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Recent work has shown that a Möbius strip soap film rendered
unstable by deforming its frame changes topology to that of a disk
through a “neck-pinching” boundary singularity. This behavior is
unlike that of the catenoid, which transitions to two disks through
a bulk singularity. It is not yet understood whether the type of
singularity is generally a consequence of the surface topology, nor
how this dependence could arise from an equation of motion for
the surface. To address these questions we investigate experimen-
tally, computationally, and theoretically the route to singularities
of soap films with different topologies, including a family of punc-
tured Klein bottles. We show that the location of singularities (bulk
or boundary) may depend on the path of the boundary deforma-
tion. In the unstable regime the driving force for soap-film motion is
the mean curvature. Thus, the narrowest part of the neck, associ-
ated with the shortest nontrivial closed geodesic of the surface, has
the highest curvature and is the fastest moving. Just before onset of
the instability there exists on the stable surface the shortest closed
geodesic, which is the initial condition for evolution of the neck’s
geodesics, all of which have the same topological relationship to the
frame. We make the plausible conjectures that if the initial geodesic
is linked to the boundary, then the singularity will occur at the
boundary, whereas if the two are unlinked initially, then the sin-
gularity will occur in the bulk. Numerical study of mean curvature
flows and experiments support these conjectures.

minimal surfaces | topological transitions | systoles

The study of singularities, be it their dynamic evolution (1–3)
or their location and structure in a system at equilibrium

(4, 5), has a long history. The main focus of research has been
either on systems without boundaries, where both the static and
dynamic cases are fairly well understood, or on finite systems with
prescribed boundaries displaying static singularities, as for exam-
ple defects in liquid crystals (6) and superfluids (7), Langmuir
monolayers (8), and quantum field theories (9). Work on dynamic
aspects of these bounded systems is limited, particularly in the case
of singularity formation accompanying a topological change (10).
For instance, to our knowledge, there is no mathematical tool
available to predict from initial conditions whether a singularity
in a bounded system will occur in the bulk or at the boundary.
In a previous paper (11) we found that a soap film in the shape

of a Möbius band spanning a slowly deforming wire would change
its topology through a singularity that occurs at the boundary. This
simple example provided a first model to investigate the dynamical
aspects of the formation of a boundary singularity from the
moment the system becomes unstable, and until a new stable
configuration is reached. While progress was made in the par-
ticular case of the Möbius band, left unanswered were questions
of greater generality: (i) Are there any other configurations of
films spanning a frame that have a topology transition with a
boundary singularity, showing that this behavior is generic rather
than exceptional? (ii) If so, what are the possible types of evo-
lution equations that could describe the dynamics of the collapse?
(iii) When such a system becomes unstable, can topological and
geometric parameters at onset be used to predict whether the
singularity will occur in the bulk or at the boundary? As described
below, we have found that the first question has an affirmative

answer. Just as Courant (12, 13) used soap films as a means of
studying minimal surface topology, we can seek to answer these
questions through the study of soap-film transition singularities.
The evolution of bulk singularities and of soap films moving

toward equilibrium configurations have been extensively studied
(14) with mean curvature flow in which the surface moves nor-
mal to itself at a speed proportional to the local mean curvature
and also with models more faithful to hydrodynamics (15, 16).
There is also a large body of literature pertaining to the case of
closed surfaces for which rigorous results have been proved
(17–20). In contrast, the dynamics of a surface with a deformable
boundary which, after becoming unstable, undergoes a singular
topological change has received little or no attention, particu-
larly when the singularity occurs at the boundary.
To study the dynamical aspects of boundary singularities and

their relationship to the topological and geometric parameters of
the film, we performed numerical calculations based on mean
curvature flow and verified that, even though the actual motion
of a film also involves inertial and more realistic viscous forces,
this approach is capable of reproducing the essential character-
istics of the boundary singularities we observed in experiment.
This stands in clear contrast with the case of bulk singularities,
where the mean curvature approach fails to fully reproduce the
experimental observations. For example, a film collapsing in the
bulk by mean curvature produces one singularity, whereas in
experiment there are at least two placed above and below a sat-
ellite drop (21–23).
The best-known example of such a bulk singularity in a boun-

ded soap film is the collapse of a catenoid spanning two parallel
rings. In this case the singularity occurs only when the rings have
been separated beyond a critical distance and the film, as it be-
comes unstable, develops a narrow neck on which a noncontractible
curve of least length, or systole relative to the boundary (SRB)

