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Certain periodical cicadas exhibit life cycles with durations of 13 or 17 years, and it is now generally
accepted that such large prime numbers arise evolutionarily to avoid synchrony with predators. Less
well explored is the question of how, in the face of intrinsic biological and environmental noise, insects
within a brood emerge together in large successive swarms from underground during springtime
warming. Here we consider the decision-making process of underground cicada nymphs experiencing
random but spatially-correlated thermal microclimates like those in nature. Introducing short-range
communication between insects leads to a model of consensus building that maps on to the statistical
physics of an Ising model with a quenched, spatially correlated random magnetic field and annealed
site dilution, which displays the kinds of collective swarms seen in nature.

The synchronized spring-time emergence from under-
ground of cicadas of the genus Magicicada has been the
subject of detailed entomological field studies for over a
century [1]. From work documenting the geographic dis-
tribution of emergences of 13− or 17−year species [2], to
studies of their underground developmental stages [3–5],
it is understood that any given brood (group emerging
in a particular year) exhibits two types of synchrony; (i)
essentially all members emerge precisely in year 13 or
17, and (ii) they do so when the local soil temperature
crosses a threshold in that particular year [4].

These observations motivated numerous studies in the-
oretical population biology to understand the reasons
why large prime number periods have been selected by
evolution, but far fewer studies explaining how the two
levels of synchrony are achieved. For prime number selec-
tion, the hypothesis [6, 7] that limited environmental car-
rying capacity and predation pressure are responsible was
first captured in a mathematical model by Hoppensteadt
and Keller [8]. Later models elucidated mechanisms by
which single broods occupy disjoint areas [9–11].

These studies do not address how a brood recognizes
that it is year 17 (and not, say, 16) and then emerges in a
sequence of vast swarms throughout several weeks. The
17 years spent underground by nymphas are divided into
5 instars, the duration of which exhibits considerable dis-
persion (Fig. 1). Despite this spread, cicadas accurately
keep track of the passage of years while underground. It
is known that after hatching the nymphs burrow below
ground and obtain nutrients from the xylem in tree roots
[12]. They therefore experience the annual seasonal cy-
cles of the trees, as shown by Karban, et al. [13], who
artificially altered the cycles in year 15 to provoke an
early emergence, proving that cicadas count cycles and
not the passage of time itself. It is unclear how such
accurate counting occurs, but it has been suggested [1]
that it could involve epigenetic modifications of the kind

observed in long-lived plants like bamboo [14]. Similar
issues arise in flowin order to flower [15].

The issue of swarm emergence in a given year was stud-
ied by Heath [4], who found that the day dc of emer-
gence of 17-year cicadas in any given location is strongly
correlated with the local soil temperature reaching the
threshold Tc ≃ 18◦C. This conclusion raises the ques-
tion of how cicadas can emerge in great swarms in spite
of spatially-varying microclimates, their own distribution
of body temperatures on emergence [4], and the inher-
ent imprecision of temperature sensing by the cicadas
themselves. Here we develop the hypothesis that the
thermally-triggered synchronized emergence of cicadas
arises in part from short-ranged communication between
nearby underground nymphs that allows for collective
decision-making. That cicadas are capable of collec-
tive behavior by means of communication is evidenced
by their acoustically synchronized above-ground choruses
[16, 17]. While choruses occur soon after emergence, and
it is plausible that the ability to hear underground noise
[18] is present earlier, acoustical coupling is but one of
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FIG. 1. Proportion of cicadas in the 5 instars as a function
of time, for one brood. Adapted from Ref. [5].
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FIG. 2. Temperature variations. (a) Daily average low and high surface temperatures in Columbus, Ohio, subsampled weekly,
and daily extrema of two-mode approximation (1) (black). (b) Theoretical average subsurface temperature at two depths near
Tc = 18◦C. (c) Noise ratio R in (3) versus depth near the crossing day.

several communication mechanisms that may be oper-
ating, and our analysis does not depend on the specific
means. Collective behavior via communication [19] is
found in many contexts: bacterial quorum sensing [20],
ant foraging [21–23], and bird flocking [24].

