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Supporting Online Material

Materials and methods

Culturing of algae

Experiments were conducted on Chlamydomonas reinhardtii (UTEX 89 (S1)), grown axenically

in standard Volvox medium (SVM (S2)) with sterile air bubbling, in diurnal growth chambers

(Binder KBW400, Tuttlingen, Germany) set to a daily cycle of 16 h in cool white light (∼

4000 lux) at 28◦ C, and 8 h in the dark at 26◦ C. In all experiments, the algae were harvested

during the exponential growth phase (. 106 cells/ml), to guarantee high uniformity and health

of the population.

Macroscopic diffusion experiment

For the macroscopic diffusion experiment, we used the horizontal view camera of the 3D track-

ing setup (described below) in darkfield. Newly harvested suspensions of C. reinhardtii were

transferred to 1.5 ml disposable Plastibrand UV-cuvettes (Brand GmbH, Wertheim, Germany),

where they filled a volume of ∼ 20 × 12.2 × 4 mm. Each sample was then sealed with an ex-

panded polystyrene foam cork, and centrifuged at 350 g for 2.5 min, causing the sedimentation

of the suspended algae. After centrifugation, the samples were transferred to the tracking setup

and the upward spreading of the cells’ density profile was recorded at 10 fps for 1 − 2 min. In

all experiments, recording started within the first 20 s after centrifugation. The samples were il-

luminated by a narrowband LED with an emission peak centered at 655 nm, and a bandwidth of

21 nm. C. reinhardtii is insensitive to these wavelengths (S3, S4), so phototactic reorientations

do not occur. After each experiment, we homogenized the suspension by vortexing and esti-

mated the average cell density with a Neubauer haemocytometer (Fisher Scientific, Pittsburgh,
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PA). All experiments were done at average densities smaller than 2.7×106 cells/ml to minimize

cell-cell interactions.

We also examined the possible influence of thermal convection by recording the motion

of a suspension of 1µm polystyrene beads (F8823, Invitrogen, Carlsbad, CA) in the same

cuvette and under the same observation conditions as the previous experiments. The mo-

tion of the tracer particles was analyzed with an open source Matlab PIV toolbox (MatPIV,

http://www.math.uio.no/∼jks/matpiv/) and found to be below 13µm/s.

Flagellar dynamics experiment

Sample cells were constructed by gluing two strips of 3 mm thick expanded polystyrene foam

between two microscope coverslips. Two sides of the cell were left open to allow access. For

each experiment a new sample cell was filled with fresh sterile filter-cleaned SVM at room

temperature. A small number of C. reinhardtii cells were harvested from the culturing flask

during the light cycle, and immediately transferred to the sample cell. Observations started

30 min after transfer to allow for acclimatization. Individual cells were held at the end of a

micropipette with a tip opening of 2 − 4µm, prepared with a commerical pipette puller (P-97,

Sutter Instrument Co., Novato, CA) and reshaped with a microforge (DMF1000, World Pre-

cision Instruments, Sarasota, FL). Pipettes were held in a motorized micromanipulator under

joystick control (PatchStar, Scientifica, Uckfield, UK) by means of pipette holders (World Pre-

cision Instruments) mounted on small custom made rotation stages. This arrangement allowed

free rotation around the pipette axis, which was crucial for reorienting the cells and achieving

optimal visualization of their flagella. Cells were held by gentle suction, controlled by a gas-

tight syringe fitted with micrometer control (Manual Injector, Sutter). Imaging was done under

brightfield illumination on a custom-built stage mounted on a Nikon TE2000-U inverted micro-

scope with a Nikon Plan Fluor ELWD 40× objective (NA 0.6). The light from the microscope’s
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halogen lamp was filtered through a long pass interference filter with a 10 nm transition width

between 0.001% and 80% transmittance, centered at 620 nm (Knight Optical, Harrietsham, UK).

These wavelengths were selected to avoid any phototactic response (S3, S4). Videos were ac-

quired at 500 fps with a high-speed video camera (Phantom V5.1, Vision Research, Wayne, NJ)

with 4 Gb of on-board memory, mounted on the microscope’s camera port, and transferred to

disk afterwards.