Significance

The dynamics of topological rearrangements of surfaces are
generically associated with singularities. It is not yet understood
whether the location of a singularity (in the bulk or at bound-
aries) is a general consequence of the surface topology, nor how
this dependence could arise from an equation of motion for the
surface. Here we use experiments on soap films, computation,
and theory to introduce simple and intuitive concepts to describe
generic transitions and their singularities. In particular, we pro-
pose a criterion to predict, from the configuration of the initial
state, the location of the singularity. This criterion involves the
topological linkage between the bounding curve of the surface
and a local systole, the local nontrivial minimum-length closed
curve on the surface.

Author contributions: R.E.G., J.M., H.K.M., and A.I.P. designed research, performed re-
search, and wrote the paper.

The authors declare no conflict of interest.

Freely available online through the PNAS open access option.
1To whom correspondence should be addressed. E-mail: hkm2@damtp.cam.ac.uk.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1406385111/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1406385111 PNAS Early Edition | 1 of 6

A
PP

LI
ED

M
A
TH

EM
A
TI
CS

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1406385111&domain=pdf&date_stamp=2014-05-14
mailto:hkm2@damtp.cam.ac.uk
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1406385111/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1406385111/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1406385111


(24–26), can be found. Even though the collapse of the catenoid
is a situation characterized by high symmetry, we will see here,
through a combination of experiment and computation, that there
is a whole class of singularities that follow the same pattern of
neck formation such that infinitesimally close to but before the
onset of the instability it is possible to identify a local SRB (LSRB)
that constitutes the initial condition for the evolution of the curve
whose contraction ends at the location of the singularity (see Fig.
5). We find that this feature of the initial LSRB and its linkage
to the boundary makes it possible to deduce whether the sin-
gularity occurs in the bulk or at the boundary, and also that the
way in which the same boundary is deformed before onset of the
instability can produce different types of singularities.

Results and Discussion
1. Experiments. In previous work (11) it was found that when a
soap film in the shape of a Möbius band becomes unstable, it
collides with its frame via a neck-like singularity. This collision
yields changes in three topological quantities: the genus, the
sidedness, and the linking number between the Plateau border
and the frame (for details, see ref. 11). These experiments could
not, by themselves, establish if there was causality in these re-
sults, so we sought other film configurations to test which of the
topological parameters, if any, are predictors of the transition.
One such configuration starts from the surface first introduced
by Almgren (27) [(a) in Fig. 1]. This film has the interesting feature
of having an intersection along a segment that can develop into
a secondary film by slightly pushing the descending tab. The
direction in which the tab is pushed determines if the secondary
film lies toward the front or the back [(a.1) and (a.ii) in Fig. 1,
respectively]. As illustrated, the two possible resolutions of the
unstable fourfold vertex into the films in (a.1) and (a.ii) in Fig. 1
correspond to the two stable states which, in the language of foams,
interconvert through a T1 process (28). Puncturing the secondary
film when it lies toward the front produces the well-known result
(27) shown in (b) in Fig. 1, which is topologically equivalent to
a section of a torus. On the other hand, puncturing the secondary
film when it lies toward the back produces a surface [(c) in Fig. 1]
that we believe has not been identified before in this context, and
which corresponds to a punctured Klein bottle, i.e., two Möbius

bands of opposite chirality sewn together over part of their
boundaries. It is this latter surface that we used to test our hy-
potheses. This punctured Klein bottle (hereafter termed “punctured
Klein”) is an ideal choice because, like the Möbius band (linking
number 2, nonorientable genus 1), it is one sided, but its Plateau
border linking number with the frame is 0 and its nonorient-
able genus is 2, allowing us to separate the two topological
parameters.
By pulling apart the top sections of the frame in (c) in Fig. 1

