
data in Figs. 2(e,f), above and between bundles, with
Fc ' 160 pN, nearly identical to the far-field estimate.

For comparison, the average lateral force generation
over one cycle of beating (assuming only the power stroke
contributes) can be estimated from resistive force the-
ory [35] as f ∼ ζ⊥`Vc/12 ' 3 pN [28], where ζ⊥ =
4πµ/| ln(

√
eε)| is the transverse drag coefficient for a slen-

der filament of aspect ratio ε (for cilia, ε ∼ 75). We infer
from the estimated Fc that the effective number of cilia
contributing to the Stokeslet is ∼ 53, about half the typi-
cally ∼100 cilia in an MCC, reflecting force cancellations
from phase shifts between cilia.

The fact that Fc/F0 < 1 shows that it is necessary
to incorporate the response of a cilia bundle to an am-
bient flow. We probed this experimentally by exposing
the bundle to an exogenous shear flow γ̇ezex in a flow
chamber (Fig. 3). When γ̇e = 0, the cilia tips move with
velocity V0 and drag the fluid, generating a negative shear
rate γ̇0 ≈ −23 s−1. Pumping fluid in the same direction,
the shear rate at the tips γ̇c decreases linearly with the
hydrodynamic load γ̇e. The corresponding velocity Vc
tends to increase, but at a much slower rate. The rate of
work above the cilia tip envelope ∝ −γ̇cVc thus decreases
almost at the same rate as γ̇c, and for γ̇e`/V0 > 0.3 be-
comes negative, consistent with a dissipative bundle.

The lateral velocity uγex just above the bundle (z <
2.5`) is well fitted by the linear combination uγ ≈ Cû0 +

γez (Fig. 3c) with û0(F̂0) the profile at γ̇e = 0. Note that
C ≈ F/F̂0, as confirmed for the above calculations where
uc ≈ (Fc/F0)u0 for z > ` (Fig. S2(b) [28]). The slope
of F/F̂0 versus γ̇e`/V0 in Fig. 3, would be unity if the
bundle dynamics were fully preserved (Vc = V0), and zero
if the bundle’s force were constant. The measured slope
0.76±0.06 confirms the resistive behavior and allows us to
parameterize the coupling of the cilia to the ambient flow
by the linear relation F ≈ F̂0−α`γ̇e, with α = 0.76F̂0/V0.

To close the loop on a self-consistent coupling of the
bundles to the flow, we now replace γ̇e with the endoge-
nous shear γ̇a = ∂ua/∂z|z=0, giving F ≈ F0−α`γ̇a, with
F0 again the effective force applied by a bundle in an
otherwise quiescent fluid. Since γ̇a ≈ 3V/d[1−O(d/2Λ)]
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FIG. 3. Response of a cilia bundle to shear flow. (a,b) Vorticity contours and velocity vectors before and during perfusion.

(c) Velocities û0 and uγ , exogenous shear flow γ̇ez, and linear combination (F/F̂0) û0 + γ̇ez fitting uγ . (d) Linear fits of the
variation of estimated force F , velocity Vc and shear rate γ̇c = ∂u/∂z measured above cilia tips, and rate of work W ∝ γ̇cVc
(overlaping γ̇c), normalized by values at γ̇e = 0. Shaded regions are 95% confidence intervals of averages over 10 samples.

for large tissues, we have γ̇a ≈ 3F`/µd3, and thus

F (d) =
F0

1 + λ (`/d)
3 , (5)

where the λ = 3α/`µ is the key parameter of the self-
consistent theory. Using typical values (F̂0 = 160 pN,
V0 = 1.3 mm/s, ` = 15µm), we find λ ≈ 18.6.

