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The recent discovery of the striking sheetlike multicellular choanoflagellate species Choanoeca flexa
that dynamically interconverts between two hemispherical forms of opposite orientation raises fundamental
questions in cell and evolutionary biology, as choanoflagellates are the closest living relatives of animals. It
similarly motivates questions in fluid and solid mechanics concerning the differential swimming speeds in
the two states and the mechanism of curvature inversion triggered by changes in the geometry of microvilli
emanating from each cell. Here we develop fluid dynamical and mechanical models to address these
observations and show that they capture the main features of the swimming, feeding, and inversion of
C. flexa colonies, which can be viewed as active, shape-shifting polymerized membranes.
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Some of the most fascinating processes in the devel-
opmental biology of complex multicellular organisms
involve radical changes in geometry or topology. From the
folding of tissues during gastrulation [1] to the formation of
hollow spaces in plants [2], these processes involve cell
shape changes, cell division, migration and apoptosis, and
formation of an extracellular matrix (ECM). Multiple
strands of research have shown evolutionary precedents
for these processes in some of the simplest multi-
cellular organisms such as green algae [3,4] and choano-
flagellates [5], the latter being the closest living relatives of
animals. Named for their funnel-shaped collar of microvilli
that facilitates filter feeding from the flows driven by their
beating flagellum, choanoflagellates serve as model organ-
isms for the evolution of multicellularity.
While well-known multicellular choanoflagellates exist

as linear chains or “rosettes” [6] held together by an
ECM [7], the new species Choanoeca flexa was recently
discovered [8] with an unusual sheet-like geometry (Fig. 1)
in which hundreds of cells adhere to each other by their
microvilli tips, without an ECM [9]. The sheets exist in two
forms with opposite curvature, one with flagella pointing
towards the center of curvature (“flag-in”) with a relatively

large spacing between cells, and another with the opposite
arrangement (“flag-out”) with more tightly packed cells.
Transformations between the two can be triggered by
darkness, and occur in ∼10 s. Experiments [8] show that
the flag-in state has very limited motility, but greatly
enhanced filter feeding. In laboratory conditions, the
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(d)

FIG. 1. The multicellular choanoflagellate Choanoeca flexa.
Top views of (a) flag-in and (b) flag-out states at times relative
to removal of light. (c) Close-up of the collar connections in the
two states. (d) Electron micrograph showing round white cell
bodies connected by microvilli. (e) Confocal slice at the level of
microvilli tips, showing their organization into pentagons, hex-
agons and heptagons. Adapted from [8,10].
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darkness-induced transition to the more motile flag-out
form allows a type of photokinesis [8].
As a first step toward understanding principles that

govern such a novel organism as C. flexa, we analyze
two models for these shape-shifting structures. The fluid
mechanics are studied by representing the cell raft as a
collection of spheres distributed on a hemispherical surface,
with nearby point forces representing the action of flagella.
Such a model has been used to describe the motility of
small sheetlike multicellular assembles such as the alga
Gonium [13]. The motility and filtering flow through these
rafts as a function of cell spacing and curvature explain
the observed properties of C. flexa. Abstracting the com-
plex elastic interactions between cells to the simplest
connectivity, we show how linear elasticity at the micro-
scale controls the competition between two sheet curva-
tures of opposite sign. These results show that C. flexa is a
remarkable example of an active “polymerized membrane”
[14], whose elasticity and dynamics can be studied on
accessible length scales and timescales, including the
role of topological defects in the large-scale shapes, and
fundamental questions in the fluid dynamics of porous
structures.

Fluid mechanics of feeding and swimming.—The cells
in a C. flexa raft are ellipsoidal, with major and minor
axes a ∼ 4 and b ∼ 3 μm, with a single flagellum of length
2L ∼ 23 μm and radius r ∼ 0.5 μm beating with amplitude
d ∼ 2.2 μm and frequency f ∼ 43 Hz (See experimental
results detailed in the Supplemental Material [10]), sending
bending waves away from the body. A cell swims with
flagellum and collar rearward; the body and flagellum
comprise a “pusher” force dipole. From resistive force
theory [15] we estimate the flagellar propulsive force to be
F ∼ 2Lðζ⊥ − ζkÞð1 − βÞfλ ∼ 6.9 pN, where β is a function
of the wave geometry, λ ∼ 15 μm is the wavelength [10],
ζ⊥ and ζk are transverse and longitudinal drag coefficients,
ζ⊥ ∼ 2ζk ∼ 4πμ= lnð2L=rÞ, with μ the fluid viscosity.
These features motivate a computational model in which
N identical cells in a raft have a spherical body of radius a
and a point force Fn̂i acting on the fluid a distance L from
the sphere center, oriented along the vector n̂i that
represents the collar axis [Figs. 2(a) and 2(b)]. An ideali-
zation of a curved raft involves placing those spheres on a
connected subset of the vertices of a geodesic icosahedron
(one whose vertices lie on a spherical surface) of radius
ρ ≫ a; the area fraction Φ of the sheet occupied by cells
scales as Φ ∼ Nða=ρÞ2. The pentagonal neighborhoods

