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Abstract An important question in early neural development is the origin of stochastic nuclear

movement between apical and basal surfaces of neuroepithelia during interkinetic nuclear

migration. Tracking of nuclear subpopulations has shown evidence of diffusion - mean squared

displacements growing linearly in time - and suggested crowding from cell division at the apical

surface drives basalward motion. Yet, this hypothesis has not yet been tested, and the forces

involved not quantified. We employ long-term, rapid light-sheet and two-photon imaging of early

zebrafish retinogenesis to track entire populations of nuclei within the tissue. The time-varying

concentration profiles show clear evidence of crowding as nuclei reach close-packing and are

quantitatively described by a nonlinear diffusion model. Considerations of nuclear motion

constrained inside the enveloping cell membrane show that concentration-dependent stochastic

forces inside cells, compatible in magnitude to those found in cytoskeletal transport, can explain

the observed magnitude of the diffusion constant.

Introduction
The vertebrate nervous system arises from a pseudostratified epithelium within which elongated pro-

liferating cells contact both the apical and basal surfaces. Within these cells, striking nuclear move-

ments take place during the proliferative phase of neural development. More than 80 years ago,

these movements, termed interkinetic nuclear migration (IKNM), were shown to occur in synchrony

with their cell cycle (Sauer, 1935). Under normal conditions, nuclei of proliferating cells undergo

mitosis (M) exclusively at the apical surface. During the first gap phase (G1) of the cell cycle, nuclei

migrate away from this surface to reach more basal positions by synthesis phase (S), when DNA is

replicated. In the second gap phase (G2), nuclei migrate rapidly toward the apical surface where

they divide again (Del Bene, 2011; Sauer, 1935; Baye and Link, 2007; Leung et al., 2011;

Kosodo et al., 2011; Norden et al., 2009). The molecular mechanisms that drive the rapid nuclear

movement in G2 have been investigated in a number of tissues (Norden, 2017). In the mammalian

cortex, they are thought to involve microtubules, as well as various microtubule motors and actomy-

osin (Xie et al., 2007; Tsai et al., 2007), while in the zebrafish retina, it appears to be the actomyo-

sin complex alone that moves the nuclei to the apical surface during G2 (Norden et al., 2009;

Leung et al., 2011). Nuclear movements during the majority of the cell cycle, in G1 and S phases,

have been less thoroughly examined. Although similar molecular motors have been implicated

(Schenk et al., 2009; Tsai et al., 2010), the underlying molecular processes remain unclear.
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Importantly, IKNM is known to affect morphogenesis and cell differentiation in neural tissues

(Spear and Erickson, 2012), as retinas with perturbed IKNM are known to develop prematurely and

to display abnormalities in cell composition (Del Bene et al., 2008). Given this regulatory involve-

ment of IKNM in retinal cell differentiation, a deeper understanding of the nuclear movements

remains a major prerequisite for insights into the development of neural systems. On a phenomeno-

logical level, studies tracking individual nuclei in the zebrafish retina during the G1 and S phases

have shown their movement to resemble a stochastic process (Norden et al., 2009; Leung et al.,

2011), particularly in the form of the mean squared nuclear displacement versus time. When these

relations are linear or slightly convex, they indicate a random walk (or persistent random walk), much

as in ordinary thermal diffusion. During these periods, individual nuclei switch between apical and

basal movements at random intervals, leading to great variability in the maximum basal position

they reach during each cell cycle (Baye and Link, 2007). Similarly, in the mammalian cerebral cortex,

the considerable internuclear variability in IKNM leads to nuclear positions scattered throughout the

entire neuroepithelium in S phase (Sidman et al., 1959; Kosodo et al., 2011). In addition to the sto-

chastic movements of nuclei during IKNM, there is also a slow basalward drift of the entire popula-

tion of nuclei. As variable basalward-biased migration was observed in nuclear-sized microbeads

inserted in between cells during IKNM in the mouse cortex (Kosodo et al., 2011), it seems likely

that passive forces are involved in this drift. A number of possible explanations for these passive pro-

cesses have been put forward. These suggestions include the possibility of direct energy transfer

from rapidly moving G2 nuclei (Norden et al., 2009), as well as nuclear movements caused by apical

crowding (Kosodo et al., 2011; Okamoto et al., 2013), that is an increase in nuclear packing den-

sity close to the apical tissue surface. Here, we present experiments and theoretical analyses to test

both hypotheses, particularly that of apical crowding, and to assess quantitatively whether active

forces are also necessary for basal drift.

While a linear scaling of the mean squared displacement with time is a hallmark of diffusive pro-

cesses, there is now growing evidence in disparate systems of dynamics that exhibit such scaling, yet

are decidedly different from conventional diffusion in other respects (Wang et al., 2009;

Leptos et al., 2009). Thus, a full test of the apical crowding hypothesis requires the study of the

entire spatio-temporal distribution of nuclei within the retinal tissue. Our work relies on the tracks of

closely packed nuclei of zebrafish retinal progenitor cells (RPCs). The retina of the oviparous zebra-

fish is easily accessible to light microscopy throughout embryonic development (Avanesov and

Malicki, 2010) and has been used for several studies of the movements of nuclei during IKNM

(Baye and Link, 2007; Del Bene et al., 2008; Norden et al., 2009; Sugiyama et al., 2009;

Leung et al., 2011). We find evidence for IKNM being driven by apical crowding and further

develop this idea into a mathematical model. Given the seemingly stochastic nature of individual

nuclear trajectories, we base the model on a comparison between IKNM and a simple diffusion pro-

cess. The model reveals the remarkable and largely overlooked importance of simple physical con-

straints imposed by the overall tissue architecture and allows us to describe accurately the global

distribution of nuclei as a function of time within the retinal tissue. In this way, we describe IKNM as

a tissue-wide rather than a single-cell phenomenon. We further develop the model by examining the

motion of nuclei within the constrained environment of the enveloping cell membrane. This allows

for an estimate of the hydrodynamic drag experienced by the nuclei, and hence of their diffusivity if

the system were in thermodynamic equilibrium. We conclude from the magnitude of the diffusivity

extracted from the data that basalward migration of nuclei during IKNM cannot be due to thermal

diffusion alone. Instead, the model indicates that a stochastic force comparable with that which

could be generated by cytoskeletal transport mechanisms must drive nuclear movements during

IKNM. Finally, we obtain a mathematical description of the stochastic trajectories of individual nuclei

in the presence of a finite concentration of others. Simulations of these trajectories also confirm that

IKNM can only be understood when taking interactions between individual nuclei into account and

hint at the way in which nuclei interact in a tissue-wide fashion. This description raises new questions

about how cells sense and respond to being crowded, and may shed light on other aspects of pro-

genitor cell biology, such as the statistics of cell cycle exit and cellular fate choice.
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Results

Generating image sets with high temporal resolution
We imaged fluorescently labeled nuclei of whole retinas of developing zebrafish at 2 min intervals,

an optimal time period given the difficulty to track nuclei accurately over long times and the

increased photobleaching with shorter intervals. We compared movies of retinas imaged at 2 min

and at 20 s intervals over a period of 2 hrs and found that the improvement in temporal resolution

made no difference to our analyses. This suggests that it is unlikely that there are important interven-

ing movements that might complicate the analysis within each 2-min interval.

