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The recent discovery of the striking sheet-like multicellular choanoflagellate species Choanoeca
flexa that dynamically interconverts between two hemispherical forms of opposite orientation raises
fundamental questions in cell and evolutionary biology, as choanoflagellates are the closest living
relatives of animals. It similarly motivates questions in fluid and solid mechanics concerning the
differential swimming speeds in the two states and the mechanism of curvature inversion triggered
by changes in the geometry of microvilli emanating from each cell. Here we develop fluid dynamical
and mechanical models to address these observations and show that they capture the main features
of the swimming, feeding, and inversion of C. flexa colonies.

Some of the most fascinating processes in the devel-
opmental biology of complex multicellular organisms in-
volve radical changes in geometry or topology. From the
folding of tissues during gastrulation [1] to the formation
of hollow spaces in plants [2], these processes generally
involve coordinated cell shape changes, cellular division,
migration and apoptosis, and formation of an extracellu-
lar matrix (ECM). It has become clear through multiple
strands of research that evolutionary precedents for these
processes exist in some of the simplest multicellular or-
ganisms such as green algae [3, 4] and choanoflagellates
[5], the latter being the closest living relatives of animals.
Named for their funnel-shaped collar of microvilli that fa-
cilitates filter feeding from the flows driven by their beat-
ing flagellum, choanoflagellates serve as model organisms
for the study of the evolution of multicellularity.

While well-known multicellular choanoflagellates exist
as linear chains or “rosettes” [6] held together by an ECM
[7], a new species named Choanoeca flexa was recently
discovered [8] with an unusual sheet-like geometry (Fig.
1) in which hundreds of cells adhere to each other by the
tips of their microvilli, without an ECM [9]. The sheets
can exist in two forms with opposite curvature, one with
flagella pointing towards the center of curvature [“flag-
in”] with a relatively large spacing between cells, and
another with the opposite arrangement [“flag-out”] with
more tightly-packed cells. Transformations from flag-in
to flag-out can be triggered by darkness, and occur in ∼
10 s. Compared to the flag-out form, the flag-in state has
limited motility and is better suited to filter-feeding. It
was conjectured [8] that the darkness-induced transition
to the more motile form is a type of photokinesis.

As a first step toward understanding principles that
govern the behavior of such a novel organism as C. flexa,

we analyze two models for these shape-shifting struc-
tures. First, the fluid mechanics are studied by represen-
tating the cell raft as a collection of spheres distributed
on a hemispherical surface, with nearby point forces to
represent the action of flagella. Such a model has been
used to describe the motility of small sheet-like multi-
cellular assembles such as the alga Gonium [10]. The
motility and filtering flow through these rafts as a func-
tion of cell spacing and curvature explain the observed
properties of C. flexa. Second, abstracting the complex
elastic interactions between cells to the simplest connec-
tivity, we show that a model based on linear elasticity at
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FIG. 1. The multicellular choanoflagellate Choanoeca flexa.
Top views of (a) flag-in and (b) flage-out states at times rela-
tive to removal of light. (c) Close-up of the collar connections
in the two states. (d) Electron micrograph showing round
white cell bodies connected by microvilli. Adapted from [8].
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FIG. 2. Models for C. flexa. (a) Cell body and flagellar force in the flag-in state. (b,c) Mechanical model of interconnecting
microvilli in rafts; cells (green spheres, not to scale) are at the vertices of a geodesic icosahedron. Blue arrows indicate flagella
forces, red segments represent microvilli, blue dots the microvilli tips, and blue lines the collar-collar interface. (b) Connectivity
of the whole raft. (c) Connections between two cells. Effect of curvature 1/R on (d) geometry of raft and (e) swimming speed
U (blue) and flow rate Q (red) passing through Sf at constant. (f,g) Cross section of the disturbance flows ũd and uf around
the a raft (Φ = 0.31, R = 8.61) in the reciprocal problems for calculating U and Q.

the microscale produces bistability on the colony scale.