Experiment on rotation of uniflagellated cells

During periods of asynchrony one flagellum beats faster than the other, a pattern that should

naturally lead to turns in the swimming trajectory. We reasoned that the turning rate induced

by the faster flagellum could be estimated from the turning rate of a cell with a single flagel-

lum. PVC O-rings 2 mm thick and 1 cm in diameter were fixed on the surface of microscope

coverslips coated with a ∼ 200µm thick layer of Polydimethylsiloxane (PDMS) (Sylgard 184,

Dow Corning Ltd, Coventry, UK) and sealed from outside with additional PDMS to create a

circular chamber open from the top. The chambers were then cured at 60◦ C for 90 min, plasma

etched with dry air for 30 s (Femto System, Diener Electronic, Germany) and left overnight

immersed in 5% bovine serum albumin (BSA) in phosphate-buffered saline solution at 4◦ C.

This treatment minimizes sticking of C. reinhardtii to the bottom of the chamber (S5). Before

each experiment, a new chamber was taken from the BSA solution, carefully washed with fresh

SVM, then filled with fresh SVM at room temperature, and placed on the stage of a Nikon

TE2000-U inverted microscope. For each experiment, a small sample was harvested from the

C. reinhardtii culturing flask and gently sheared in a borosilicate Dounce homogenizer (Fisher)

to create a sub-population of uniflagellated algae. A small volume from the sheared suspension

was then transferred to the observation chamber. The uniflagellated cells are unable to swim

and therefore sink to the bottom of the cell, where they start rotating in place under the action of
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their only flagellum. Each batch was observed for no longer than 15 min after homogenization.

We recorded the rotation of 8 randomly chosen cells for 50 s each. All observations were done

under the same brightfield conditions, with the same objective, and with the same high-speed

camera used for the flagellar dynamics experiment.

Three-dimensional tracking experiment

To track C. reinhardtii, in three dimensions, a custom-built dual view apparatus was employed

(S6). Previous studies in which Chlamydomonas has been tracked were done in 2D (S7, S8, S9)

or with a 3D moving stage tracking microscope (S10). The cells were imaged from two orthog-

onal directions by two identical assemblies, each consisting of a long working distance micro-

scope (InfiniVar CFM-2/S, Infinity Photo-Optical, Boulder, CO) directly attached to a grayscale

FireWire CCD camera (Pike F145B, Allied Vision Technologies, Stadtroda, Germany). The

sample was illuminated in darkfield by red annular LED arrays (LFR-100-R, CCS Inc., Kyoto,

Japan, peak emission at 655 nm, bandwidth 21 nm). Images were acquired synchronously from

both cameras with custom Labview (National Instruments, Austin, TX) routines at 20 fps and

at a magnification of 0.63×. A set of 2D tracks was then computed for the image sequences

acquired by each camera. As the two cameras had one common axis, 3D tracks could be re-

constructed by locking together two 2D tracks which overlapped in time and had a strongly

correlated trajectory along the common axis. This method allowed 10 - 100 C. reinhardtii cells

to be tracked in one image sequence with a spatial precision better than 3µm at each time point.

The sample, a 1×1×4 cm quartz cuvette (111-10-40, Hellma, Müllheim, Germany), was filled

with C. reinhardtii suspended in SVM (cleaned by filtration through a 0.2µm filter) at a con-

centration of ∼ 102 cells/ml. Measurements began 15 min after the sample was placed in the

centre of a stirred water bath at 22◦ C, as control studies with 10µm polystyrene microspheres

(C37259, Invitrogen) showed that thermal convection ceased ∼ 10 min after the sample was
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placed in the water bath. The apparatus was calibrated and tested as described by Drescher et

al. (S6).

Data analysis

All analyses were done with customized Matlab routines.

Flagellar dynamics experiment

We analyzed 24 different cells and gathered individual time series lasting typically 3 min each.

Each movie was processed by local background subtraction followed by light smoothing to

enhance the contrast of the flagella. The cell dynamics was quantified by monitoring the

passage of each flagellum across a small interrogation region on either side of the cell body

(Fig. 2A), and representing the resultant oscillatory signals of the left (L) and right (R) flagella

as XL,R(t) = ΓL,R(t) sin(2πθL,R(t)), where Γ is the amplitude and θ is the phase, normalized

to advance by 1 per cycle. Unfortunately we could not determine the correspondence between

L/R and cis/trans flagella. This correlation could be important to connect our findings to pho-

totaxis, where intrinsic differences between cis and trans flagella are thought to play a major

role (S11), but it does not influence our results and was not pursued further.