To follow the nuclei of all cells within a portion of the retina, we used H2B-GFP transgenic lines

with GFP expression exclusively in the nuclei (Figure 1A). In order to achieve the desired temporal

resolution without sacrificing image quality, fluorescence bleaching and sample drift must be mini-

mized as much as possible. The retinas of H2B-GFP embryos were imaged using either a single-

angle lightsheet microscope (see Figure 1B for a schematic) or an upright two-photon scanning

microscope. Both of these methods yield images with minimal bleaching compared to other micro-

scopic techniques (Svoboda and Yasuda, 2006; Stelzer, 2015). However, while the single-angle

lightsheet can generate large stacks of images, it is very sensitive to lateral drift due to a small area

of high resolution imaging. Therefore, some data sets were produced using two-photon microscopy,

which, despite the limitations of scanning time, could produce areas of high-resolution images of suf-

ficient size.

Both lightsheet and two-photon microscopes produced images of at least half the retina with a

depth of at least 50 mm over several hours in 2-min intervals. The images were processed using a

suite of algorithms (Amat et al., 2015) to compress them to a lossless format, Keller Lab Block

(KLB), correct global and local drift, and normalize signal intensities for further processing. Auto-

mated segmentation and tracking, in three dimensions, of the nuclei were carried out through a pre-

viously published computational pipeline that takes advantage of watershed techniques and

persistence-based clustering (PBC) agglomeration to create segments and Gaussian mixture models

with Bayesian inference to generate tracks of nuclei through time (Amat et al., 2014). Two main

parameters greatly affect tracking results, overall background threshold and PBC agglomeration

threshold. To obtain best automated tracking results, ground truth tracks were created for a section

of the retina over 120 min and were compared to tracks generated over a range of these two param-

eters. The best combination of the two parameters was chosen as the one with highest tracking

fidelity and lowest amount of oversegmentation in that interval.

The most optimal combination of parameters yielded an average linkage accuracy, from each

time point to the next, of approximately 65%. Hence, extensive manual curation and correction of

tracks were required. Tracking by Gaussian mixture models (TGMM) software generates tracks that

can be viewed and modified using the Massive Multi-view Tracker (MaMuT) plugin of the Fiji soft-

ware (Wolff et al., 2018; Schindelin et al., 2012). A region of the retina with the best fluorescence

signal was chosen and all tracks within that region were examined and any errors were corrected.

The tracks consist of sequentially connected sets of 3D coordinates representing the centers of each

nucleus (Figure 1C), with which their movement across the tissue can be mapped over time. For

example, Figure 1D shows IKNM of a single nucleus tracked from its birth, at the apical surface of

the retina, to its eventual division into two daughter cells.

Analysis of nuclear tracks
This process yielded tracks for hundreds of nuclei, across various samples, over time intervals of at

least 200 min. We used custom-written MATLAB scripts to analyze these tracks. The aggregated

tracks of the main data set, in Cartesian coordinates, for all tracked lineages are shown in

Figure 2A. Single tracks for any given time interval can be extracted and analyzed from this collec-

tion. In order to transform the Cartesian coordinates of the tracks into an apicobasal coordinate sys-

tem, we drew contour curves at the apical surface of the retina (see Figure 1A) separating RPC

nuclei from the elongated nuclei of the pigmented epithelium. We then calculated curves of best fit

(second degree polynomials) in both the XY and YZ planes. Assuming that the apical cortex is per-

pendicular to the apicobasal axis of each cell, displacement vectors of the nuclei at each time point
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can be separated into apicobasal and lateral components. Since, in IKNM, the apicobasal motion is

that of interest, we used this component for our remaining analyses.

Figure 2C,D show the speed and position of tracked nuclei of the same data set, over the dura-

tion of their cell cycle, for all cells that went through a full cell cycle. While all nuclei behave similarly

minutes after their birth (early G1) and before their division (G2), their speed of movement and dis-

placement is highly variable for the majority of the time that they spend in the cell cycle (Figure 2C,

D). Most daughter nuclei move away from the apical surface, within minutes of being born, with a

clear basalward bias in their speed distribution (Figure 2C). This abrupt basal motion of newly

divided nuclei has also been recently observed by others (Leung et al., 2011; Shinoda et al., 2018;

Barrasso et al., 2018). However, immediately after this brief period, nuclear speeds become much

D
etection obj

Ill
um

in
at

io
n 

ob
j

Retina Lens

Basal surface

Lens

Apical surface

20 μm

t (min)

t (min)

0

180 210 230 240 250 258

30 60 90 120 150

Apical

Basal

Apical

Basal

A B

C D

Figure 1. Imaging and tracking fluorescently labeled nuclei. (A) A transgenic H2B-GFP embryonic retina imaged using lightsheet microscopy at ~30 hpf.

The lens, as well as apical and basal surfaces are indicated. (B) A schematic representation of single-angle lightsheet imaging of the retina. Laser light is

focused into a sheet of light by the illumination objective and scans the retina. Fluorescent light is then collected by the perpendicular detection

objective. (C) Track visualization and curation using the MaMuT plugin of Fiji. All tracks within a volume of the retina are curated and visualized. Circles

and dots represent centers of nuclei, and lines show their immediate (10 previous steps) track. (D) The position of a single nucleus within the retinal

tissue from its birth to its eventual division. The magenta dot indicates the nucleus tracked at various time points during its cell cycle. The last four

panels are at shorter time intervals to highlight the rapid movement of the nucleus prior to mitosis.
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more equally distributed between basalward and apicalward, with a mean value near 0. Such a distri-

bution is indicative of random, stochastic motion, which in turn leads to a large variability in the posi-

tion of nuclei within the tissue (away from the apical surface) during the cell cycle (Figure 2B).