FIG. 2. Models for C. flexa. (a) Cell body and flagellar force in the flag-in state. (b),(c) Mechanical model of interconnecting microvilli
in rafts; cells (green spheres, not to scale) are at the vertices of a geodesic icosahedron. Blue arrows indicate flagella forces, red segments
represent microvilli, blue dots the microvilli tips, and blue lines the collar-collar interface. (b) Connectivity of the whole raft. (c) Two
cells (i, j) with apicobasal axis (n̂i,n̂j) connected by filaments meeting at vertices (ρ, σ). Effect of curvature 1=R on (d) geometry of raft
and (e) swimming speed U (blue) and flow rate Q (red) passing through Sf at constant Φ. Solid black circles indicate the experimental
flag-out and flag-in swimming speeds (and uncertainties) [10] relative to the theoretical single cell speed Us. (f),(g) Cross section of the
disturbance flows ud and uf around the a raft (Φ ¼ 0.31, R ¼ 8.61) in the reciprocal problems for calculating U and Q. Heat maps
indicate the speed of (f) ud and (g) uf .
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within the geodesic icosahedron serve as topological defects
that allow for smooth large-scale surface curvature [16];
confocal imaging shows that a significant fraction (∼0.22) of
the cellular neighborhoods defined by the microvilli con-
nections are pentagonal, with a smaller fraction of hepta-
gons [Fig. 1(e) and [10] ], and earlier work on C. perplexa
[9] also found nonhexagonal packing. We use the geodesic
icosahedron f3; 5þgð3;0Þ in standard notation [17], with 92
total vertices, and take patches with N ¼ 58 to be repre-
sentative of experimentally observed sizes (10–200 cells).
Despite the wide range of sizes, experimental measure-
ments show no correlation between swimming speed and
the size of the raft [10]. The vectors n̂i point towards (away
from) the icosahedron center in the flag-in (flag-out) forms
[Figs. 2(a) and 2(b)]. Deformation of the sheet to a new
radius ρ0, at fixedΦ, requires the new polar angle θ0i of a cell
with respect to the central axis of the sheet be related to its
original angle θi via ρ02ð1 − cos θ0iÞ ¼ ρ2ð1 − cos θiÞ. We
define the scaled force offset length l ¼ L=a ∼ 3 and sheet
radius R ¼ ρ0=a≳ 6, and take R > 0 in the flag-in state.
Images of C. flexa [10] show that the packing fraction in

the flag-out state Φout ¼ 0.47� 0.06, less than both the
maximum packing fraction Φmax ¼ π

ffiffiffi

3
p

=6 ≃ 0.907 for a
hexagonal array of spheres in a plane, and the estimated
maximum packing fraction Φ̃max ≃ 0.83 for circles on a
sphere [18]. The packing fraction in the flag-in state is
Φin ¼ 0.34� 0.03, and we use the extremes Φout ¼ 0.53
and Φin ¼ 0.31 to explore the consequences of the
differences between the two forms.
Consider an isolated force-free spherical cell at the origin

moving at velocity Usêx with point force −F ¼ −Fêx
at −Lêx acting on the fluid and its reaction force F on
the cell. The cell experiences Stokes drag −ζsUsêx, where
ζs ¼ 6πμa, and drag −Dêx arising from the disturbance
flow created by the force. By the reciprocal theorem [19],
the disturbance drag is D ¼ F · ũdð−LêxÞ=Û, where ũdðrÞ
is the flow created when the cell is dragged along êx with
unit speed Û. Force balance yields the single-cell swim-
ming speed Us ≡ ðF=ζsÞ½1 − 3=ð2lÞ þ 1=ð2l3Þ�. Thus,
the closer the point force is to the cell (i.e., the smaller
is l), the more drag the cell experiences and the slower is
Us. Setting l ¼ 3 yields Us ∼ 67 μm=s, comparable to the
observed speed of the flag-out colony [10] and of fast-
swimming cells of the choanoflagellate S. rosetta [20].
This intuitive picture extends to a raft of cells. As the raft

moves at velocityUêx, it experiences a Stokes drag −ζUêx.
The disturbance flow created by the forces Fn̂i acting
at ri þ Ln̂i, produces a drag D ¼ FΣin̂i · udðri þ Ln̂iÞ,
where ud is the (dimensionless) disturbance flow from the
raft when it is dragged along êx with unit speed. Force
balance then yields