For the issue of synchronization, we focus attention on the phase difference ∆(t) = θL(t)−

θR(t). We define the instantaneous beating rate of the flagellum i as νi = dθi/dt, and thus in

synchronous beating ∆ is a constant, whereas asynchronous dynamics appears as a “drifting”

phase with temporal slope d∆/dt = νL − νR. We analyzed separately the dynamics of ∆(t)

during periods of synchrony and during periods of drift. While the detailed microscopic equa-

tions of motion of beating flagella have been the subject of extensive research (S12, S13), we

focus instead on how the simplest mathematical model of noisy coupled oscillators can capture

the basic phenomenology of the observed time series, and give insights into the underlying bio-
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chemical processes. Under general conditions the dynamics of weakly nonlinear self-sustained

oscillators obey a universal equation (S14) dictacted by symmetries. Modifying this to include

noise of the oscillators leads to a stochastic ordinary differential equation for the phase differ-

ence (S14)

d∆

dt
= δν − 2πε sin (2π∆) + ξ(t) , (1)

where δν = νL − νR is the difference between the intrinsic frequencies of the two flag-

ella, ε the coupling strength, and ξ is Gaussian white noise with 〈ξ(t)〉 = 0 and correlation

〈ξ(t)ξ(t′)〉 = 2Teff δ(t − t′). Here Teff is an effective “temperature” by analogy with systems

in thermal equilibrium. Without noise, Eq. 1 has been derived from the low Reynolds number

hydrodynamic interaction between two idealized flagella (S15). This derivation yields a rough

estimate εm for the hydrodynamic contribution to the coupling as a function of the separation of

the flagella. In the present case εm = 0.006× ν̄, where ν̄ = 50 Hz is the average flagellar beat-

ing frequency. At a heuristic level, Eq. 1 also describes the noise-driven motion of a massless

particle on a “tilted washboard” potential, a rich problem with broad applicability (S16, S17).

Applied to C. reinhardtii, this model describes periods of synchrony as localized fluctuations

around a single metastable minimum of the effective potential. The noise can induce occasional

hopping between metastable states, representing an extra beat of one of the flagella (a “phase

slip”). The intrinsic frequency difference δν corresponds to a global tilt in the washboard po-

tential, which favors slips in one direction.

During synchronous periods, Eq. 1 predicts that fluctuations of ∆(t) should have an ex-

ponentially decaying autocorrelation function, R(t) = R0 e−t/τac , which is indeed observed

experimentally (Fig. S1). If the coupling strength 2πε is sufficiently larger than the bias δν, the
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Figure S1: Average autocorrelation function R(t) in the synchronized state for one experiment,
showing exponential decay with a characteristic time of ' 2 cycles. Errorbars represent the
standard deviations of the distributions used to calculate the averages.

parameters of the autocorrelation function can be expressed as

R0 = τac Teff ; τac =
1

2π
√

(2πε)2 − δν2
. (2)

Following Eq. 1, we can also express the ratio p+/p− between the probabilities of forward and

backward slips as

p+/p− = exp(δν/Teff). (3)

Experimentally, this quantity can be estimated as the ratio between the number of positive and

negative slips. We used Eqs. 2 and 3 to derive the parameters representing the synchronous

dynamics of each experiment. The results (2πε ' 10 δν) justify the use of the approximate

relations in Eq. 2. These parameters are also consistent with independent observables like the
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small interflagellar phase lag during synchrony reported in previous studies (' 1/11th of a

cycle, (S18)), and the average time between successive slips. During drift periods ∆(t) depends

linearly on time with a slope given by the bias, δν. Fluctuations around this linear behavior

provide a direct measurement of the effective temperature Teff. In this regime, the coupling

strength is much smaller than the bias, and cannot be estimated.