the punctured Klein becomes unstable and undergoes a transi-
tion to a disk by means of two mirror image singularities. This
transition, which is identical to two simultaneous Möbius tran-
sitions of opposite chirality, becomes fully dynamical after onset
and once it has finished [(c.ii), or equivalently (c.i.2), in Fig. 1],
the parameters that have changed are the sidedness and the genus.
There are at least two other alternative routes from the punctured
Klein to the disk. The second route, although much harder to
realize experimentally, is very intuitive mathematically: Since the
punctured Klein is made of two sewn Möbius bands, it is possible
to first coerce the frame into collapsing one of the bands pro-
ducing a change of nonorientable genus from 2 to 1 and also
from linking number 0 to ± 2, and leaving as a result only one of
the Möbius bands of the original pair [(c.i.1) in Fig. 1]. Hence the
surface is still one sided. The last part of the process is the usual
Möbius collapse that will yield the two-sided disk [(c.i.2) in Fig.
1] and will again change both the genus and the linking number
to 0, as expected. In the end the features of the collapse to a final
two-sided disk can be distilled to those of the two individual
Möbius bands that made the whole, and as a consequence each
one of these two steps is a fully dynamical process. The fact that
any other film that can be constructed in such a way that it
consists of a series of Möbius bands sewn together can be ana-
lyzed in a similar manner hints to the possibility of constructing
a simple algebra to keep track of the net changes of the topo-
logical parameters of the surface at every stage of the collapse.
The third way to convert the punctured Klein into a disk requires
deforming the boundary quasistatically by pulling the tab upward
slowly until its tip rises above the plane of the horizontal film
[(c.iii.1–c.iii.3) in Fig. 1]. Along this route, unlike along the other
two, the process can be stopped at any instant of time and there

Fig. 1. Interconversions of various soap film topologies, as described in Results and Discussion. Shaded regions are films, and red lines denote locations of
Plateau borders. This figure shows how surface (a) can reach the final configuration (d), a disc topology, following five distinct routes.
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will always be a stable minimal surface that spans the frame.
When the tip of the tab finally reaches the horizontal plane, the
twists of the Plateau borders and the holes of the film will all
converge to a point (the location of the singularity). The twists
will annihilate each other because they are of opposite chirality
and the hole will vanish to a point. In the physical film the hole
would disappear by reconnecting. All these different routes to
the end result share the feature that the singularity always
occurs at the boundary.
In the same way in which a whole class of transitions in the bulk

reduces asymptotically to the neck-like transition of the catenoid,
we expect that a whole class of boundary transitions of one-sided
surfaces will reduce to the neck-like transition of a Möbius band.
Thus, studying the collapses of these two surfaces should be
sufficient to cover all possible types of neck-like singularities.
There are three possible types of collapse:

i) Quasistatic boundary singularity: The surface changes its to-
pology in such a way that a stable, minimal surface can be
found at every instant before and up to the time of the sin-
gularity which occurs at the boundary.

ii) Catastrophic bulk singularity: The surface changes its topol-
ogy after becoming unstable. Hence, the process is fully dy-
namic and there are no intermediate stable minimal surfaces
visited in-between the last stable surface before onset and
until the final stable surface is reached. In this case the sin-
gularity is located in the bulk.

iii) Catastrophic boundary singularity: The same as ii except that
the singularity occurs at the boundary.

While there is a fourth possibility—a quasistatic bulk singu-
larity—we have not found a film configuration where this is
observed. The different types of singularities have a specific
correlation with the change of topology, but beyond the change
of genus, there is no one-to-one correspondence between the
type of transition and the topological parameters. The rules that
govern the transitions are

a) In a catastrophic boundary singularity there is a change in
either the linking number or sidedness, or both.

b) If a change of linking number or sidedness occurs there is a
boundary singularity, either catastrophic or quasistatic.

c) A catastrophic bulk singularity can change neither the linking
number nor the sidedness of the surface.

d) A quasistatic boundary singularity can support any type of
topological change.