The relation (5) can be used to address several aspects
of sparse cilia distributions [28]. The force applied to the
wall per bundle is ∼ µγ̇ad

2 = 3F0a/(1 + λa3), with a =
`/d, and has a maximum at dmax = (2λ)1/3` ≈ 50µm
as does the contribution FV of a single bundle to the
rate of work. The force Fw ≈ µγ̇a(d2− `2) applied to the
non-ciliated cells is maximal for d ≈ 54µm. Both values
are in excellent agreement with those observed. Using
the relation φ = (`/d)2 we can express the wall force as
a function of the coverage fraction φ,

Fw
F0

=
3φ1/2(1− φ)

1 + λφ3/2
. (6)

The contour plot of Fw/F0 in the φ−λ parameter space in
Fig. 4 shows that the optimum area fraction is a strongly
decreasing function of λ and can reach values far below
unity for λ ∼ 20, as in the present study. Extra en-
dogenous loads γ̇e < 0, as expected for internal tissues,
appear as an additional contribution to the ambient flow
γ̇a+ γ̇e. These loads will contribute to (5) as lower values
of λ, and indeed, consistently larger, yet still low cover-
age fractions of the airways of several animals have been
estimated to be 0.4 − 0.5 [14], qualitatively consistent
with Fig. 4. We infer that the observed mosaic patterns
are close to optimal in terms of the clearing force applied
to non-ciliated cells.

We close with comments on connections to other sys-
tems with sparse distributions of active elements. The
force applied to the outer fluid by the cilia tips on the

envelope ∂Ωc is equal and opposite to that applied to
the skin, and we can simplify our results on the shearing
of non-ciliated cells by reconsidering (2) as the flow of
a patch of activity with given slip velocity V of radius
Λ. The shear stress driving the flow is τΛ ≈ 3µV/2Λ,
which we assume constant over a bundle. Setting Λ = `
and integrating over a tissue with N bundles we obtain
J ∼ N`2τ`. By contrast, if we set Λ = R, the local shear
stress is τR = 3µV/2R and the force over the entire sur-
face is JR ∼ πR2τR. With N = πR2φ/`2, the ratio

J

JR
∼ R

`
φ (7)

measures how well a distribution of non-interacting
MCCs shears the surface relative to the collection. The
linear scaling of (7) with φ is expected, but the large
prefactor R/` ∼ 20 (system size/MCC size) implies that
J/JR can approach unity for area fractions as low as
φ ∼ `/R ∼ 5%. The form of this result mirrors one found

0
0.1

0.4

0.8

0

10

20

30

0.3 0.5 0.7 0.9

FIG. 4. Force on non-ciliated cells in the self-consistent
model. Contour plot of (6) in parameter space. Dashed line
traces optimization ridge.
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by Jeffreys [36] for the evaporation rate from sparsely dis-
tributed leaf stomata, rediscovered years later [37] in the
context of ligand binding to sparse cell receptors [38].

The results presented here suggest that long range hy-
drodynamic interactions between multiciliated cells allow
efficient peri-ciliary transport at relatively low coverage,
favoring the coexistence of multiple cell types in large
tissues. This is likely just one aspect of more general
mechanisms that maintain efficient transport in the up-
scaling events marking the evolutionary transition from
unicellular to larger multicellular systems.
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SUPPLEMENTAL MATERIAL

This file contains additional experimental and calcula-
tional details.

Embryo Culture: Xenopus embryos were prepared
as described previously [S1]. Briefly, mature Xenopus
laevis males and females were obtained from Nasco [S2].
Females were injected with 50 units of pregnant mare
serum gonadotropin 3 days in advance and 500 units hu-
man chorionic gonadotropin 1 day in advance in the dor-
sal lymph sack to induce natural ovulation. Eggs were
laid in a 1× MMR buffer (5 mM HEPES pH 7.8, 100 mM
NaCl, 2 mM KCl, 1 mM MgSO4, 2 mM CaCl2, 0.1 mM
EDTA). Xenopus embryos were cultured at room tem-
perature or 15◦ C in the 0.1× MMR until they reached
stage 27/28. Experiments with embryos were performed
at the late tailbud stages (stages 28-30, as describe in
Faber and Nieuwkoop [S3]). Embryos were terminated
humanely immediately following the experiments.