U ¼ −
F
ζ

X

N

i¼1

n̂i · ½êx − udðri þ Ln̂iÞ�; ð1Þ

where −FΣin̂i is the force propelling the raft along êx, and
ud has been rendered dimensionless by the unit speed. We
compute ud and ζ using a boundary element method [13].
Because of the curved geometry, point forces are closer to
neighboring cells in the flag-in state than in flag-out. Thus,
as in Figs. 2(d) and 2(e), for a geometry with a given jRj,
the flag-in state has a larger disturbance drag than the flag-
out state, and a smaller speed U, consistent with experi-
ments (solid black circles).
The difference in swimming speed between the two

states can also be explained in terms of udðri þ Ln̂iÞ in (1).
Figure 2(f) shows that ud inside the raft is close to êx
because of the curved geometry and screening effects.
Hence, U is small when the point forces are inside.
Meanwhile, ud outside decays with the distance from
the raft, so U is large when ri þ Ln̂i is outside. For a
given geometry, we expect the swimming speed to be
roughly independent of cell number through a balance
between the total flagellar force and total drag, a result
consistent with our observations in the flag-out state [10].
Early work on filter feeding in choanoflagellates focused

on the far-field stresslet description [21], but later work
showed near-field effects can significantly affect capture
rates [22]. To estimate the filter-feeding flux Q passing
through a colony, without detailed modeling of the micro-
villi, we measure, in the body frame, the flux passing
through the surface Sf projected a distance of 1.2a from
the cell center along n̂, as in Fig. 2(g). By the reciprocal
theorem, Q can be written in terms of the disturbance flow
uf around a stationary raft and the force Ff on the raft when
the surface Sf applies a unit normal pressure p̂ on the fluid,

Q¼ F
X

i

n̂i ·ufðri þLn̂iÞ þUêx ·

�

Ff −
Z

Sf

p̂dA

�

; ð2Þ

where uf and Ff acquire the units of velocity or pressure
and area, respectively, by scaling with jp̂j. Numerical
results [Figs. 2(d) and 2(e)] show that the flux due to
forces

P

i Fn̂i · uf=p̂ dominates Q. Thus, the difference
in Q between the two states arises from ufðri þ Ln̂iÞ
[Fig. 2(g)]. To maintain incompressibility under pressure p̂,
the disturbance flow uf is stronger inside the raft than
outside. Hence, point forces placed inside the raft pump
more flow through the raft than when placed outside.
Figure 2(e) shows the effect of changes in the raft

curvature and packing fraction. One value of R maximizes
swimming speed in the flag-out state and another max-
imizes flux in the flag-in state. This arises from a balance
between the screening effect mentioned above and align-
ment of forcing. In the flag-out state, an initial decrease in
curvature aligns the forces with the swimming direction,
increasing swimming speed, but a further reduction in
curvature reduces the screening effect as cells are now
more spread out in the plane orthogonal to the swimming
direction. A similar argument applies to the flow rate
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maximum in the flag-in state. Comparing these maxima,
Fig. 2(e) shows that a spread-out colony results in more
flux, while a closely packed colony results in faster
motility, as seen experimentally [8]. Thus, through the
interconversion between the two states, C. flexa takes
advantage of the hydrodynamic effect of the curved
geometry for efficient filter feeding and swimming.
Mechanics of inversion.—Studies suggest that inversion

requires an active process within each cell, likely driven by
myosin-driven contraction of an F-actin ring at the apical
pole [8]. Thus, a full treatment would address the complex
problem of elastic filaments responding to the apical
actomyosin system and adhering to each other. We simplify
this description by considering as in Fig. 2(c) that each cell
i, located at ri and surrounded by mi neighbors, has mi
rigid, straight filaments emanating from it. Two filaments
from neighboring cells i and j meet at vertex ρ (or σ)
located at rρ (rσ), with ϕiρ the angle between rρ − ri and n̂i.
Two adjacent filaments emanating from cell i, and which
meet neighboring filaments at vertices ρ and σ, define a
plane whose normal n̂iρσ points toward the apicobasal axis
n̂i. That normal and its counterpart n̂jσρ on cell j determine
the angle 2ψ ijρσ between the two planes. The geodesic
icosahedron defines the cell positions and the filament
network connecting cells. The two sets of angles fϕg and
fψg are used to define a Hookean elastic energy that
mimics the elasticity of the microvilli, allowing for pre-
ferred intrinsic angles ϕ0 and ψ0 that encode the effects of
the apical actomyosin and microvilli adhesion. Allowing
for stretching away from a rest length l0, the energy is