Fluid mechanics of feeding and swimming – The cells
in a C. flexa raft are ellipsoidal, with major and minor
axes a ∼ 4µm and b ∼ 3µm, with a single flagellum
of length 2L ∼ 24.5µm and radius r ∼ 0.5µm beat-
ing with amplitude d ∼ 2.3µm and frequency f ∼44Hz
[11], sending bending waves away from the body. A cell
swims with flagellum and collar rearward; the body and
flagellum comprise a “pusher” force dipole. From resis-
tive force theory [13] we estimate the flagellar propulsive
force to be F ∼ 2L

(
ζ⊥ − ζ∥

)
(1−β)fλ ∼ 8 pN, where β is

a function of the wave geometry, λ ∼ 12µm is the wave-
lengths along the direction of the bending wave [11], ζ⊥
and ζ∥ are transverse and longitudinal drag coefficients,
ζ⊥ ∼ 2ζ∥ ∼ 4πµ/ ln(2L/r), with µ the fluid viscosity.
These features motivate a computational model in which
N identical cells in a raft have a spherical body of radius
a and a point force F n̂i acting on the fluid a distance
L from the sphere center, oriented along the vector n̂i
that represents the collar axis [Fig. 2(a,b)]. An ideal-
ization of a curved raft involves placing those spheres on
a connected subset of the vertices of a geodesic icosahe-
dron (one whose vertices lie on a spherical surface) of

radius ρ ≫ a; the area fraction Φ of the sheet occu-
pied by cells scales as Φ ∼ N(a/ρ)2. The pentagonal
neighborhoods within the geodesic icosahedron serve as
topological defects that allow for smooth large-scale sur-
face curvature [14]. Importantly, confocal imaging of C.
flexa colonies shows that a significant fraction (∼0.25)
of the cellular neighborhoods defined by the microvilli
connections are pentagonal [11], and earlier work on C.
perplexa [9] also found non-hexagonal packing. We use
the geodesic icosahedron {3, 5+}(3,0) in standard nota-
tion [15], with 92 total vertices, and take patches with
N = 58 for computational tractability. The vectors n̂i
point towards (away from) the icosahedron center in the
flag-in (flag-out) forms (Fig. 2(a)). A deformation of
the sheet to a new radius ρ′, at fixed Φ, requires the
new polar angle θ′i of a cell with respect to the cen-
tral axis of the sheet be related to its original angle
θi via ρ′

2 (
1− cos θi

′) = ρ2 (1− cos θi). We define the
scaled force offset length ℓ = L/a ∼ 3 and sheet radius
R = ρ′/a ≳ 6, and take R > 0 in the flag-in state.

Images of many colonies of C. flexa [11] show that the
packing fraction in the flag-out state Φout = 0.47± 0.06,
considerably less than both the maximum packing frac-
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tion Φmax = π
√
3/6 ≃ 0.907 for a hexagonal array of

spheres in a plane, and the estimated maximum packing
fraction Φ̃max ≃ 0.83 for circles on a sphere [16]. The
packing fraction in the flag-in state is Φin = 0.34± 0.03,
and we use the extremes Φout = 0.53 and Φin = 0.31 as
representative values to explore the consequences of the
differences between the two forms.

Consider first an isolated force-free spherical cell at
the origin moving at velocity Usêx with point force
−F = −F êx at −Lêx acting on the fluid and its reaction
force F acting on the cell. The cell experiences Stokes
drag −ζsUsêx, where ζs = 6πµa, and a disturbance drag
−Dêx arising from the disturbance flow created by the
point force. By the reciprocal theorem [17], the distur-
bance drag is D = F · ũd(−Lêx)/Û , where ũd(r) is the
disturbance flow created when the cell is dragged along êx
with unit speed Û . Force balance then yields the single-
cell swimming speed Us ≡ (F/ζs)[1 − 3/(2ℓ) + 1/(2ℓ3)].
Thus, the closer the point force is to the cell (i.e., the
smaller is ℓ), the more drag the cell experiences and the
slower is Us. Setting ℓ = 3 yields Us ∼ 118µm/s, consis-
tent with observations.
This intuitive picture extends to a raft of cells. As

the raft moves at velocity U êx, it experiences a Stokes
drag −ζU êx. The disturbance flow created by the point
forces F n̂i acting at ri+Ln̂i, produces a disturbance drag
D = FΣin̂i ·ud(ri+Ln̂i), where ud is the (dimensionless)
disturbance flow from the raft when it is dragged along
êx with unit speed. Force balance then yields

U = −F
ζ

N∑
i=1

n̂i · [êx − ud (ri + Ln̂i)] , (1)

where −FΣin̂i is the sum of reaction forces propelling
the raft along êx, and where ud has been rendered di-
mensionless by the unit speed. In practice, we compute
ud and ζ using a Boundary Element Method [10]. Be-
cause of the curved geometry, point forces are closer to
neighboring cells in the flag-in state than in the flag-out
state. Thus, as in Fig. 2(d), for a geometry with a given
|R|, the flag-in state has a larger disturbance drag than
the flag-out state, and a smaller speed U .
The difference in swimming speed between the two

states can also be explained in terms of ud(ri + Ln̂i)
in (1). Figure 2(f) shows that ud inside the raft is close
to êx because of the curved geometry and screening ef-
fects. Hence, U is small when the point forces are inside.
Meanwhile, ud outside decays with the distance from the
raft, so U is large when ri + Ln̂i is outside.