Interestingly, except during mitosis, we find an apical clearing of a few microns for dividing cells

(Figure 2D). We checked to see if this was an artifact of measuring the distance to nuclear centers

due to nuclear shape, as nuclei are rounded during M phase but are more elongated along the api-

cobasal axis at other times. We found no significant difference between the average length of the

nuclear long axis when measured for 50 random nuclei right before their division (5.0 ± 0.7 mm) com-

pared to 50 others chosen randomly from any other time point within the cell cycle (5.3 ± 1.1 mm),

indicating that this clearing is likely to have a biological explanation, such as the preferential occu-

pancy of M phase nuclei and surrounding cytoplasm at the apical surface during IKNM. We also per-

formed the same measurements for 25 random nuclei 10 min after division when the average long

axis length is significantly decreased by 0.8 fold (3.9 ± 0.5 mm). However, this measurement

increased significantly in the following 10 min (4.8 ± 0.7 mm) to become similar to that at M phase.
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Figure 2. Analysis of nuclear tracks during IKNM. (A) Extracted trajectories of nuclei in three dimensions. All curated tracks of the main data set over

400 min in the region shown in Figure 1C are presented. (B) The distribution of maximum distances reached away from the apical surface by nuclei

during their completed cell cycles. The mean and one standard deviation are shown. (C) The speed distribution of 106 nuclei over complete cell cycles.

The cell cycle lengths of all nuclei were normalized and superimposed to highlight the early basal burst of speed, as well as pre-division apical rapid

migration. The speeds between these two periods are normally distributed. (D) Position of the same nuclei as in (C) measured by their distance from

the apical surface over normalized cell cycle time. Even though all nuclei start and end their cell cycle near the apical surface, they move out across the

retina to take positions in all available spaces, creating an apical clearing as indicated. Tracks for 10 randomly chosen nuclei are shown as colored lines

to highlight the variability in the traversed trajectories.
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Basal movement of nuclei is driven like a diffusive process
Previous work has shown that when RPCs are pharmacologically inhibited from replicating their

DNA, their nuclei neither enter G2 nor exhibit rapid persistent apical migration that normally occurs

during the G2 phase of the cell cycle (Leung et al., 2011; Kosodo et al., 2011). A more surprising

result of these experiments is that the stochastic movements of nuclei in G1 and S phases also slow

down considerably during such treatment (Leung et al., 2011). It was, therefore, suspected that the

migration of nuclei of cells in G2 toward the apical surface jostles those in other phases

(Norden et al., 2009). We searched our tracks for evidence of such direct kinetic interactions among

nuclei by correlating the speed and direction of movement of single nuclei with their nearest neigh-

bors. These neighbors were chosen such that their centers fell within a cylindrical volume of a height

and base diameter twice the length of long and short axes, respectively, of an average nucleus.

Figure 3A shows the lack of correlation between the speed of movement of nuclei and the average

speed of their neighbors. We further categorized the neighboring nuclei by their position in relation

to the nucleus of interest (along the apicobasal axis), their direction of movement, and whether they

were moving in the same direction of the nucleus of interest or not. None of the resulting eight cate-

gories of neighboring nuclei showed a correlation in their average speed with the speed of the

nucleus of interest. Furthermore, we considered the movement of neighboring nuclei one time point

(2 min) before or one time point after the movement of the nucleus of interest. Yet, we still found no

correlation between these time-delayed and original speeds. These results suggest that there does

not appear to be much transfer of kinetic energy between neighboring nuclei, and this is consistent

with general considerations of the strongly overdamped character of motion at these length scales.

Another hypothesis advanced for the basal drift in IKNM is that the nuclear movements are driven

by apical crowding (Kosodo et al., 2011; Okamoto et al., 2013). How apical crowding might result

in basal IKNM can be understood by comparing IKNM to a diffusive process. In diffusion, a concen-

tration gradient drives the average movement of particles from areas of high to areas of low concen-

tration. However, despite the average movement being directed, each individual particle’s trajectory

is a random walk (Reif, 1965). Similarly, during IKNM a gradient in nuclear concentration is gener-

ated because nuclei divide exclusively at the apical surface. If basal IKNM were comparable to diffu-

sion, this nuclear concentration gradient would be expected to result in a net movement of nuclei

away from the area of high nuclear crowding at the apical side of the neuroepithelium

(Miyata et al., 2014; Okamoto et al., 2013). Indeed, in IKNM each individual nucleus’ trajectory

resembles a random walk (Norden et al., 2009). Therefore, for the cells in the G1 and S phases

(which account for more than 90% of the cell cycle time in our system), IKNM has, at least on a phe-

nomenological level, the main features of a diffusive process.

To test further whether we can indeed describe IKNM using a model of diffusion, we first asked

what would happen to the concentration gradient if we blocked the cell cycle in S phase, which

inhibits both the apical movement of the nuclei in G2 and mitosis at the apical surface. If the
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comparison to diffusion were valid, we expect the blockage to abolish the build-up and maintenance

of the concentration gradient. We, therefore, compared the normally evolving distribution of nuclei

in a control retina with that measured from a retina where the cell cycle was arrested at S phase

using a combination of hydroxyurea (HU) and aphidicolin (AC) (Leung et al., 2011; Icha et al.,

2016). These compounds inhibit DNA polymerase and ribonuclear reductase, respectively, to halt

DNA replication (Baranovskiy et al., 2014; Singh and Xu, 2016). In the HU-AC-treated retina, we

counted the number of nuclei in a three-dimensional section of the tissue containing approximately

100 nuclei, at equal time intervals, starting with 120 min after drug treatment. The delay ensured

that almost all cell divisions, from nuclei that had already completed the S phase at the time of treat-

ment, had taken place. These results are shown in Figure 4A,C, in which retinal

tissue is approximated as a spherical shell of apical radius a and the rescaled coordinate

� ¼ r=a, where r is the distance from the center of the lens, is presented on the x-axis. As expected

from the diffusion model (Figure 4D), over the course of 160 min, the mean of the nuclear distribu-

tion moved further toward the basal surface in treated retinas, and the concentration difference

between the apical and basal surfaces diminished (Figure 4B,C). In contrast, in control retinas the

mean of the nuclear distribution moved toward the apical surface (Figure 4A,C) as the gradient con-

tinued to build up. Hence, these results support the suitability of a diffusive model to describe the

basal nuclear migration during IKNM.

