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Bacteria often form surface-bound communities, embedded in a self-produced extracellular matrix,
called biofilms. Quantitative studies of their growth have typically focused on unconfined expansion
above solid or semi-solid surfaces, leading to exponential radial growth. This geometry does not
accurately reflect the natural or biomedical contexts in which biofilms grow in confined spaces.
Here we consider one of the simplest confined geometries: a biofilm growing laterally in the space
between a solid surface and an overlying elastic sheet. A poroelastic framework is utilised to derive
the radial growth rate of the biofilm; it reveals an additional self-similar expansion regime, governed
by the stiffness of the matrix, leading to a finite maximum radius, consistent with our experimental
observations of growing Bacillus subtilis biofilms confined by PDMS.

Bacterial biofilms are microbial accretions, enclosed in
a self-produced polymeric extracellular matrix [1], which
adhere to inert or living surfaces. A biofilm gives the in-
dividual cells a range of competitive advantages, such as
increased resistance to chemical attack. Since the pop-
ularisation in the mid 1600s of the light microscope as
a tool to study problems in biology [2, 3], observations
of groups of bacteria on surfaces have been amply doc-
umented [4], most notably by van Leeuwenhoek in his
dental plaque [5]. Yet, it is only in the last few decades
with the development of new genetic and molecular tech-
niques that the complexity of these communities has been
appreciated and biofilm formation has been recognised as
a regulated developmental process in its own right [6, 7].

Biofilm formation is common across a wide range of
organisms in the archaeal and bacterial domains of life,
on almost all types of surfaces [8]. Cells attach to a
surface and form micro-colonies through clonal growth.
These then grow and colonise their surroundings through
twitching motility [1]. A central research focus has
been understanding these growth dynamics. Building
on important work on osmotically-driven spreading [9], a
biofilm has often been modelled as a viscous, Newtonian
fluid mixture (nutrient rich water and biomass), neglect-
ing the matrix elasticity. The effects of surface tension
[10], osmotic pressure [11], and the interplay between nu-
trients, cell growth, and electrical signaling in response
to metabolic stress have all been studied recently [12].

While previous analyses have focused on the experi-
mentally tractable cases of unconfined and unsubmerged
biofilms [9–12], they do not accurately reflect the condi-
tions in which many biofilms grow; they thrive in confined
micro-spaces [13] between flexible elastic boundaries such
as vessel walls or soil pores [14], and indeed in the hu-
man body, where they account for over 80% of microbial
infections [15]. Biofilms are difficult to treat with an-
tibiotics, being thousands of times more resistant than

the constituent microorganisms in isolation [16] due to a
range of mechanical and biological processes [17, 18]. The
recent rapid growth in the use of implantable biomedi-
cal devices (stents, catheters, and cardiac implants) has
brought with it a large increase in associated biofilm in-
fections [19] since artificial surfaces require much smaller
bacterial loads for colonisation than the corresponding
volume of native tissue (≈ 10−4 as much [20]).

Here we develop the simplest model for a confined
biofilm, using a poroelastic framework to obtain a sys-
tem of equations describing its expansion dynamics. We
find an analytic similarity solution for the biofilm height
and radius, together with the vertically averaged biomass
volume fraction. Consistent with experimental obser-
vations on growing Bacillus subtilis biofilms described
here, unlike unconfined biofilms whose radius grows ex-
ponentially, the balance between elastic stresses and os-
motic pressure difference across the interface implies an
additional possible growth regime where within a shal-

FIG. 1. Schematic of a confined biofilm. An axisymmetric
biofilm (green) grows between a rigid surface at z = 0 and
an elastic sheet at z = h, with undeformed gap height h∞.
Inset: the biomass is a mixture of bacterial cells (blue, volume
fraction φb) and extracellular matrix (green,volume fraction
φm). The pore-averaged velocities of the solid and fluid phases
are denoted by us = (us, ws) and uf = (uf , wf ).
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low layer lubrication assumption, confined biofilms have
a maximum radius at long times. The transition between
regimes is governed by the stiffness of the matrix.

We consider a bio-mechanical system in which bacte-
ria grow and divide, converting nutrient-rich fluid into
biomass and thus inducing a flow of biomass outwards
from the biofilm centre. This flow is resisted by elas-
tic stresses within the extracellular matrix (ECM), while
the biofilm height dynamically adjusts to ensure conser-
vation of normal stress across the overlying elastic sheet.
An influx of water assures volume conservation. Illus-
trated in Fig. 1, an axisymmetric biofilm of thickness
h(r, t), radius R(t) and biomass volume V rests on an
impermeable flat plate at z = 0 and grows below an elas-
tic sheet of thickness d = O(R) and bending modulus
B = Ed3/12(1 − ν2), where E and ν are the Young’s
modulus and Poisson’s ratio of the sheet. We examine
the simplest biofilm composition, a mixture of bacteria
(volume fraction φb), sugar-rich secreted polymeric ECM
(volume fraction φm), and nutrient-rich water (modelled
as a low viscosity Newtonian fluid [9] with dynamic vis-
cosity µf and volume fraction 1 − (φm + φb) ≡ 1 − φ),
under the assumption that φm � φb [9]. For theoretical
simplicity, we assume that the biomass volume fraction
φ is independent of z, so ∂φ/∂z = 0.