From our studies it appears that both types of catastrophic
singularities, bulk and boundary, can be transformed into a bound-
ary quasistatic singularity by choosing a suitable frame deforma-
tion. For example, for the catenoid, instead of pulling the rings
apart to render the film unstable and force the transition to two
disks, we can tilt the top ring quasistatically until it reaches a
position where the film touches itself and the boundary, thus
creating a pair of disks connected by a single point. The con-
nection point is the location of the singularity that occurs as the
two disks are finally separated.
The experiments also helped with the study of another feature

of these films that is connected with geometric characteristics of
the associated minimal surfaces. In general, when films that will
collapse through a neck-like singularity are made, they come out
of the soap solution with a secondary film spanning the neck
(Fig. 2 A, C, and E). This feature was highlighted by Almgren
(27), who named the shared curve between the main and sec-
ondary films the “singular set.” If the secondary film is allowed to
remain while the wire is deformed, it is possible to contract it to
a point so that the final surface is identical to the one that would
have been obtained if the secondary film were removed at the
start of the process. Because soap films minimize area, it is clear

that the location of the singular set is also the location of the
shortest closed noncontractible geodesic on the main film. In
fact, we observe that secondary films generically occur in sit-
uations where the main film supports the existence of such a
curve. When the secondary film contracts during a transition, this
geodesic shrinks and eventually reduces to a point which coin-
cides with the location of the singularity. Not surprisingly, in the
absence of the secondary film, the shortest closed geodesic of the
main film is close to the original singular set. In a physical film
the shortest closed geodesic in the main film is, however, longer
than the curve determined by the singular set due to the effect of
surface tension.

2. Theoretical and Numerical Results. In this section we first address
whether motion by mean curvature is capable of reproducing the
experimental observations of boundary singularities in the col-
lapse of Möbius band and punctured Klein surfaces. This requires
mathematical representations of boundary curves for the two cases
which contain parameters describing the deformations leading
to surfaces instabilities. For the Möbius band, we have pre-
viously identified (11) the one-parameter family of curves
CM : xðθÞ= ðx; y; zÞ with μ=−1 and 0≤ θ< 2π, where (29)

xðθÞ= 1
ℓM

�
μτ cos θ+ ð1− τÞ cos 2 θ�; [1a]

yðθÞ= 1
ℓM

�
μτ sin θ+ ð1− τÞ sin 2 θ�; [1b]

zðθÞ= 1
ℓM

�
2μτð1− τÞ sin θ�: [1c]

Here, the parameter τ ð0≤ τ≤ 1Þ interpolates smoothly from the
double covering of the circle for τ= 0 to a single circle in the x–y
plane when τ= 1. The factor ℓMðτÞ normalizes the wire length to
2π. Numerical studies with Surface Evolver (30) show that the
one-sided minimal surface spanning this curve becomes unstable
when τ> τ1c ’ 0:398, whereas the two-sided surface becomes
unstable for τ< τ2c ’ 0:225. In-between these values the system
is bistable, with the energies of the two surfaces crossing at
τ ’ 0:38.
The frame shown in (a) in Fig. 1, which can support the punc-

tured Klein surface [(c) in Fig. 1], can be approximated by a two-
parameter family of curves CK : xðθÞ= ðx; y; zÞ for 0≤ θ< 2π, where

xðθÞ= 1
ℓK

�
cos θ+

1
2
cos

h
t  e−λ sin

2 θ=2
i�

; [2a]

yðθÞ= 1
ℓK

sin θ; [2b]

zðθÞ= 1
2
�
1+ sin2 θ=2

�
ℓK

sin
h
t  e−λ sin

2 θ=2
i
; [2c]