An analytical diffusion model of IKNM
To investigate whether a diffusion model provides a quantitative description of IKNM, we focused

on the crowding of nuclei at the apical side of the tissue. In mathematical terms, crowding creates a

gradient in nuclear concentration c along the apicobasal direction of the retina. If we assume there is

no dependence of the nuclear concentration on the lateral position within the tissue then we require

a diffusion equation for the nuclear concentration cðr; tÞ as a function only of the apicobasal distance

r and time t. The retina can be approximated as one half of a spherical shell around the lens, and

thus we use spherical polar coordinates with the origin of the coordinate system at the center of the

lens, the basal surface at r ¼ b and the apical surface at r ¼ a (Figure 5B). We first consider the sim-

plest diffusion equation for this system, in which there is a diffusion constant D independent of posi-

tion, time, and c itself, namely

qc

qt
¼ D

r2
q

qr
r2
qc

qr

� �
: (1)

We seek to determine D from the experimental data of the concentration profile cðr; tÞ. Note that

in this parsimonious view of modeling we have not included a ‘drift’ term of the kind that is expected

to be present at the very late stages of IKNM, when nuclei return to the apical side.

In addition to Equation 1, we must specify the boundary conditions appropriate to IKNM. Since

nuclei only divide close to the apical surface of the tissue, we treat mitosis as creating an effective

influx of nuclei through the apical boundary. To quantify this influx, we extracted the number of cells

NðtÞ as a function of time. As during the stages of development examined here cells are neither

dying nor exiting the cell cycle (Biehlmaier et al., 2001), we assumed that the number of cell divi-

sions is always proportional to the number of currently existing cells. This assumption predicts an

exponential increase in the number of cells or nuclei, over time, as was recently confirmed by

Matejčić et al., 2018:

NðtÞ ¼N0e
t=t ; (2)

where N0 is the initial number of nuclei and t ¼ TP= ln2, with TP the average cell cycle length.

Figure 5A shows the agreement between the theoretically predicted curve NðtÞ with the experimen-

tally obtained numbers of nuclei over time. Having obtained N0 and TP from our experimental data,

the predicted curve has no remaining free parameters and thus no fitting is necessary. Using Equa-

tion 2, we formulate the influx boundary condition as

D
qc

qr

����
r¼a

¼ 1

S

qNðtÞ
qt

¼ N0

St
et=t ; (3)
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with S the apical surface area of our domain of interest. In contrast to the apical side of the tissue,

there is no creation (or depletion) of nuclei at the basal side (Matejčić et al., 2018), and hence a no-

flux boundary condition,

qc

qr

����
r¼b

¼ 0: (4)
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Figure 4. Nuclear concentration gradient across the apicobasal axis of the retina. The concentration of nuclei is higher near the apical surface

compared to the basal surface. (A) In the control retina, the nuclear concentration gradient builds up over time. (B) Blocking apical migration and

division of nuclei, by inhibiting S phase progression, leads to a shift in the distribution of nuclei toward the basal surface in the HU-AC treated retina. In

A and B, the coordinate � ¼ r=a is used, where a is the radius of the apical surface and r the distance from the center of the lens. (C) The shift in the

distribution of nuclei under HU-AC treatment when compared to the untreated retina. The average distance of nuclei away from the apical surface

increases consistently over time in the absence of cell division, but remains the same when new nuclei are constantly added at the apical surface. (D) A

schematic of how a diffusion model would work in the context of IKNM in the retina. A concentration gradient of nuclei (left) would drive the net

movement of nuclei from the apical surface to the basal surface. However, without maintenance of the gradient, the drive for this net migration is lost

(top right). In the retina, the gradient is maintained through cell divisions at the apical surface, modeled as a one-way influx across the apical surface

(bottom right), continuously driving the net movement basally.
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The position r¼ b where this basal boundary condition is applied could change throughout tissue

development. Matejčić et al., 2018 found that a basal exclusion zone, where nuclei cannot enter

due to accumulation of basal actin, exists in the zebrafish retina before approximately 42 hpf. Before

this point in development, the no-flux boundary condition is applied at the tissue radius where the

nuclear exclusion zone begins, while later in development, the no-flux boundary condition should be

applied at the position of the actual basal cell surfaces. Here, we only model early stages of embry-

onic development well before the disappearance of the basal exclusion zone, therefore the location

r¼ b, where we apply our basal boundary condition, is chosen such that we only consider the region

of the retinal tissue actually accessible to moving nuclei during IKNM. Thus, taken together, Equa-

tions 1, 3 and 4 fully specify this simplest mathematical model of IKNM.

In solving these equations to find the concentration of nuclei cðr; tÞ in the retinal tissue it is conve-

nient to introduce dimensionless variables for space and time,

�¼ r

a
; s¼Dt

a2
; (5)

and further define the purely geometric parameter �¼ b=a<1. The exact solution for the nuclear

concentration, whose detailed derivation is given in the Appendix, is

cð�;sÞ ¼
X¥

i¼1

hie
�l2i sþ aif0

sþl2i
ess

� �
Hið�Þþ

1

1� �
1

2
�2� ��þ g0

� �
f0e

ss: (6)

The first terms within parentheses describe the decay over time of the initial condition cð�; s¼ 0Þ.
Here, li are the eigenvalues and Hið�Þ the eigenfunctions of the radial diffusion problem, and the

coefficients hi are determined from the experimental initial conditions (see Materials and methods).