For the purposes of presentation, the fitted parameters δν, ε, and Teff are rescaled by the

mean observed flagellar beating frequency ν̄. For the synchronous intervals, the distribution

of the measured coupling parameter ε/ν̄ (Fig. 3A) shows a well-defined peak at a value of

0.0076, which compares very well with the rough estimate εm/ν̄ = 0.006 given by the idealized

flagellar model with hydrodynamic coupling (S15). The synchronous and asynchronous states

cluster into two distinct regions in the parameter space (δν, Teff) (Fig. 3B). Synchronous states

have δν/ν̄ ' 0.001 − 0.01, while asynchronous states display δν/ν̄ ' 0.1 − 0.4. The latter is

in agreement with the asynchronous characteristics reported in earlier work (S18,S19,S20). We

never observed any cell whose frequency difference falls in between these two clusters.

Experiment on rotation of uniflagellated cells

Recorded movies were processed as reported in the previous section. We measured the rotation

speed of the cell bodies using the signal from a single interrogation region inside the body’s

image. At the same time, the beating frequency of the flagellum was measured from its passage

across a ring-shaped interrogation area around the cell body. As this estimate neglects the

drag produced by the second flagellum it provides an upper bound on the possible angular

speeds. The ratio between the body’s mean angular velocity and the beating frequency of the

flagellum gives the angular deviation per beat. From 8 cells we obtain an average rotation rate

φ = 0.43 ± 0.06 rad/beat, consistent with an earlier observation of cell rotation by a single

active flagellum after a photoshock response (S21). In low Reynolds number flow, this value is
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independent of flagellar beating frequency and depends only on the geometry of the beat. From

the observed difference in flagellar beating frequencies during drifts, δν = 5−15 Hz, we obtain

the two-dimensional angular speed Ω2D = φ δν ' 2− 6 rad/s.

This simple derivation neglects the influence of the nearby wall on the cell body’s drag

coefficient. However, since the cell’s angular velocity is perpendicular to the wall, this effect is

negligible (S22), and the previous measurements give a sound estimate of the angular velocity

Ω2D that a cell would have during drift periods, if its motion was planar. This is an upper bound,

as the helical progression of free swimming cells tends to average out the effect of a constant

frequency difference between the two flagella. A more accurate estimate can be derived if

we model a cell freely swimming in the laboratory frame of reference, as simply spinning at a

constant speed ω around its own body axis. During periods of drift, this axis rotates at an angular

speed Ω2D around an axis fixed in the body frame. The resulting maximum angular speed of the

body axis in the laboratory frame, Ω3D, can be readily calculated. For ω = 2π − 4π rad/s (S18)

and Ω2D = 2 − 6 rad/s, we obtain Ω3D = 0.1 − 0.7 × Ω2D ' 0.8 − 2.4 rad/s compatible with

the range of maximum angular speeds obtained from 3D tracks.

Tracking experiment

From the three-dimensional tracks, the angular speed Ω between timesteps i and i + 1 was

computed by multiplying the frame rate (20 fps) by the angle between the normalized velocity

vectors v̂i, and v̂i+1. To reduce noise, and the effect of the swimming helix, the velocity vector

v̂j was computed by fitting a second order polynomial to time series of x, y, and z that contain

51 positions (from j − 25 to j + 25) and differentiating this fit at time j. This procedure yields

a time series Ω(t) that retaines a background signal . 0.3 rad/s, and occasional large peaks. We

identified peaks to be “large peaks”, when the local maximum of the peak, Ωpeak, was larger

than the preceding and succeding local minima by 0.5 rad/s. This threshold was verified by
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Figure S2: Time derivative ∆′(t) of the smoothed interflagellar phase difference shows two
clear peaks corresponding to two periods of phase drift. The width of the peaks measures the
duration of the drifts.

checking that the large peaks in Ω(t) correspond to obvious large-angle turns in the 3D tracks.

We estimated the duration tturn of these peaks by fitting a Gaussian ∼ exp(−2 t2/t2turn). This

leads to an esimate of the turning angle α = tturn Ωpeak.