We denote the pore-averaged velocity and stress tensor
of the solid and liquid phases by {us = (us, ws) , σs} and
{uf = (uf , wf ) , σf ≈ −pI } [9] respectively, where p, Π
and p̃ are the pore, osmotic, and bulk pressures (with
p̃ = p+ Π [21]). Since the vertical deflection of the sheet
∆d = O(h) is small compared to its thickness d, we ignore
stretching and model it as a thin elastic beam with radius
of curvature R̃ � {d, h} and surface tension γ against
the biofilm. We neglect gravity, assume that nutrient
concentrations across the biofilm are constant, and take
the biomass growth rate g to have the saturating form

g =
1

TD

(
c

c+ chalf

)
, (1)

independent of position, where TD is the doubling time
(typically hours), c is the concentration of a limiting nu-
trient and chalf is that for half-maximum growth rate.
Both c and hence g are taken to be constant in light of
our experiments, introduced below, in which there is an
external flow that ensures homogeneity. Conserving mass
in both the solid and fluid phases gives

∂φ

∂t
+∇ · (φus) = gφ, (2a)

−∂φ
∂t

+∇ · ((1− φ)uf ) = −gφ. (2b)

Defining the Terzaghi effective stress tensor as σ =
φ(σs − σf ) [22], momentum balance yields

∇ · σ =∇p. (3)

To model σ, we deviate from prior work that assumed
a Newtonian fluid by adopting a poroelastic framework
that incorporates the elasticity of the ECM. In this pic-
ture, σ obeys the elastic constitutive law

σ = σ (∇ξ) , (4)

where ξ = (ξ, ζ), the deformation vector of the medium
away from a reference state, is related to the biofilm
phase velocity through us = (∂t + us · ∇) ξ. Little
utilised in the study of biofilms, it is a common approach
in many problems containing elasticity in geophysics (hy-
drology subsidence and pumping problems [23, 24] or in-
dustrial filtration [25]) and biological physics (cell cyto-
plasm [26]). Here, we consider the simplest case, where
σ obeys the linear constitutive law

σ(∇ξ) =

(
K − 2G

3

)
(∇ · ξ)I +G(∇ξ +∇ξT ), (5)

where K and G are the effective bulk and shear moduli
of the biofilm respectively, assumed constant. As in [23],
K and G are properties of the whole biofilm rather than
just the ECM. We prescribe explicitly the general form
for the horizontal velocity of the solid phase,

us =
r

R

∂R

∂t
u0

( z
h

)
, (6)

where u0 is the z−dependent part of us. We take

u0 =
6z(h− z)

h2
, (7)

since this is the simplest functional form obeying no-
slip boundary conditions at z = 0 and z = h as well
as 〈u0〉 = 1. However, as shown below, we find a solu-
tion independent of the exact form for u0. Global volume
conservation gives ∂R/∂t while r/R sets a simple linear
radial dependence, ensuring that us = 0 at r = 0. As
for u0, tweaking this radial dependence does not qualita-
tively change the resulting dynamics of the system.

In contrast, vertical flow is governed by pressure gra-
dients induced both by the upper confinement and by
elastic stresses in the extracellular matrix. We invoke
Darcy’s law for flow within the matrix, giving

(1− φ)(ws − wf ) =
κ

µf

∂p

∂z
. (8)

where κ = κ(φ) is the effective biofilm permeability with
characteristic permeability scale κ0. The osmotic pres-
sure away from equilibrium Π(φ) is taken to be that of-
Flory Huggins theory [27], with interaction parameter
χ ' 1/2 so there is no demixing [28]. Assuming that the
matrix solid fraction β = φm/φ � 1 is constant across
the biofilm, the osmotic pressure is [29]

Π =
kBT

3ν0

(
φm

1− φ

)3

, (9)
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a function of thermal energy kBT and ν0, the effective
volume occupied by one monomer of matrix. Since the
matrix consists of many different substances, notably
sugars, proteins and DNA, we estimate ν0 by the volume
occupied by one sugar monomer. This term is subdom-
inant in the analysis below, and thus does not appear
in the interior (r ≤ R) solutions (14) - (18). We close
this system of equations with a set of vertical boundary
conditions, given in the Supplementary Material [30].