and ℓK ðt; λÞ is again a normalization, here depending on the two
parameters of the curve. As shown in Fig. 3, the parameter t
primarily controls the length of the tab below the plane of the
circle, while λ controls the width of the tab.
Collapse dynamics. In each of these cases a dynamical evolution
toward the singularity was obtained by starting with an equilib-
rium shape close to the critical parameter(s) for instability and
then incrementing one of the parameter(s) a small amount be-
yond the threshold. The subsequent evolution of the surface was
calculated using the Hessian command in Surface Evolver (30)
with repeated equiangulations and vertex averaging to ensure
a well-behaved mesh. In both the Möbius and punctured Klein
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cases we find that the singularity or singularities are indeed lo-
cated at the frame. These dynamical evolutions are shown in
Movies S1 and S2 (Möbius) and S3 and S4 (punctured Klein).
To quantify the collapse of a neck to the boundary, we de-

termined from each triangulated surface the narrowest diameter
D of the neck measured from the point of the eventual location
of the singularity to the point on the shortest noncontractible
geodesic of the neck at which the normal is the generating vector
of the line that joins both points (Fig. 4). That geodesic, in turn,
was found by means of an adaptation of Kirsanov’s Matlab
program (31) to find the exact geodesics between two specified
endpoints on a triangular mesh. To find closed geodesics we
implemented an iterative procedure to adjust the positions of
three endpoints spaced around the neck until the three geodesic
segments formed a single smooth curve. Fig. 4 shows the projec-
tions of the geodesics onto the x–y plane and the neck diameter D
for the Möbius collapse as a function of iteration number of the
relaxation scheme. Observe that the stationary right-hand sec-
tion of the curves in Fig. 4B are the sections that the geodesics
share with the boundary. The results indicate a clear collapse
to the boundary in finite time. While the data appear con-
sistent with a power-law variation of D with time, with a sub-
linear exponent, at present there is insufficient resolution to
determine that exponent more precisely.
As we have mentioned before, motion by mean curvature

cannot faithfully represent a bulk singularity in a physical film
because in such a film the effects of air pressure have a crucial

role in the last stages of the collapse when a Rayleigh instability
is triggered and the film produces a satellite drop (or cascade of
drops with a cut-off controlled by the parameters of the film) (1,
22). The difference between this singularity and the boundary
one that makes the latter amenable to description with mean
curvature flow is that physical effects other than surface tension,
for instance thickness variations in the film, become relevant only
after the singularity has fully developed. In fact, the reconnection
of the Plateau border in the collision with the boundary occurs
after the surface has reached the location of the singularity.

Location of singularity. Systoles, or the shortest noncontractible
geodesics, have been extensively studied in the context of general
closed orientable Riemannian manifolds (24). In fact, inequal-
ities relating the systole’s length to the surface area and volume
of the manifold are well known. Each one of the shortest non-
contractible closed geodesics that we used to characterize the
neck evolution under mean curvature flow is an example of an
LSRB, as defined in the Introduction. While up until now we
have only found each local systole as the neck shrinks, it is also
possible to find the one such curve on the stable minimal surface
before the onset of the instability.
Fig. 5 shows the local systoles for stable minimal punctured

Klein (Fig. 5 A and B) and Möbius band (Fig. 5C) surfaces,
where for the latter the systole is unique. In the case of the
punctured Klein bottle we show only one systole—the second is
a mirror image across the central vertical plane of symmetry.
When the frame parameters are slightly beyond their critical
values and the surfaces start their dynamic evolution toward the
collapse, the systoles of the stable configurations can be viewed
as the initial conditions for the successive family of systoles de-
scribed in the previous subsection. A notable feature of each and
every one of these systoles, including the one corresponding to
the stable minimal surface, is that they are topologically linked to
the boundary. In the case of the Möbius strip embedded in space,
it can be shown that all noncontractible curves are in fact linked
to the boundary. It is this linkage that provides a predictor of the
location of the singularity. In fact, in the classic instability of the
catenoid produced by pulling the two rings apart, in which
the systoles are never linked to the boundary, the singularities
occur in the bulk. Moreover, when catenoid collapse is forced by
tilting the rings to induce a quasistatic boundary singularity, the
systole eventually attaches itself to the boundary immediately
before the surface reaches the singularity point; since this evo-
lution has a stable minimal surface at all times, the position of

Fig. 2. Soap films. Top (A and B) and side (C and D) views of Möbius surfaces
with and without secondary film. (E and F) Punctured Klein-bottled surfaces
with and without secondary film.