A similar procedure was used to estimate the duration of drift periods from the long time

series of interflagellar phase difference ∆(t). To reduce noise, and the effect of the short slips,

the time derivative ∆′(t) of the signal was computed by fitting a second order polynomial to the

time serie of ∆(t) that contain 500 frames (from t−250 to t+250) and differentiating this fit at

time t. This procedure yields a time series ∆′(t) that retaines a background signal . 0.5 rad/s,

and occasional large peaks (Fig. S2). We identified peaks to be “large peaks”, when the local

maximum of the peak, ∆′peak, was larger than the preceding and succeding local minima by
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1 rad/s. This threshold was verified by checking that the large peaks in ∆′(t) correspond to

obvious drifts in the interflagellar phase difference. Again, we estimated the duration tdrift of

these peaks by fitting a Gaussian ∼ exp(−2 t2/t2drift). All slips (jumps of ±1 in the time series

for ∆(t)) in each experiment were identified and averaged and the time derivative ∆′(t) of the

averaged signal was then computed. A Gaussian fit ∼ exp(−2 t2/t2slip) to the obtained peak

gave then an estimate for the slips duration tslip. The “free flight time” τ is defined as the time

between successive large peaks in Ω(t).

Diffusion experiment

For each movie the intensity distribution inside the cuvette was integrated along the cuvette

width to give the raw signal Iraw(x, t), where x ∈ [0, L] is the coordinate along the cuvette

length, and t ∈ [0, T ] is the elapsed time from the beginning of the movie. We used Iraw(x, 0) to

estimate the background intensity distribution, which was then subtracted from the raw signal to

give the real intensity distribution I(x, t). Independent experiments established that this signal

is proportional to the local cells’ concentration, at least for concentrations up to ∼ 2 × 106

cells/ml. The initial intensity profile is typically localized in the bottom 10% of the cuvette

(2 mm, with the peak at 1 mm). During an experiment it spreads upwards, until at time T it just

reaches the upper limit of the region of interest. Given l such that I(l, T ) = 0.5×max(I(x, T )),

we estimated intensity gradients and fluxes at a uniformly spaced set of points for x ∈ [l, L]

and t ∈ [0, T ]. The gradients were calculated from a local linear interpolation to the intensity

profile. The fluxes were estimated from the time changes in the integrated intensity above the

point of interest. The linear relation between measured fluxes and gradients (Fig. 1A) is a clear

verification of Fick’s law and allows a direct determination of the diffusion constant for an

isolated individual: Dexp = (0.68± 0.11)× 10−3 cm2/s (from n = 8 population trials).

From the initial position of the peak, the spread of the intensity distribution at time T ,
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Figure S3: Comparing the distribution of swimming angles (rad) over the horizontal plane from
3D tracks (circles), and the expected distribution for isotropic swimming (solid line) shows a
net preference for upward swimming (negative angles).

and the average cell density (measured a posteriori with the cell counter), we can estimate the

maximum value of the cell concentration in the selected range (x ∈ [l, L] and t ∈ [0, T ]). The

estimate falls below 106 cells/ml for all experiments. This concentration is well below that at

which close cell-cell encounters may occur more frequently than once per mean flight time,

which can be estimated as n = 1/(π uτd2) ' 3×106 cells/ml, where u = 100µm/s is the mean

swimming speed, τ ' 10 s is the mean free flight time, and d = 10µm is the cell’s diameter.

C. reinhardtii cells often show a slight preference for upward swimming (negative gravi-

taxis (S23)), which causes a net drift vd in the upward direction. This is true also in the present

case (Fig. S3). Analysis of the recorded 3D trajectories gives vd = 5 − 10µm/s, in line with

previous measurements (S24). This drift will skew our estimate of the diffusion coefficient as
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Dexp/D ' (1 + vd δt/δx), where δt and δx are the characteristic time and distance at which

intensity fluxes and gradients were measured. For δt ∼ 100 s and δx ∼ 0.5 − 1 cm we predict

that Dexp will slightly overestimate the diffusion constant: Dexp ' 1.1D. Furthermore, slight

variations in behavior among different individuals in a whole population will result in slightly

different diffusivities. The method we use to estimate the population’s average diffusion con-

stant will bias the estimate again towards higher values, since the individuals with higher diffu-

sivity will tend to be overrepresented in the analyzed range. This is also a weak effect because,

for example, a normally distributed ensemble of diffusion constants with a standard deviation

twice the mean (and truncated to non-negative diffusivities), would give an estimated average

diffusion constant only 20% higher than the real mean. The real distribution of diffusivities

is certainly narrower than this example, and will give an even smaller bias. Taken together,

these two effects may contribute to the small discrepancy between the measured and estimated

diffusion constants.
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