The analysis exploits two separations of scales: (i) the
initial radius of the confined biofilm R0 = R(t = 0) is
much greater than the initial heightH0 = h(r = 0, t = 0),
a lubrication approximation, and (ii) the growth time
scale 1/g is much larger than the poroelastic equilibration
time µfH

2
0/κ0P0. We nondimensionalise the equations

anisotropically using these length scales, denote the verti-

cally averaged form of a function f by 〈f〉 = h−1
∫ h
0
f dz,

and define ϕ = 〈φ〉, vs = 〈us〉, k = 〈κ〉, P = p/P0 and

ρ =
r

R(0)
, τ = gt, R =

R(t)

R(0)
, H =

h(r, t)

h(0, 0)
. (10)

Keeping only leading-order terms in ε = H0/R0 [30], the
model reduces to coupled PDEs for the height H(ρ, τ)
and depth-averaged biomass fraction ϕ(ρ, τ) as functions
of radial distance ρ and time τ . The horizontal pressure
gradient adjusts to one of three possible modes

∂P
∂ρ

=

{
0,
C1

ρ
,
C2

ρ2
,

}
(11)

where C1 and C2 are constants and the dominant contri-
bution to the pressure P arises from the bending stresses
imposed from the upper elastic sheet,

P = ∇4H. (12)

The depth-integrated biomass fraction ϕH satisfies a con-
servation law of the form ∂(ϕH)/∂τ = −∇ ·Jϕ + S,

∂

∂τ
(ϕH) = −1

ρ

∂

∂ρ
(ρvsϕH) + ϕH. (13)

Thus, ϕH grows exponentially from the source term S =
ϕH, while subject to radial advection at speed vs(H,R)
from the flux term Jϕ. The system is closed with a set
of boundary conditions, deriving the boundary conditions
forH at the biofilm interface by extending the framework
outside the biofilm to the whole domain and imposing
far field boundary conditions [30]. In the mode zero case
when the horizontal pressure gradient is zero, Eqs. (11)-
(13) admit the interior (ρ ≤ R) solutions

H = eτR−2f(ρ/R), (14a)

ϕ0 = ϕ0(ρ/R), (14b)

where

f(x) = 1− (1−m0)x2, (15)

(a)

(b)

Ξ = 1

Ξ > 1

Ξ < 1

FIG. 2. Growth dynamics of confined biofilms according to
the poroelastic model. (a) The scaled biofilm radius R as
a function of scaled time in a semilogarithmic plot, for Ξ ∈
[0.4, 0.75, 0.91, 1, 1.13, 1.3, 1.7]. Darker colours denote larger
Ξ. (b) Biofilm radius at a fixed τ0 (dashed vertical line in (a))
as a function of Ξ, both numerically (-) and experimentally
(•◦), and numerically for τ0 →∞ (-).

the incline ratio

m0 =
h(r = R(0), t = 0)

h(r = 0, t = 0)
(16)

is a measure of the initial flatness of the biofilm, ϕ0(ρ) =
ϕ(ρ, τ = 0) is set from the initial conditions and we
have utilized the vertically-averaged boundary condi-
tions [30] and the initial conditions H (ρ = 0, τ = 0) =
R (τ = 0) = 1 and H (ρ = 1, τ = 0) = m0. The form of
(14) guarantees that the total biomass

∫
dρρHϕ grows as

eτ . We obtain R(τ) as the solution of the cubic equation

e−τR3 +R(Ξ− 1)− Ξ = 0, (17)

where the single free parameter is

Ξ =
ξ0m0

ζ0

K +G/3

K + 4G/3
=

Ψ

2(1− νb)
. (18)

Derived in [30], Ψ = ξ0m0/ζ0 is a measure of the ini-
tial ratio between horizontal and vertical stress gradients
in the biofilm while νb, the effective Poisson’s ratio of
the ECM, is a measure of how stiff the biofilm is (stiffer
biofilms have lower νb). The radial expansion of the
biofilm is mediated by a balance at the biofilm edge be-
tween horizontal and vertical elastic deformation in the



4

biofilm (the Ξ and e−τR3 terms, respectively, in (17))
and the osmotic pressure difference across the biofilm in-
terface (the R(Ξ− 1) term).