As in other studies of collective behavior [25, 26],
our model of decision-making is a random-field Ising
model (RFIM) [27, 28], in which quenched randomness
arises from microclimates and spins represent the deci-
sion. We introduce additional site occupancy variables
in order to interpret the simultaneous flipping of many
spins (“avalanches”) as swarms. Numerical studies of
this model produce swarms like those found in nature.

Thermobiology of burrowing nymphs. Newly hatched
nymphs burrow to a depth zb ∼ 30 cm that is thought
from observations [4] to isolate them from strong diurnal
temperature fluctuations. To put this on a quantitative
basis, we consider the temperature variations in Ohio,
where there is a wealth of data on cicada emergence
[4]. Figure 2(a) shows the average daily low and high
temperatures at 2m above ground in Columbus, Ohio
[29]. We take these to define a suitable average bound-
ary condition T (0, d) for the subsurface temperature field
T (z, d) with z increasing downward and d is time mea-
sured in days. These data can be represented by a two-
term Fourier series corresponding to a superposition of
annual (a) and daily (d) cycles,

T (0, d) = T̄ −∆a cos (2πνad
′)−∆d cos (2πνdd

′) , (1)

where d′ = d − d0, with d0 ≃ 20 (January 20th) being
the day of lowest temperatures, with annual frequency
νa = (1/365) day−1, daily frequency νd = 1day−1,
T̄ = 12.1◦C, ∆a = 12.4◦C and ∆d = 4.8◦C. We as-
sume the underground temperature T (z, d) obeys the
diffusion equation ∂dT = D∂zzT , for which typical val-
ues of the thermal diffusion constant D are in the range
(0.8− 10)× 10−7 m2/s [30]. We adopt the middle of this
range D ∼ 5× 10−7 m2/s= 432 cm2/day.
Introducing the scaled time t = νdd

′ and ϵ = νa/νd,

Eq. (1) implies the subsurface temperature field

T (z, t) = T̄ −∆ae
−z/ℓa cos (z/ℓa − 2πϵt)

−∆de
−z/ℓd cos (z/ℓd − 2πt) , (2)

with penetration lengths ℓi =
√
D/πνi for i = a, d, with

values ℓa ∼ 224 cm and ℓd ∼ 12 cm, respectively. Exam-
ining the subsurface temperature field at different depths,
as in Fig. 2(b), we see that at z = 15 cm the within-day
oscillations are very large compared to the change in the
mean between successive days, whereas at z = 30 cm the
two are comparable. To quantify the relative size of these
two contributions we define R(z) as the ratio between the
root-mean-square daily fluctuations in temperature and
the change in the annual trend over one day. Since ϵ ≪ 1,
we approximate R(z, t) as

R(z, t) = − ∆d e
−z

(
1
ℓd

− 1
ℓa

)
23/2πϵ∆a sin [z/ℓa − 2πϵt]

. (3)

Shown in Fig. 2(c), this ratio decreases with depth,
crossing below unity at the burrowing depth zb ∼ 30 cm.
While fluctuations are attenuated relative to the surface,
the thermal noise there is comparable to the signal, and
thus crossing of the temperature threshold can not be
synchronously determined by a population of nymphs,
buried at a distribution of depths, acting independently.
Microclimates and coarse-graining. The above does

not account for lateral variations in temperature with el-
evation, tree cover, and solar exposure, which determine
the local microclimate. As Heath showed, the days of
cicada emergences varied with location in a hilly land-
scape as shown in Fig. 3(a) [4]. Sunny, sparsely forested
south-facing slopes have the earliest swarms, with suc-
cessive swarms typically separated by a gap of several
days, disproving the simplistic view that all cicadas in
a brood emerge at once within a few days; the entire
process within an emergence year may take a month.
While a full description of microclimate requires ac-

counting for topography, solar exposure, and vegetation,
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FIG. 3. Lateral temperature variations. (a) Topography of an
Ohio forest, indicating forest density and dates of cicada emer-
gences. Adapted from [4]. (b) Region of burrowing nymphs,
with typical spacing a, coarse-grained on the scale ℓ. Micro-
climates are correlated on the scale λℓ.