The second terms within the sum and the final term on the right hand side of Equation 6 are con-

structed such that the solution fulfills the boundary conditions Equation 3 and Equation 4. In the

last term, the constant g0 was obtained using the constraint that the volume integral of the initial

concentration yields the initial number of nuclei N0. f0, s and ai emerge within the calculation of the

solution and are specified in the Appendix. Thus, the diffusion constant D in Equations 1 and 6 is

the only unknown.
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Figure 5. Model parameters extracted from experimental data. (A) Number of nuclei grows exponentially during the proliferative stage of the retinal

development. A line can be fitted to the log-lin graph of nuclear numbers as a function of time to extract the doubling time (cell cycle length) in this

period. (B) A schematic of the retina indicating the variables used in the diffusion model of IKNM. a: distance from center of lens to apical surface; b:

distance from center of lens to basal surface; L: thickness of the retina; r: distance from center of lens for each particle.
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The linear model is accurate at early times
To determine the effective diffusion constant D from the data, the experimental distribution of nuclei

in the retinal tissue was first converted into a concentration profile. Then, the optimal D-value,

henceforth termed D�, was obtained using a minimal-�2 approach. The value obtained within the lin-

ear model for a binning width of 3 mm and an apical exclusion width of 4 mm is

D�
lin ¼ 0:17� 0:07 mm2/min. Using this, we can examine the decay times of the different modes in the

first term of Equation 6. The slowest decaying modes are the ones with the smallest eigenvalues li

and we find that the longest three decay times are T1 » 1325 min, T2 » 350 min and T3 » 158 min.

This shows that indeed all three terms of Equation 6 are relevant on the timescale of our experiment

and need to be taken into account when calculating the concentration profile. The corresponding

plots of cð�; sÞ are shown in Figure 6A–C. As can be seen from this figure, the diffusion model fits

the data very well at early times, t � 200 min after the start of the experiment at 24 hpf (see Materi-

als and methods). However, for t � 200 min the model does not fit the data as well; the
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Figure 6. Fitting the linear and nonlinear models to the distribution of nuclei over time. (A) The initial experimental concentration profile of nuclei at

t ¼ 0 min, as well as the calculated initial condition curves (see Materials and methods Equation 17) for the linear (red solid line) and nonlinear (blue

dashed line) models. The fit of the models to experimental distribution of nuclei after 100 min (B), 200 min (C), and 300 min (D) are shown. For the first

three graphs, the best fits over all 100 intervening time points were used with the corresponding diffusion constants shown in (A). For t = 300 min, the

best fits at that time point only were used with the corresponding diffusion constants indicated.
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experimentally observed nuclear concentration levels off at a value between 4:00� 10
�3 mm�3 and

4:50� 10
�3 mm�3 (Figure 6D), an aspect that is not captured by this model of linear diffusion.

One particular aspect of the biology that the linear model neglects is the spatial extent of the

nuclei. In the linear diffusion model, particles are treated as point-like and non-interacting. However,

our microscopy images (see Figure 1A) clearly indicate that the nuclei have finite incompressible vol-

umes, so that their dense arrangement within the retinal tissue would lead to steric interactions once

the nuclear concentration is sufficiently high. Moreover, the packing density of nuclei can not exceed

a maximum value dictated by their geometry. Therefore, we next examined whether accounting for

such volume and packing density effects leads to a more accurate theory describing the nuclear dis-

tribution during IKNM.

Nonlinear extension to the model
When the diffusion Equation 1 is written in the following form

qc

qt
¼D

1

r2
q

qr
r2c

q

qr

q

qc
c lncð Þ

� �� �
; (7)

we can identify the term c lnc as proportional to the entropy density S of an ideal gas, and its

derivative with respect to c as a chemical potential. In an ideal gas, all particles are treated as point-

like and without mutual interactions. In order to include the spatial extent of particles (i.e. the spatial

extent of nuclei in this case), we must estimate the entropy in a way that accounts for the maximum

concentration allowable given steric interactions. This is a well-studied problem in equilibrium statis-

tical physics, in which, purely as a calculation tool, it is useful to consider space as divided up into a

lattice of sites. Each of these sites can be either empty or occupied by a single particle. In this ‘lattice

gas’ model, the discrete sites assure a minimum distance of approach for particles and thus effec-

tively introduce a particle size and, correspondingly, a maximum particle concentration cmax

(Huang, 1987). In this system, a useful approximation to the entropy is

Slatticegas / c lncþ cmax� cð Þ ln cmax � cð Þ: (8)

Substituting this expression for the term c lnc in Equation 7, we obtain the nonlinear diffusion

equation

qc

qt
¼D

1

r2
q

qr
r2

cmax

cmax� c

qc

qr

� �
: (9)

The term ’nonlinear’ refers to the mathematical structure of the newly obtained Equation 9. In

the mathematical classification, an equation is linear in a certain variable if this variable only appears

raised to the power one within the equation. For example, the simplest diffusion Equation 1 is linear

in c and all its derivatives with respect to r and t, such as qc=qt. In contrast, in Equation 9 the term

cmax=ðcmax� cÞ appears which is proportional to c�1. Hence, Equation 9 is said to be nonlinear. The

additional nonlinear term in Equation 9 (as compared to Equation 1) is an important aspect of the

model as it arose from the introduction of the spatial extent of the nuclei and their maximum possi-

ble packing density cmax. This effect also has to be taken into account in the boundary conditions.

Adjusting the boundary conditions at the apical side accordingly leads to

D
cmax

cmax � c

qc

qr

����
r¼a

¼ N0

St
et=t ; (10)

while the basal boundary condition remains the same as Equation 4. Together, Equation 9 and

the boundary conditions in Equations 4 and 10 represent an extension to the diffusion model for

IKNM, which now accounts for steric interactions between the nuclei. The maximum concentration

cmax incorporated in this model was obtained, as described in the Materials and methods, by consid-

ering a range of nuclear radii and the maximum possible packing density for aligned ellipsoids

(Donev et al., 2004).

Similar to fitting the linear model, we also need to establish a description of the initial condition.

To make both models consistent with each other, we employ the linear model’s initial condition,

Equation 6 at s ¼ 0 with hi as obtained from Equation 17 (Figure 6A). The concentration profile in
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the nonlinear model and its derivative were obtained numerically using the MATLAB pdepe solver.

Fitting this concentration profile to the data was by means of a minimal-�2 approach as well. When

the optimization takes data points up to t ¼ 200 min into account, we find D�
nonlin ¼ 0:09� 0:05 mm2/

min (Figure 6, Table 1). As can be seen, by choosing cmax correctly, an excellent fit to the data can

be obtained, particularly to the flattened part of the distribution at later times near the apical side

(� ~ 1), where the linear model fails. These results show that a lattice-gas based diffusion model is

indeed suitable to describe time evolution of the nuclear concentration profile of the zebrafish retina

during IKNM over several hours of early development.