Our work with Xenopus laevis is covered under the
Home Office Project License PPL 70/8591 and frog hus-
bandry and all experiments were performed according to
the relevant regulatory standard. All experimental pro-
cedures involving animals were carried out in accordance
with the UK Animals (Scientific Procedures) Act 1986.
Moreover, we only used surplus embryos for this study, to
conform with the NC3Rs guidance to exploit the possi-
bility to minimise the use of animals by sharing embryos
with collaborators.

Statistics: To fit any quantity y measured at a given
hydrodynamic load x, we assume a linear relation y =
a+ bx and find 95% confidence intervals for the averages
ā and b̄ of the parameters ai and bi given by a least-
square fit of the measured values (xi,m, yi,m) acquired
for the i-th MCC. We have [S4]:

ā =

∑N
i=1 ai/σ

2
a,i∑N

i=1(1/σ2
a,i)
± 2σµā (S1a)

b̄ =

∑N
i=1 bi/σ

2
b,i∑N

i=1(1/σ2
b,i)
± 2σµb̄, (S1b)

The standard errors for the mean parameters are the
square roots of

σ2
µā =

1∑N
i=1 1/σ2

a,i

(S2a)

σ2
µb̄ =

1∑N
i=1 1/σ2

b,i

, (S2b)

while the parameter variances for the i-th MCC are

σ2
a,i =

σ2
i

4′
i

M∑
m=1

x2
i,m (S3a)

σ2
b,i = M

σ2
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, (S3b)
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FIG. S1. The contribution of a single bundle of cilia decays as a single effective force Fc or moment 2`Fc, while the measured
flow profile decays much more slowly due to the contributions from other MCCs (exp). The lateral velocity u0, with reference
to Fig. 2(d), is shown (a) above the bundle as a function of z, and (b) between bundles at z = `, as a function of x.
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FIG. S2. Supplement of Fig. 2. (a) Measured lateral velocity u(z) above and between bundles. For z > d, the u(z) becomes
independent on x. For d > 2d, the u(z) matches the far-field model ufar(z) of a uniform distribution of cilia. Different colours
correspond to velocity profiles at several |x| < 35 µm. (b) Linear dependance of the near-field uc on the effective force Fc, for
z > `.

with

4
′

i = M

M∑
m=1

x2
i,m −

(
M∑
m=1

xi,m

)2

. (S4)

The prime superscript indicates that the variance of the
measurements σ2

i,m = σ2
i for the i-th MCC was assumed

to be constant. It was estimated as the variance s2 of the
sample population:

σi ≈ s2 =
1

N − 2

M∑
m=1

(ym − ai − bixm)2. (S5)

We normally imaged M = 4 conditions per MCC. For
exceptions with M = 2, s2 could not be computed di-
rectly from (S5) and was assumed to equal the largest
value from the other experiments.

Fitting the near flow-field by the singularity
method: The flow uc driven by the cilia in Ωc is mod-
elled as the superposition of the flows arising from local

point forces (Stokeslets) fn applied at sn ∈ Ωc:

uc(bi) ≈
N∑
n=1

fn·S(bi − sn). (S6)

The tensor S is the well-known, exact solution for a
Stokelset next to a no-slip plane at z = 0 [S5]. The val-
ues of fn are found by fitting uc at M collocation points
bi, with M > 2N to avoid numerical instabilities [S6].
As no-slip boundary conditions uc = 0 at z = 0 are im-
plicitly satisfied, walls do not need to be discretized. The
linear system (S6) is then simply recast in its matrix form
Af = ub, with the 3M × 2N matrix

A =

 S11(bi, sj) S13(bi, sj)
S21(bi, sj) S23(bi, sj)
S31(bi, sj) S33(bi, sj)


the 2N ×1 vector f = {f1,1, . . . , fN,1, f1,3, . . . , fN,3}, and
the 3M × 1 vector ub = {uc,1(bi), uc,2(bi), uc,3(bi)}. We
then solve for f using the backslash operator of Matlab.
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We set f2 = 0, assuming the solution to be symmetric
in y. Once fn are known, (S6) can be used to evaluate
the fitted solution at any x. The flow field measured
in the y plane is extruded by replications at 13 planes
evenly spaced between −10µm < y < 10µm. We used
15 Stokeslets for each plane about the fictitious boundary
∂Ωc.