For general Ξ and τ , this equation does not always ad-
mit an analytic solution and is solved numerically [30].
Figure 2(a) plots the temporal evolution of R for a range
of different values of Ξ. Figure 2(b) explores this further,
choosing a fixed observation time τ0 and plottingR(τ0) as
a function of Ξ. Two clear regimes emerge. If Ξ < 1, the
first and second terms in (17) dominate in a balance be-
tween stresses caused by the vertical elastic deformations
and the osmotic pressure difference, leading to a limit on
vertical expansion. The biofilm then spreads with ex-

ponential radial growth [9], with R → (1− Ξ)
1/2

eτ/2

as τ → ∞. If Ξ > 1 (the dark blue curves in figure
2(a)), the second and third term in (17) are dominant,
giving a balance between stresses caused by horizontal
elastic deformations and the osmotic pressure difference
that limits horizontal expansion. The radius at inter-
mediate times exhibits power-law growth before slowing
down to reach a maximum R(∞) = Ξ/(Ξ− 1), when the
shallow layer approximation is still valid. In the special
case Ξ = 1, the osmotic pressure difference across the
interface is zero, leading to a balance between horizon-
tal and vertical elastic stresses. As shown in Fig. 2(a),
the system exhibits transitional exponential growth, with
R = eτ/3, but this state is not stable; curves with Ξ just
above and below unity will veer off eventually to tend to
a constant radius or to the faster eτ/2 growth law.

We performed experiments on the growth of biofilms
confined by polydimethylsiloxane (PDMS), the results
of which can be compared directly to the model devel-
oped above. The methodology follows existing protocols
[12, 31, 32] developed to understand the growth of focal
(and submerged) biofilms under well-defined flow condi-
tions. Full details are given in Supplemental Material
[30]; here we summarize the key features. Flagella-less
mutants of Bacillus subtilis were used to avoid secondary
contributions to biofilm spreading [9]. Cells in exponen-
tial growth phase were centrifuged and resuspended in
growth medium before being loaded at the centre of Y04-
D plates linked to the CellASIC ONIX microfluidic plat-
form (EMD Millipore), and kept at 30 ◦C. In this setup,
they are confined between glass and an overlying PDMS
sheet of thickness d = 114µm, with an initial gap of h = 6
µm. Fresh medium was flowed through the chamber with
a mean speed of ∼ 16µms−1 [12, 31, 32]. Biofilm growth
was imaged at 1 frame/minute on a spinning-disc confo-
cal microscope in bright field. As the biofilms were often
frilly, with long thin strands of matrix polymer protrud-
ing from their edges, a Gaussian image processing filter in
MATLAB was used to neglect these strands when iden-
tifying the interface with a Sobel edge detector.

Figure 3(a) is a montage of the expanding biofilm edge
and the best-fit circle for one particular experiment, while
Figure 3(b) plots the scaled biofilm radius R as a func-

(a)

(b)

FIG. 3. Experimental growth of B. subtilis biofilms under
confinement by a PDMS sheet. (a) Montage plot, superim-
posed on image of the initial biofilm, showing the temporal
evolution of the biofilm boundary (blue curves; darker colors
denote later times) and fitted circles (red). (b) Scaled biofilm
radius R against scaled time for 3 experiments (•◦ , •◦ , •◦) com-
pared to fitted dynamics from model (–) Dashed red curve is

R(τ) = eτ/2 expected for growth at constant thickness.

tion of time. In a clear departure from unconfined bacte-
rial biofilms, the R initially grows as a power law before
tending to saturate at long times. These profiles exhibit
the main qualitative features predicted by the theoretical
model for Ξ > 1. The lines of best fit (black lines in 3(b),
[30]) show good agreement over the entire time course of
the experiments. A further comparison with theory is ob-
tained by measuring in three different experiments, at the
same nutrient concentration, the radius R(t0) at a par-
ticular time t0 = 5 h, chosen as a time when the biofilm
radius had a least doubled from its initial value. The
parameter g relating absolute and rescaled times was fit-
ted across all experiments, and gives the value τ0 = 4.29
used in Fig. 2(b), while Ξ is fitted independently for
each. These experimental points in the Ξ−R plane are
shown as blue circles in Figure 2b), and agree very well
with the poroelastic model developed here.

Motivated by the desire to understand the evolution of
biofilms under confinement, we have constructed a mini-
mal mathematical model that uses a poro-elastic frame-
work. This admits a family of self-similar quasi-steady
solutions, parameterized by a dimensionless parameter
Ξ that measures the elasticity of the matrix. Those so-
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lutions are consistent with the experimentally observed
behavior of confined B. subtilis biofilms. For compar-
ison, [30] presents the corresponding theoretical model
in which, following previous work in the literature, the
biomass is modelled instead as a viscous Newtonian fluid,
neglecting the intrinsic elasticity of the biofilm ECM. In
that case, a solution with power law growth tending to a
maximum finite biofilm radius is not supported, demon-
strating that modelling the matrix elasticity is essential
to capturing biofilm growth under elastic confinement.

Unlike unconfined biofilms, a subset of these solutions
(where Ξ > 1) have a maximum radius due to a balance
between elastic stresses and the osmotic pressure differ-
ence across the interface. The key parameter that deter-
mines which regime the system lies in and thus whether
the biofilm grows predominately radially or axially is the
stiffness of the biofilm matrix. Hence, we may view ma-
trix elasticity is a competitive trait that could well be
optimized by natural selection.
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