we argue that the net effect of these contributions is that
nymphs experience a quenched, spatially correlated ran-
dom temperature field. From our analysis of underground
temperatures, we identify the annual penetration length
ℓa as the smallest scale of that random field which, there-
fore, serves as a coarse-graining length ℓ. The area den-
sity n of cicadas can reach 106 /acre ∼ 250 /m2 [31], with
average distance a ∼ 1/

√
n between nymphs as small as

5−10 cm ≪ ℓ ∼ 2m. We adopt the coarse-grained repre-
sentation of the population density n(r) at point r in Fig.
3(b), where each subgroup bi of area ℓ2 is associated to
a site on a square lattice at location xi = ri/ℓ ∈ Z2 and,
as in a lattice-gas description, is assigned an occupation
variable ni denoting if it is empty (0) or occupied (1).

The burrowing depth of nymphs, and the separation of
scales a ≪ ℓ suggest that a natural model of the thermal
environment of cicadas involves a two-dimensional tem-
perature field τ(xi, t) = τm(t) + τ̃f (xi), partitioned into
a slowly rising mean τm(t) obtained from T (zb, t) in (2)
by averaging over the fast daily oscillations, and a term
τ̃f (xi) that encodes the fluctuations in the local microcli-
mate. Shifting the origin of temperature to be Tc, near
the crossing day we may write τm(t) ≃ α̃(t − tc), where
α̃ ≃ 0.15 ◦C. We assume that τ̃f (x) is a Gaussian random

field with zero mean and some two-point correlation

C(|xi − xj |) = ⟨τ̃f (xi)τ̃f (xj)⟩. (4)

In practice we assume an exponential correlation C =
σ2e−|xi−xj |/λ with a single (scaled) length λ, where σ
is the standard deviation of the local field, in the range
∼ 1−3 ◦C. From the topography of Fig. 3(a) and contour
maps of the regions studied by Heath, we deduce λ ∼ 50.
Model of decision-making. To complete the model by

allowing for nymph communication, we introduce a sec-
ond variable at each site: a spin-like scalar Si(t) that
characterizes the binary choice at a given time: to re-
main underground (−1) or to emerge (+1). The decision
of group bi to emerge is determined by the local tempera-
ture and the behaviour of other groups in the neighbour-
hood Vi (the q = 8 nearest- and next-nearest-neighbors
of site i) via the field Hi(t) = Ji(t) + τ(xi, t)/σ, where
the temperature has been non-dimensionalized by σ, and

Ji(t) = J
∑
j∈Vi

nj(t)Sj(t) , (5)

in which we adopt the simplest model with a single cou-
pling J throughout the neighborhood. Hence

Hi(t) = α (t− tc) + τf (xi) + Ji(t), (6)

where α = α̃/σ, and τf = τ̃f/σ has unit variance. As
in previous models of collective decision-making [25, 26],
the decision of Si to flip from −1 to +1 occurs when Hi

becomes positive, as in the “zero-temperature” limit of
the RFIM approach. When J = 0, each spin flips to +1
when its local temperature field crosses the threshold.
When J > 0, a subgroup’s decision to emerge is rein-
forced by occupied neighboring sites that have flipped,
a feature that leads to swarms. Hi plays the same role
as the local field in a spin model of magnetization; with
the occupation variables ni, the system is random field
Ising model (RFIM) with annealed site dilution. In most
studies of the RFIM the random field is independent from
site to site, but here the microclimates are correlated on
scales large compared to the lattice spacing.
The dynamics of decision-making by subgroups is mod-

elled as a discrete-time process in which state variables
are updated daily, without resolving the behavior within
each day. In numerical studies, we start at t < tc with full
occupancy (ni = 1, ∀i), and with all subgroups choosing
to remain underground (Si = −1, ∀i). On each day we it-
eratively update the spins by the rule Sk+1