Coarse-graining the bundle: The flow uc driven by
the Stokeslet in the bundle can be coarse-grained further,
with a smaller number of Stokes flow singularities, mov-
ing away from the bundle. We compare the fitted flow uc,
made up of N Stokeslets as discussed above, with the flow
driven by the effective Stokeslet Fcex applied at (0, 0, `),
and the effective rotlet 2`Fcey applied at (0, 0, `/2). They
share the same far-field, reflecting the fact it is driven by
an active vortex. The flow driven by the entire bundle
decays as 1/z3, as for a single singularity, for z > 2` (Fig.
S1).

Far Field fitting: The flow given by (2), is used to fit
the PIV measurements for z > 2d (Fig. S2). The velocity
ufar(z; Λ) depends linearly on V , but not on R. For a
given value of R, we find V by a linear least-squares fit

of the data. We then simply repeat this linear fit for
candidate values in the range 30µm < R < 1 mm, with
increment ∆R = 10µm, and select the value of R that
minimizes the L2 fitting error.

Two-dimensional array of Stokeslets: Results
similar to those presented in Fig. 2 for a uniform dis-
tribution of Stokelets can be obtained by positioning
Stokeslets Fcex on a lattice with cut-off radius Λ. Each
element sij of the lattice is position at (xij = id11 +
jd12, yij = jd22, zij = `). From confocal imaging of the
closest neighboring cells of the bundle in Fig. 2, we esti-
mate d11 ∼ 70µm, d12 = 40.5µm, d22 = 53µm.

Using the effective force Fc estimated by the near field
fitting, and summing up the exact contribution of each
MCC, we retrieve the slow decay rate observed in vivo
[Figs. 2(e,f)] for Λ ∼ 300µm (Fig. S3). This is the same
result found by fitting the far-field flow with Eq. (2).

Resistive force theory estimate of the effective
force applied by a single cilium: We adopt a sim-
plified view of the power stroke of a cilium as a straight
rod that pivots around its base. Let s ∈ [0, `] be ar-
clength along a cilium, with s = 0 at the base and
s = ` at the tip, and let φ be the angle between the
cilium and the wall. The lateral component of the RFT
force density at s is f ′ ∼ (s/`)ζ⊥Vc sinφ, and the re-
sulting far field velocity, given by Eq. (1), is propor-
tional to hf ′ds with h = s sinφ. Accordingly, the ef-

fective force fφ = `−1
∫ `

0
h(s, φ)f ′(s, φ)ds, matches the

overall far field `fφS̃11 when applied at `. We obtain
fφ = sin2 φ ζ⊥`Vc/3. Through the entire stroke, a cilium
cycles through an angle ∆φ = 2π, and we assume that
the recovery stroke does not contribute to the force, so
fφ = 0 for π < θ < 2π. Averaging fφ gives the effec-
tive force f = ζ⊥`Vc(6π)−1

∫ π
0

sin2 φdφ, which gives the
expression f = ζ⊥`Vc/12 used in the main text.

Additional results from the self-consistent
model: The self-consistent model in Eq. (5) can be
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used to investigate several aspects of the phenomenol-
ogy of cilia driven flow. The contour plots for the effec-
tive force F and the limit velocity V are shown in Fig.
S4. V has a maximum at d = (λ/2)1/3` ≈ 32µm. The
corresponding coverage fraction φ = (λ/2)−2/3 ∼ 0.22
is significantly larger than observed in vivo, confirming
that the system is instead optimized for the wall force
Fw (Fig. 4) discussed in the main text.

Supplementary video: Movie of a cilia bundle and
0.2µm diameter tracers, acquired at 2, 000 frames/s, and
shown at 30 frames/s. Some larger beads are also present
to help visualize the flows.
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