Fig. 3. Numerically obtained minimal punctured Klein surfaces. (Upper)
Varying the parameter λ for t = 3:5. (A) λ= 10 and (B) λ= 120. (Lower) Varying
t for λ= 10. (C) t = 3 and (D) t = 5.
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the systole before collapse also gives, even though trivially, an
accurate prediction of the type of singularity.
The reason systoles are important and useful in the prediction of

the character of the motion may be understood through the fol-
lowing heuristic argument: The curvature associated with the sys-
tole is exactly canceled by its conjugate curvature when the surface
is minimal. When the surface becomes unstable, this delicate
balance is broken and it will move with a speed that varies from
point to point, driven by the Laplace pressure difference, which
is itself proportional to the mean curvature (note that both in
mean curvature flow and in more realistic models it is this pressure
difference that determines the surface velocity). Since in the un-
stable regime the points with the largest mean curvature are ge-
nerically those on the systole, they will move fastest and reach the
singularity first by shrinking to a point. Furthermore, because of
this shrinkage of the systole and the impossibility of any point on

the surface traversing the boundary, the topological linkage of
the systole and the boundary automatically determines the char-
acter (bulk or boundary) of the singularity.
Given that the Möbius band is the paradigm for singularity for-

mation at the boundary, it follows that having an analytic result for
the systoles of this surface, even an approximate one, is very desir-
able. With this mind we have used the ruled surfaces (32) generated
by Eq. 1, where now −1≤ μ≤ 1 (11). With the surface specified by
the vector xðμ; θÞ, the length L of a curve on that surface is

L=
Z2π
0

dθ

"
E
�
dμ
dθ

	2

+ 2F
dμ
dθ

+G

#1=2

; [3]

where E= xμ · xμ, F = xμ · xθ, and G= xθ · xθ are the coefficients
of the first fundamental form. To find the geodesic, we use a
relaxation dynamics with L as a Lyapunov function,

μt =−
δL
δμ

: [4]

Fig. 5D shows the numerically obtained geodesic for the case
τ= 0:4. Observe that the solution hugs the boundary over a finite
arc. This is consistent with the general result that a geodesic
cannot touch the boundary if the geodesic curvature κg of the
boundary is positive, supported by the following argument. Sup-
pose ΓðsÞ is a geodesic curve in a surface Σ, parametrized by arc
length s. Then the second derivative of Γ is normal to Σ, for
otherwise, we could shrink Γ by pushing it in the direction of
the second derivative. If Γ touches the boundary at a convex
point, then the second derivative of Γ in the direction normal
to the boundary but tangent to Σ must be positive, and we can
shrink Γ by gently pushing it in that direction. It follows that
moving a geodesic in the direction of the second derivative when
the boundary curvature is negative will push the curve off the
surface. Hence, negative geodesic curvature of the boundary is
a necessary but not sufficient condition for the systole to touch it.
In the present case, a straightforward calculation shows that

κg =AðτÞ+BðτÞcos θ+CðτÞcos 2 θ; [5]

where A, B, and C are polynomials in τ. One can verify that the
region of θ over which the numerical geodesic coincides with the
boundary does indeed lie within the region of negative κg.
A remarkably good analytic approximation to the systole on the

ruled surface can be obtained by first finding a curve whose tan-
gent vector is everywhere orthogonal to both the surface normal
and the lines of constant μ. Such a curve does not lie on the
surface. However, as the binormal to that curve is constant, it lies
in a plane, which can be easily found. The approximate geodesic is
then found as the intersection of the ruled surface and that plane.
This curve can be expressed explicitly in terms of its Cartesian
components or parametrically in the form μðθ; τÞ by first defining

gðτÞ= 2ð1− τÞ
τ+ 2ð1− τÞ2; [6a]

cos θ*= 1=g: [6b]

If Eq. 6b has real solutions for θ* (which occurs for 0≤ τ≤ 1=2),
then the geodesic is defined piecewise:

μðθÞ=
�
−gðτÞcos θ jθj≥ θ*
−1 otherwise : [7]

Note that this ruled surface has the nonphysical feature of
self-intersection for τ> τs ’ 0:58. For 1=2< τ< τs, the approx-
imate geodesic does not touch the boundary, and has the

Fig. 4. Collapse dynamics of a Möbius surface from Surface Evolver (30). (A)
Diameter of the projection of geodesics (B) onto the x–y plane (Fig. 3) as
a function of iteration number n in the relaxation scheme. The singularity
appears at the boundary at a finite time.