E ¼ 1

2
kϕ
X

i;ρ

δϕ2
iρ þ

1

2
kψ

X

i;j;ρ;σ

δψ2
ijρσ þ

1

2
kl
X

i;ρ

δl2
iρ; ð3Þ

where δϕiρ ¼ ϕiρ − ϕ0, δψ ijρσ ¼ ψ ijρσ − ψ0, and liρ ¼
jri − rρj − l0. The moduli kϕ, kψ and kl and quantities
ϕ0;ψ0 and l0 are assumed constant for all cells.
The energy (3) is tied to the lattice geometry of the raft. If

the cells are in a hexagonal lattice (mi ¼ 6) the system of
filaments can achieve E ¼ 0 by setting all cell-collar angles
to ϕ0, all collar-collar interface angles to ψ0, and ϕ0 ¼ ψ0.
This defines a flat sheet. Increasing ϕ0 ¼ ψ0 leads to
uniform, isotropic sheet expansion. In a nonplanar raft,
curvature is introduced through topological defects (mi ≠ 6),
such as pentagons, and mismatch between the local values of
ψ and ϕ. While pentagonal defects are known to cause out-
of-plane buckling in crystal lattices [16], they do not by
themselves select a particular sign of the induced curvature;
there is inherent bistability in the raft that can be biased
by changes in the geometry of out-of-plane filaments,
akin to the role of “apical constriction” in the shapes of
epithelia [23]. This feature of the raft arising as a geometric
byproduct of pentagonal defects evokes the concept of
“spandrels” in evolutionary biology [24].
For the case of two cells, each with two filaments, and

with one vertex between them, if ϕ ¼ ϕ0, ψ ¼ ψ0, and
r ¼ l0, then the filament tips lie on a circle of radius
R0 ¼ 1=C0, where C0 ¼ sinðψ0 − ϕ0Þ=l0 sinϕ0. While, in
general, the equilibrium state of a curved raft will not have
ϕiρ ¼ ϕ0, ψ ijρσ ¼ ψ0 and riρ ¼ l0 everywhere, we may
nevertheless use this relationship to define a proxy for the

FIG. 3. Inversion dynamics from numerical studies. (a)–(d) A colony, initially at a hemispherical minimum with
ðϕ0;ψ0Þ ¼ ð0.55; 0.65Þ, inverts after a change to (0.71,0.41), with l0 ¼ 0.5, Kψ ¼ 2 and Kl ¼ 5. Connections between collar
vertices are shown in blue, apicobasal axes as red arrows at cell body positions. (e) Residue energy E after the colony reaches
equilibrium at each preferred angle pair ðϕ0;ψ0Þ, where C < 0 (flag-in) above the black line ψ0 ¼ ϕ0, and C > 0 (flag-out) below. (f)
Evolution of E vsC as the colony relax towards a minimum energy state after instantaneous changes in ðϕ0;ψ0Þ shown by the dotted and
solid red and blue lines in (e).

PHYSICAL REVIEW LETTERS 131, 168401 (2023)

168401-4



average raft curvature. Recognizing that in numerical
studies stretching effects are small, we ignore variations
in riρ and define C ¼ sinðhψi − hϕiÞ=l0 sinðhϕiÞ, where
h·i is an average over cells and vertices. The colony is in the
flag-in (flag-out) state when C > 0 (C < 0).
The simplest model of raft dynamics localizes the

viscous drag to the individual cell and vertex positions
rγ and the cell orientation n̂ according to gradient flows
ζ∂trγ ¼ −∂E=∂rγ and ζn∂tn̂i ¼−ðI− n̂ n̂Þ ·∂E=∂ni driven
by the force and torque derived from (3) [25]. There-
fore, the dynamical algorithm follows a projected gradient
descent [26]. Via a rescaling of time we may set one of the
elastic constants to unity (say, kϕ) and need only consider
the ratios Kψ ¼ kψ=kϕ and Kl ¼ kl=kϕ.
Figures 3(a)–3(d) show the conversion from flag-in to

flag-out, following an abrupt change in the preferred angles
ðϕ0;ψ0Þ that models the fast reaction or relaxation of the
F-actin ring in response to a stimulus [10]. This change is
path B in the space ðϕ0;ψ0Þ in Fig. 3(e), which also shows
the line that divides the states and the residue energy E
after the colony reaches equilibrium at each ðϕ0;ψ0Þ. The
intermediate shapes exhibit a ring of inflection points
similar to those seen in experiments on C. flexa and
also in the inversion the algae Pleodorina [3] and larger
species [27,28]. Tracking the energy as each of the two
equilibria is achieved, the picture that emerges in Fig. 3(f) is
evolution on a double-well potential energy landscape as a
biasing field is switched in sign.
We have shown that simple models can explain the

swimming, feeding, and inversion of the recently discov-
ered multicellular choanoflagellate C. flexa [8]. These
results suggest further exploration on a possible continuum
description of the sheets, fluid-structure interactions during
locomotion, dynamics of photokinesis, and developmental
processes of these remarkable organisms.
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