Previous work on filter-feeding in choanoflagellates fo-
cused first on the far-field limit based on a stresslet de-
scription [18], but later work showed near-field effects
can significantly affect capture rates [19]. To estimate
the filter-feeding flux Q passing through a colony of C.
flexa, we measure, in the body frame, the flux passing
through the surface Sf projected a distance of 1.2a from

the cell center along n̂, as in Fig. 2(g). By the reciprocal
theorem, Q can be written in terms of the disturbance
flow uf around a stationary raft and the hydrodynamic
forces Ff on the raft when the surface Sf applies a unit
normal pressure p̂ on the fluid,

Q = F
∑
i

n̂i·uf (ri+Ln̂i)+U êx·

(
Ff −

∫
Sf

p̂ dA

)
, (2)

where uf and Ff acquire the units of velocity/pressure
and area, respectively, by scaling with |p̂|. Numerical re-
sults in Fig. 2(d) show that the flux due to point forces∑
i F n̂i · uf/p̂ strongly dominates Q. Therefore, the dif-

ference in Q between the two states can be explained by
uf (ri + Ln̂i) (Fig. 2(g)). To maintain incompressibil-
ity under pressure p̂, the disturbance flow uf is much
stronger inside the raft than outside. Hence, point forces
placed inside the raft pump more flow through the raft
than when placed outside.
Figure 2(d) shows the effect of changes in the raft cur-

vature and packing fraction. There is one R that max-
imizes swimming speed in the flag-in state and another
one that maximizes feeding flux in the flag-out state.
This arises from a balance between the screening effect
mentioned above and the alignment of forcing. In the
flag-out state, an initial decrease in curvature aligns the
forcing direction with the swimming direction, increasing
swimming speed, but a further reduction in curvature re-
duces the screening effect as cells are now more spread
out in the plane orthogonal to the swimming direction.
A similar argument applies to the flow rate maximum
in the flag-in state. Comparing these maxima, Fig. 2(d)
shows that a spread-out colony results in more flux, while
a closely-packed colony results in faster motility. Thus,
through the interconversion between the two states, C.
flexa takes advantage of the hydrodynamics effect of the
curved geometry for efficient filter-feeding and swimming.
Mechanics of inversion – Detailed studies suggest that

inversion requires an active process within each cell, likely
driven by contraction of an F-actin ring at the apical pole
through the action of myosin [8]. Thus, a full treatment
would address the complex problem of elastic filaments
responding to the apical actomyosin system and adhering
to each other. We simplify this description by consider-
ing as in Fig. 2(e) that each cell i, located at ri and sur-
rounded bymi neighbors, hasmi rigid, straight filaments
emanating from it. Two filaments from neighboring cells
i and j meet at vertex ρ located at rρ, with ϕiρ the angle
between rρ − ri and the cell normal vector n̂i. Any two
adjacent filaments emanating from cell i, and which meet
neighboring filaments at vertices ρ and σ, define a plane
whose normal n̂iρσ points toward the apicobasal axis n̂i.
That normal and its counterpart n̂jσρ on cell j determine
the angle 2ψijρσ between the two planes.
As above, we use the geodesic icosahedron to define

the cell positions and thus determine the filament net-
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FIG. 3. Inversion dynamics from numerical studies. (a)-(d) A colony, initially at a hemispherical minimum with (ϕ0, ψ0) =
(0.55, 0.65), inverts after a change to (0.71, 0.41), with ℓ0 = 0.5, Kψ = 2 and Kℓ = 5. Connections between collar vertices are
shown in blue, apicobasal axes as red arrows at cell body positions. (e) Minimum energy E in the ψ0 − ϕ0 plane, where C < 0
(flag-in) above the black line ψ0 = ϕ0, and C > 0 (flag-out) below. (f) Evolution of E vs C as the colony relax towards a
minimum energy state after instantaneous changes in (ϕ0, ψ0) shown by the dotted and solid red and blue lines in (e).