Fig. 5. Systoles on minimal surfaces. (A and B) Two views of a punctured
Klein bottle surface with a systole (red line). (C) Systole for a Möbius minimal
surface. (D) Systole (green) and approximate systole (red) for a ruled surface
in the shape of a Möbius band. Blue dots indicate loci where the geodesic
curvature changes sign. The color scheme represents the z coordinate of points
on surfaces.
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form μðθÞ=−g cos θ. This is shown overlaid in red in Fig. 5. As
with the numerically obtained geodesic, the region of coin-
cidence with the boundary lies within the domain of negative
geodesic boundary curvature, as required.

Conclusions
By identifying examples of boundary singularities, other than the
collapse of the Möbius band, that occur when there is a topo-
logical change in soap films spanning a wire, we have made a first
attempt at classifying them. Besides the well-known bulk singu-
larity we found two other types—quasistatic and catastrophic—
both occurring at the boundary. We found strong evidence that
any catastrophic singularity which develops a neck will asymp-
totically converge to a Möbius-like singularity. Furthermore, nu-
merical studies showed that motion by mean curvature exhibits
boundary singularities, reproducing the experimental findings. We
also found that the predictor of the position of the singularity was
the linkage between the boundary and the systole of the last stable
surface before the onset of instability.

Clearly, these results are not in a rigorous framework, but
provide insight into which variables have a role in the transition.
They also suggest that among the singularity types, the one cor-
responding to the quasistatic boundary should be the less difficult
to study because it is the one for which it is possible to construct
a family of stable minimal surfaces at all times. An important goal
is to rigorously establish the conditions under which mean cur-
vature motion leads to a boundary singularity. A more modest
goal is to prove, in the context of the Mobius surface we have
parametrized, that motion by mean curvature produces a singu-
larity at the boundary.

ACKNOWLEDGMENTS. We thank M. Gromov for comments on systoles
on bounded surfaces, L. Guth for suggesting the connection between
boundary curvature and systoles, R. Kusner and F. Morgan for discussions
on the topology of geodesics, and P. Constantin for discussions on mean
curvature flows; D. Page-Croft, C. Hitch, and J. Milton for technical assistance;
and K. Brakke, M. Evans, S. Furlan, and A. Kranik for computational
assistance. This work was supported by Engineering and Physical Sciences
Research Council Grant EP/I036060/1 and the Schlumberger Chair Fund.

1. Eggers J (1997) Nonlinear dynamics and the breakup of free-surface flows. Rev Mod
Phys 69(3):865–929.

2. Caflisch R, Papanicolaou G, eds (1993) Singularities in fluids, plasmas and optics.
NATO Science Series C, Proceedings of the NATO Advanced Research Workshop
(Springer, New York), Vol. 404.

3. Bajer K, Moffatt HK, eds (2002) Tubes, sheets and singularities in fluid dynamics. Fluid
Mechanics and Its Applications, Proceedings of the NATO Advanced Research Workshop
(Kluwer, London), Vol. 71.

4. Mermin ND (1979) The topological theory of defects in ordered media. Rev Mod Phys
51(3):591–648.

5. Arnold VI (1991) The Theory of Singularities and Its Applications (Cambridge Univ
Press, Cambridge, UK).

6. Langer SA, Sethna JP (1986) Textures in a chiral smectic liquid-crystal film. Phys Rev A
34(6):5035–5046.

7. Kasamatsu K, Takeuchi H, Tsubota M, Nitta M (2013) Wall-vortex composite solitons in
two-component Bose-Einstein condensates. Phys Rev A 88(1):013620.