Basalward IKNM is not due to thermal diffusion but is compatible with
cytoskeletal transport
This diffusion model, with the calculated diffusion constant D�

nonlin ¼ 0:09� 0:05 mm2/min obtained

from the nonlinear implementation, allows us to probe the physical and biological considerations

that could set its scale. Notably, at low nuclear densities, c � cmax, the term cmax= cmax � cð Þ in Equa-

tion 9 tends to unity, and the ordinary diffusion Equation 1 with D�
lin ¼ D�

nonlin is recovered. We can

thus make use of its well-known properties for further evaluation. First, we assess whether nuclei in

IKNM move due to free equilibrium thermal diffusion in a fluid. If so, the diffusion constant obeys

the Stokes-Einstein equation (Einstein, 1905)

Dthermal ¼
kBT

z
; (11)

where kB ¼ 1:38� 10
�23 JK�1 is the Boltzmann constant, T is the absolute temperature, and z is

the drag coefficient for the particle, the constant of proportionality between the speed with which it

moves and the force applied. For a spherical particle of radius R in a fluid of viscosity h, the refer-

ence value is z0 ¼ 6phR. If we assume that the particles move in water at 25 ˚C, for which h»9� 10
�4

Pas, and if we approximate the nuclei as spheres with R¼ 3:5 mm, corresponding to the maximum

nuclear concentration cmax ¼ 4:12� 10
�3 mm�3 (as in Figure 6), we obtain Dthermal »4:2 mm2/min. This

value is about 50 times larger than the measured value of D�
nonlin, implying that freely diffusing nuclei

in water would be vastly more mobile than seen during IKNM.

While the free thermal diffusivity of nuclei serves as a useful reference quantity, nuclei clearly do

not move in pure water, nor in an unbounded fluid. The viscosity of the cytoplasm is likely much

higher than that of water due to the high number of organelles and polymeric components present;

a higher viscosity leads to a lower diffusion constant via the Stokes-Einstein relation (Equation 11).

Similarly, the slender shape of the individual cells within pseudostratified epithelia (Norden, 2017)

would imply that a considerable amount of energy is required to transport fluid through the narrow

region between the nucleus and the membrane.

In order to understand the effects of membrane confinement on fluid transport, it is useful to con-

sider a minimal energetic description of the cell shape. That is provided by an energy E that incorpo-

rates membrane elasticity, through a bending modulus k, and surface tension g,

E ¼
Z

dS
k

2
H2 þg

n o
; (12)

where dS is the element of surface area and H is the mean curvature. For a cylindrically symmetric

shape given by a function dðzÞ, dS¼ 2pd

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2z

q
and

Table 1. List of best-fit diffusion constants D�, their standard deviations and probabilities for the

studied conditions.

D�
nonlin (mm2/min) sD (mm2/min) P�ð�2; nÞ

Normal 0.09 0.05 0.49–0.51

Normal (repeat sample) 0.10 0.06 0.47–0.48

High T 0.13 0.08 0.42

Low T 0.06 0.05 0.69–0.7
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H¼ dzz

1þ d2z
� �3=2 �

1

d

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2z

q ; (13)

where dz stands for dd=dz, etc. The equilibrium shape of a membrane is that which minimizes

Equation 13 subject to constraints such as boundary conditions and/or a given enclosed volume.

As first understood in the context of the so-called ‘pearling instability’ of membranes under exter-

nally imposed tension (Bar-Ziv and Moses, 1994; Nelson et al., 1995; Goldstein et al., 1996), nar-

row necks emerge as characteristic equilibrium structures when the dimensionless ratio gR2

¥
=k is

much larger than unity, where R¥ is a characteristic tube radius imposed far from the neck (e.g. the

nuclear radius R). In this limit, the neck radius is on the order of
ffiffiffiffiffiffiffiffi
k=g

p
. For fluid membranes, it is

known that k~ 20kBT (Helfrich, 1973), while the magnitude of tension (an energy per unit area) is

such that the surface energy associated with a molecular area is comparable to thermal energy;

g‘2=kBT ~ 1, where ‘ is a molecular dimension (e.g. 1 nm). Thus, g may be as large as ~ 10�5 Jm�2

and gR
2=k is very large indeed ( ~105).

To illustrate the kinds of shapes that are energetic minima of Equation 12, we show in Figure 7

that which arises when we impose (i) an overall aspect ratio of ~20 for the cell, as measured by

Matejčić et al., 2018, (ii) cell radii of 1.98 and 0.94 mm at the apical and basal sides of the tissue,

respectively, as determined from that aspect ratio and the approximate length L of cells in our

experiment, and (iii) position of the nucleus at the midpoint of the cell, with a radius R ¼ 3:5 mm. The

details of calculations are given in the Appendix. As the necks become extremely narrow in the rele-

vant limit, we have taken a smaller value of g to illustrate the basic effect. Because the gap between

the membrane and the enveloped sphere is so thin, we have set the membrane radius equal to that

of a sphere with membrane radius Rtube over some angular extent and minimized the energy with

respect to the position of the last contact point, as detailed in the Appendix.

The similarity of this shape to those described in the literature suggests that this model is a useful

starting point for the discussion of the fluid dynamics of nuclear motion during IKNM. Recently, Dan-

iels, 2019 considered the transport of a sphere through the fluid contained within a

cylindrically symmetric tight-fitting tubular membrane with bending modulus k and surface tension

g, much like the geometry of cells undergoing IKNM. At a finite temperature T, the membrane will

exhibit thermally driven shape fluctuations which, as shown by Helfrich, 1978, produce a repulsive

interaction with the nearby sphere, swelling the gap. In the limit of large tension (appropriate for a

tight-fitting membrane), the calculation simplifies to yield the result

ztube ¼ 32z0
k

kBT

gR
2

kBT

 !2=3

; (14)

where, for ease of interpretation, we have

written the factors within parentheses as a prod-

uct of two convenient dimensionless ratios. As

the nuclear radius is micron-sized, we find

gR
2=kBT ~107, which in turn implies a drag coeffi-

cient ratio on the order of 105 and diffusivities

Dtube » 1� 5ð Þ� 10
�6Dthermal. Because of the very

close spacing between the membrane and

nucleus and the high viscous drag associated

with such a geometry, these values are about 3

to 4 orders of magnitude smaller than the mea-

sured D�
nonlin. This is without considering changes

in the cytoplasmic viscosity, which would

decrease the value of D even further. Therefore,

we conclude that the nuclear movements in

IKNM cannot be due to thermal diffusion, but

must be actively driven, for example through

cytoskeletal transport.