i = sign
[
Hk

i

]
,

where k = 1, 2, . . . labels iterations, until no more spins
flip to +1. We call a swarm the setA(t) of spins that have
flipped from −1 to +1 on a given day. The occupancy
variables of sites in A(t) are set to zero when the updat-
ing rule is complete for that day. The process continues
on successive days until the entire lattice is empty.
Numerical studies. The model (6) has three dimen-

sionless parameters (α, J , λ) and the dimensionless sys-
tem size L [32]. Since the tails of τf determine the first
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FIG. 4. Numerical results with L = 512. (a) Realization of the random field τf (x). (b,c) Composite plots of swarms for J = 0
and J = 0.4, respectively, color-coded by mean value of τf within each swarm, with α = 0.3. (d) Occupancy versus time for
cases in (b,c). (e-g) Results from averaging over 104 realizations of τf for J = 0 (black) and J = 0.4 (colors). (e) Binned swarm
size distribution Q(W) for J = 0 and for J = 0.4 and several values of λ. (f,g) Average swarm size experienced by a cicada
and average number of swarms versus λ. At J = 0, the decrease in ⟨N⟩ for λ ≳ 40 is a finite-size effect.

and last swarms, some 95% of the cicadas emerge over
a period of 4/α days, during which time the mean tem-
perature sweeps from −2σ to +2σ of the random field;
setting α = 0.3 spreads swarms over the realistic time
of ∼ 14 days. Consider first the effect of the coupling J
at fixed λ. Figure 4(a) shows a realization of τf (x) with
λ = 30, within which are correlated local “hot-spots”
and “cold-spots” in the landscape: like sunny hilltops
and shaded valleys. If J = 0 (Fig. 4(b)), the swarms are
composed of those sites whose random field values fall
in intervals of size α. As τf is Gaussian, the lattice oc-
cupancy versus time (Fig. 4(d)) is a discretely-sampled
error function ⟨n⟩ ≈ erfc(α(t − tc)/

√
2)/2. In contrast,

when J > 0 (Fig. 4(c)), inter-cicada coupling produces
large coherent domains. Emptying the lattice involves a
smaller number of large swarms, which may be separated
by time gaps without activity, as in Heath’s observations
[4]. This picture—of quiescent periods punctuated by
large emergence events—resembles the avalanches seen
in the conventional RFIM, but the event initiation dif-
fers due to the daily resetting of the occupancy variables.

Next we examine properties of swarms averaged over
104 realizations of τf , through the distribution P (W)
of swarm sizes W, with mean ⟨W⟩P =

∑
WP (W) and

Q(W) = WP (W)/⟨W⟩P , the probability that a given ci-
cada emerges in a swarm of size W [33]. We see in Fig.

4(d) that when J = 0 the largest swarms occur near tc,
where from the form of ⟨n⟩ above we deduce the maxi-
mum average swarm size to be ∼αL2/

√
2π. This sharp

cutoff is clearly visible in Q(W) shown in Fig. 4(e). In
contrast, when J = 0.4 the pdf Q(W) broadens with in-
creasing correlation length of the random field, signifying
the existence of ever larger swarms. This is further quan-
tified by examining ⟨W⟩Q =

∑
WQ(W), the average size

of a swarm in which a given cicada emerges. Figs. 4(f,g)
show that beyond λ ∼ 20, the effect of communication
(J > 0) is that the average swarm size is larger, and the
number of swarms depends more strongly on λ. These
trends continue for larger J .

We have shown that the statistical physics of collec-
tive decision-making, quantitatively based on the ther-
mal physics of local microclimates, reproduces key known
features of periodical cicada emergences: compact, large
swarms spread over several weeks, with temporal gaps be-
tween them. Future work could focus on testing the hy-
pothesis of communication between nymphs, and quan-
tifying spatial variations in microclimate and their cor-
relation with emergences. Here we have focused on the
synchrony of emergences in year 17. It remains to be
seen whether collective decision-making can explain the
13- and 17- year synchrony. Finally we ask: Is there a
biological system that exhibits periodic emergences on
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shorter time scales, allowing for convenient study of this
magical phenomenon?
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