8. Pettey D, Lubensky TC (1999) Stability of texture and shape of circular domains of Langmuir
monolayers. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 59(2):1834–1845.

9. Sakai N, Tong D (2005) Monopoles, vortices, domain walls and D-branes: The rules of
interaction. JHEP 03:019.

10. Goldstein RE, Moffatt HK, Pesci AI (2012) Topological constraints and their break-
down in dynamical evolution. Nonlinearity 25(10):R85–R98.

11. Goldstein RE, Moffatt HK, Pesci AI, Ricca RL (2010) Soap-film Möbius strip changes
topology with a twist singularity. Proc Natl Acad Sci USA 107(51):21979–21984.

12. Courant R (1938) The existence of a minimal surface of least area bounded by pre-
scribed Jordan arcs and prescribed surfaces. Proc Natl Acad Sci USA 24(2):97–101.

13. Courant R (1940) Soap film experiments with minimal surfaces. Am Math Mon
47(3):167–174.

14. Colding TH, Minicozzi WP (2012) Generic mean curvature flow I; Generic singularities.
Ann Math 175(2):755–833.

15. Leppinen D, Lister JR (2003) Capillary pinch-off of inviscid fluids. Phys Fluids
15(2):568–578.

16. Nitsche M, Steen PH (2004) Numerical simulations of inviscid capillary pinchoff.
J Comput Phys 200(1):299–324.

17. Gage M (1984) Curve shortening makes convex curves circular. Invent Math 76(2):

357–364.
18. Gage M, Hamilton RS (1986) The heat equation shrinking convex plane curves. J Diff

Geom 23(1):69–96.
19. Grayson MA (1987) The heat equation shrinks embedded plane curves to round

points. J Diff Geom 26(2):285–314.
20. Huisken G (1984) Flow by mean curvature of convex surfaces into spheres. J Diff Geom

20(1):237–266.
21. Cryer SA, Steen PH (1992) Collapse of the soap-film bridge: Quasistatic description.

J. Colloid Int. Sci. 154(1):276–288.
22. Chen YJ, Steen PH (1997) Dynamics of inviscid capillary breakup: Collapse and

pinchoff of a film bridge. J Fluid Mech 341:245–267.
23. Robinson ND, Steen PH (2001) Observations of singularity formation during the

capillary collapse and bubble pinch-off of a soap film bridge. J Coll Int Sci 241(2):

448–458.
24. Gromov M (1983) Filling Riemannian manifolds. J Diff Geom 18(1):1–147.
25. Guth L (2010) Metaphors in systolic geometry. arXiv:1003.4247.
26. Berger M (2008) What is, . . ., a systole? Not Am Math Soc 55(3):374–376.
27. Almgren FJ (2001) Plateau’s Problem: An Invitation to Varifold Geometry (American

Mathematical Society, Providence, RI), revised edition.
28. Weaire D, Rivier N (1984) Soap, cells and statistics - random patterns in two di-

mensions. Contemp Phys 25(1):59–99.
29. Maggioni F, Ricca RL (2006) Writhing and coiling of closed filaments. Proc R Soc A

462(2074):3151–3166.
30. Brakke K (1992) The Surface Evolver. Exp Math 1(2):141–165.
31. Kirsanov D (2007) Exact geodesic for triangular meshes, Matlab file exchange.

Available at www.mathworks.co.uk/matlabcentral/fileexchange/18168-exact-geodesic-
for-triangular-meshes. Accessed May 2, 2014.

32. Edge WL (1931) The Theory of Ruled Surfaces (Cambridge Univ Press, Cambridge, UK).

6 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1406385111 Goldstein et al.

http://www.mathworks.co.uk/matlabcentral/fileexchange/18168-exact-geodesic-for-triangular-meshes
http://www.mathworks.co.uk/matlabcentral/fileexchange/18168-exact-geodesic-for-triangular-meshes
www.pnas.org/cgi/doi/10.1073/pnas.1406385111