Figure 7. Cell shapes. (A) Equilibrium cell shape

obtained from minimization of elastic energy, with

specified radii da ¼ 1:98 mm and db ¼ 0:94 mm at apical

and basal sides. Here, the length L of the cell is taken

to be 55 mm. (B) Coordinate system defined in

Daniels, 2019, where R is the nuclear radius and Rtube

and � are the radius of the membrane tube around the

nucleus and the opening angle of the membrane,

respectively.
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We can turn to a more microscopic interpretation of the value of the diffusion constant. At low

nuclear concentrations, when Equation 1 holds, the behavior of individual particles can be described

using the overdamped Langevin equation (compare to Lemons and Gythiel, 1997)

z
qr

qt
¼FðtÞ (15)

where FðtÞ is a stochastic force. In the standard way, if we average over realizations of the ran-

dom force FðtÞ and integrate in time, the mean squared displacement <rðtÞ2>¼ Gt=z2 is obtained,

where G¼
R
dqQðqÞ, with Q¼<Fðt0ÞFðt00Þ> the correlation function of the stochastic force between

time points t0 and t00 and q¼ t0 � t00. For systems at densities low enough for Equation 1 to hold, we

know further that <rðtÞ2>¼ 6Dt, leading to the result

G¼ 6z2D; (16)

expressing the unknown quantity G in terms of the measured diffusion constant and the friction

coefficient. Using the numerical values quoted above, we find G»ð1:2� 10
�18� 3:4� 10

�17Þ N2s. As

the units of G are force2 � time, we can estimate the underlying forces if we know their correlation

time. As most molecular processes of cytoskeletal components have characteristic time scales of 10

ms to 1 s, we obtain forces in the range of 1–50 nN. This result is compatible with cytoskeletal trans-

port under the assumption that the nucleus is transported either by multiple molecular motors at

once, since each molecular motor protein typically exerts forces on the order of several pN, or

through typical forces arising from polymerization of cytoskeletal components, which are in the same

range (Peskin et al., 1993; Footer et al., 2007).

A stochastic model for the movement of individual nuclei reveals a
potential microscopic mechanism for concentration-dependent IKNM
Having obtained an interpretation of the diffusion constant D� as arising from cytoskeletal transport

throughout the cell cycle, and not only during the apicalward movement of the nuclei during G2, we

turn to an interpretation of the concentration dependence of IKNM that results from nuclear crowd-

ing (Equation 9). To this end, we seek an extension to the stochastic dynamics of individual nuclei

(Equation 15) that corresponds to the concentration evolution in the nonlinear diffusion Equation 9.

In general, there are two different ways to achieve such a correspondence. In the first, an additional

force Fexternal is introduced into the Langevin Equation 15, which describes the average effect of sur-

rounding nuclei on the individual nucleus in question and is thus concentration-dependent. In the

second, we make direct use of the fact that Dnonlincmax= cmax � cð Þ ! Dlin as c ! 0. Inverting this rela-

tionship and applying it to the expression G ¼ 6g2D for the low concentration case, we can also

extend the Langevin Equation 15 by making G concentration-dependent, that is,

G ¼ 6g2D�
nonlincmax= cmax � cð Þ.

Using both models, we can simulate individual nuclei in the experimental environment they expe-

rience during IKNM, namely the time-varying nuclear distribution across the retinal tissue that we

found as the solution of the nonlinear model. Simulating several nuclei where each single one corre-

sponds exactly to one nucleus in the experiment gives us a means to replicate the processes that

took place in the tissue over a larger period of time. From such a simulation, we can also extract a

mean squared displacement curve (MSD curve) that corresponds to the MSD curve calculated from

the experimental nuclear trajectories. Of course, because our simulations are based on a stochastic

equation, suitable averaging over realizations of the stochastic force are used to obtain statistically

significant results.

Figure 8 shows the range of possible MSD curves for simulations of the low concentration model

described by Equation 15 and those with the two possible high-concentration extensions, each rep-

resented by a shaded area. Shown also is the experimental MSD curve obtained from the very same

nuclei used in the numerics. As can be seen, the experimental curve only agrees with the model that

assumes a concentration-dependent value of G, and not the low-concentration model from Equa-

tion 15. In addition, the experimental curve does not agree with the possibility of including the

effects of surrounding nuclei as an independent, additional force. These results have two implica-

tions. First, they lend further support to the notion raised above that IKNM cannot be understood as

Azizi, Herrmann, et al. eLife 2020;9:e58635. DOI: https://doi.org/10.7554/eLife.58635 14 of 31

Research article Developmental Biology Physics of Living Systems

https://doi.org/10.7554/eLife.58635


a single-cell phenomenon. Instead, we can only interpret quantities such as MSD curves of nuclei

undergoing IKNM correctly if we explicitly take the surrounding nuclei into account, even if there

seems to be no direct energy transfer between nuclei, as shown from our experimental work (Fig-

ure 3). Second, the simulation results shown in Figure 8 provide a means to distinguish between dif-

ferent ways in which the neighboring nuclei may act on a moving nucleus. As the experimental MSD

curve only agrees with the model that assumes a concentration-dependent stochastic force, among

those considered, the results indicate that cells are, in some manner, sensitive to the local nuclear

concentration. As we have previously shown, the strength of this stochastic force is compatible with

cytoskeletal transport. At high nuclear concentrations (i.e. when nuclei are packed close to the maxi-

mum possible packing density), as is the case closest to the apical surface of the retinal tissue, cells

may recruit more molecular motors to transport nuclei away from this surface faster, leading to the

concentration dependence of the stochastic force.