work connecting neighboring cells. The two sets of angles
{ϕ} and {ψ} are used to define a Hookean elastic energy
that mimics the elasticity of the microvilli, allowing for
preferred intrinsic angles ϕ0 and ψ0 that encode the ef-
fects of the apical actomyosin system on the microvilli
and the geometry of microvilli adhesion. Allowing also
for stretching away from a rest length ℓ0, the energy is

E =
1

2
kϕ
∑
i,ρ

δϕ2iρ +
1

2
kψ
∑
i,j,ρ,σ

δψ2
ijρσ +

1

2
kℓ
∑
i,ρ

δℓ2iρ, (3)

where δϕiρ = ϕiρ − ϕ0, δψijρσ = ψijρσ − ψ0, and ℓiρ =
|ri − rρ| − ℓ0. The moduli kϕ, kψ and kℓ and quantities
ϕ0, ψ0 and ℓ0 are assumed constant for all cells.

The energy (3) is intimately tied to the lattice geome-
try of the raft. If the cells are arranged in a hexagonal lat-
tice (mi = 6) the system of filaments can achieve E = 0
by setting all cell-collar angles to ϕ0, all collar-collar in-
terface angles to ψ0, and ϕ0 = ψ0. This corresponds to a
flat sheet. Increasing ϕ0 = ψ0 leads to uniform, isotropic
sheet expansion. In a non-planar raft, curvature is in-
troduced through topological defects (mi ̸= 6), such as
pentagons, and mismatch between the local values of ψ
and ϕ. While pentagonal defects are known to cause out-
of-plane buckling in crystal lattices [14], they do not by
themselves select a particular sign of the induced curva-
ture. Thus, there is inherent bistability in the cellular
raft that can be biased by changes in the geometry of
the out-of-plane filaments, somewhat akin to the role of
“apical constriction” in the shapes of epithelia [20].

For the case of two cells lying in a plane, each with two
filaments, and with one vertex between them, if ϕ = ϕ0,
ψ = ψ0, and r = ℓ0, then the filament tips lie on a circle

of radius R0 = 1/C0, where C0 = sin(ψ0 − ϕ0)/ℓ0 sinϕ0.
While, in general, the equilibrium state of a curved raft
will not have ϕiρ = ϕ0, ψijρσ = ψ0 and riρ = ℓ0 ev-
erywhere, we may nevertheless use this relationship to
define a proxy for the average curvature of the raft.
Recognizing that in numerical studies stretching effects
are small, we ignore variations in riρ and define C =
sin(⟨ψ⟩ − ⟨ϕ⟩)/ℓ0 sin(⟨ϕ⟩), where ⟨·⟩ is an average over
cells and vertices. The colony is in the flag-in (flag-out)
state when C > 0 (C < 0).

The simplest model of raft dynamics localizes the vis-
cous drag to the individual cell and vertex positions rγ
according to a gradient flow ζ∂trγ = −∂E/∂rγ driven
by the force derived from (3). We solve this dynamics
numerically with forward integration. Since the n̂i are
constrained to have unit length, they are normalized af-
ter each step in the direction of the negative gradient,
making the dynamical algorithm follow a projected gra-
dient descent [21]. Via a rescaling of time we may set one
of the elastic constants to unity (say, kϕ) and need only
consider the ratios Kψ = kψ/kϕ and Kℓ = kℓ/kϕ.

Interconversion between the flag-in and flag-out states
is shown in Figs. 3(a-d) following an abrupt change in
the preferred angle pair (ϕ0, ψ0) that crossing the line of
equality ψ0 = ϕ0 that divides the states (Fig. 3(e)), as
during raction/relaxation of the F-actin ring in response
to a stimulus. The intermediate shapes exhibit a ring of
inflection points similar to those seen in experiments on
C. flexa and also in the inversion the algae Pleodorina [3]
and larger species [22, 23]. Tracking the energy as each
of the two equilibria is achieved, the picture that emerges
in Fig. 3(f) is evolution on a double-well potential energy
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landscape as a biasing field is switched in sign.

We have shown that simple models can explain the
swimming, feeding, and inversion of the recently discov-
ered multicellular choanoflagellate C. flexa [8]. These
results suggest further exploration on a possible contin-
uum description of the sheets, fluid-structure interactions
during locomotion, dynamics of photokinesis, and devel-
opmental processes of these remarkable organisms.
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