Figure 8. Mean-squared-displacement (MSD) of the first 40 nuclei that could be tracked beginning with cell division in the experiment. The black curve

is the experimental MSD curve as a function of (cell-internal) time after cell division. The shaded areas represent the simulations of different models. In

red is the model that assumes the effect of surrounding nuclei is due to a concentration dependence of the stochastic force (i.e. has a concentration-

dependent G). In blue is the model that includes the effect of surrounding nuclei via an additional force Fexternal. In gray is the model for low nuclear

concentration for comparison. In each case, the same 40 nuclei as the experiment have been simulated, taking their respective environment (i.e. the

surrounding nuclear concentration) into account. In each simulation, the MSD curve was calculated as in the experiment. For each model, simulations

were repeated 2500 times and the shaded areas represent the range of values covered by the individual resulting MSD curves for each model. The

experimental MSD curve only agrees with the model assuming a concentration-dependent stochastic force.
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Incubation temperature has direct effects on IKNM
The diffusion model may also address mechanistic questions about IKNM in retinas growing under

varying experimental conditions. Zebrafish embryos are often grown at different temperatures to

manipulate their growth rate (Kimmel et al., 1995; Reider and Connaughton, 2014), but it has

been unclear how the nuclei in the retina behave at these different temperatures. To examine this

issue, we grew the embryos at the normal temperature of 28.5 ˚C overnight and then incubated

them at lower temperature (LT) of 25 ˚C or higher temperature (HT) of 32 ˚C during imaging. We

could directly measure the change in average cell cycle length from experimental data and found

that in HT, it is 205.5 min, while in LT, it is a much larger 532.78 min. We were then able to use these

values in the model to investigate whether the change in temperature influences the processes that

determine the effective diffusion constant of the nuclei. The resulting values for D�
nonlin are summa-

rized in Table 1. Based on these values, two-sided t-tests (see Materials and methods) confirmed

that there is no significant difference between the D-values obtained from the two normal condition

data sets. In contrast, D-values for the LT and HT data sets were significantly different from the nor-

mal ones, with p � 0:01. These results indicate, that aside from its effect on cell cycle length, incuba-

tion temperature is likely to influence IKNM directly by altering the mobility of nuclei, here

represented by the effective diffusion constant D.

Discussion
In this work, we have shown that high-density nuclear trajectories can be used to tease apart the

possible physical processes behind the apparently stochastic movement of nuclei during interkinetic

nuclear migration. First, we acquired these trajectories using long-term imaging and tracking of

nuclei with high spatial and temporal resolution within a three-dimensional segment of the zebrafish

retina. Analysis of speed and positional distributions of more than a hundred nuclei revealed a large

degree of variability in their movements during G1 and S phases. Although this variability had been

observed before, previous experiments had only considered sparsely labeled nuclei within an other-

wise unlabeled environment (Baye and Link, 2007; Norden et al., 2009; Leung et al., 2011). Thus,

our results provide an important account of the variability of IKNM on a whole tissue level. In effect,

the variability in IKNM means that nuclear trajectories appear stochastic during the majority of the

cell cycle. Previously, it had been suggested that the origins of this apparent stochasticity lay in the

transfer of kinetic energy between nuclei in G2 exhibiting rapid apical migration to nuclei in G1 and

S phases of the cell cycle, much as a person with an empty beer glass may nudge away other cus-

tomers to get to the bar (Norden et al., 2009). However, we found no evidence for direct transfer

of kinetic energy between nuclei and their immediate neighbors. Recently, Shinoda et al., 2018

have also provided evidence that suggests direct collisions do not contribute to basal IKNM.

Another possibility is that the stochastic trajectories of G1 and S nuclei could be a result of

nuclear crowding at the apical surface (Miyata et al., 2014), which, in effect, gives rise to a nuclear

concentration gradient from the apical to the basal side of the tissue. This gradient is formed and

sustained by nuclear divisions taking place exclusively at the apical surface. While the newly divided

daughter nuclei are approximately 0.8 the size of M phase nuclei within the first 10 min after division,

they increase in size in the following 10 min to become statistically indistinguishable from M phase

nuclei. Thus, the difference in the nuclear density apicobasally is unlikely to be a direct result of vari-

ability in nuclear sizes during cell cycle. We confirmed the presence of a

nuclear concentration gradient by calculating the nuclear concentration along the apicobasal dimen-

sion within the retinal tissue at various time points. Furthermore, to probe the source of the gradi-

ent, we treated the zebrafish retina with HU-AC to stop the cell cycle in S phase. While we observed

the build-up of the nuclear concentration gradient over time in the control retina, the nuclear distri-

bution flattened when cell division was inhibited with HU-AC treatment. Recent work indicates that

only a small fraction of the apical tissue surface is occupied by mitotic cells at any given time

(Matejčić et al., 2018). Nonetheless, even this small fraction consistently adds to the number of cells

at the apical surface (Figure 5A) contributing to the observed evolving gradient shown in Figure 6.

These phenomenological similarities between IKNM and diffusion suggested a model that

includes two key features: firstly, it focuses on the crowding of nuclei at the apical surface of the tis-

sue, here included as the apical boundary condition. Secondly, in the nonlinear extension of the

model, it incorporates a maximum possible nuclear concentration. This addition provided a striking
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overall improvement to the fits to experimental data over periods of many hours. The resulting dif-

ference in the obtained D-values between the linear and nonlinear versions of our model can be

understood heuristically when closely examining the difference between Equations 1 and 9. The lat-

ter introduces the new term cmax=ðcmax � cÞ which one could think of loosely as corresponding to an

effective, concentration dependent diffusion constant ~D ¼ Dcmax=ðcmax � cÞ. In general, ~D will vary

across the tissue thickness and, since c is nonzero for most of the retinal tissue, ~D>D. Therefore,

averaging across the retinal tissue, ~D may actually be in very good agreement with the D-value found

in the linear model. However, the linear model fails to describe the concentration-dependent

nuclear mobility, which is successfully captured in the nonlinear model.

We made further use of the above correspondence between the linear and nonlinear models to

obtain a microscopic interpretation of the particular value we obtained for D�
nonlin, since both models

converge into one another at c ! 0. The value of D� can neither be understood by assuming simple

thermal diffusion of the nuclei, nor by simply including effects of membrane-hindered diffusion.

Instead, it appears that both hindering and nonequilibrium driving forces have to be included, where

nuclear mobility can be slowed-down due to the presence of the membrane and cytosolic composi-

tion and sped-up through active transport. Assuming membrane effects and active transport in a

Langevin-type model for nuclei at low densities provided an estimate for the strength of the

required transport forces, which is consistent with cytoskeletal transport of the nuclei throughout the

cell cycle.

We then extended the Langevin-type model for individual nuclei to include the effects of high

nuclear packing densities. The resulting models provided a possibility of exploring the properties of

individual nuclear trajectories under conditions similar to those found in the experiments. Simulations

using different models suggested that the effects of the dense nuclear packing influence the nuclear

mobility by locally increasing the strength of the stochastic force. Importantly, the MSD curves

obtained in the presence of crowding are essentially linear, even though the underlying dynamics

are definitely nonlinear. This illustrates clearly the fact that the linearity of an MSD is not, by itself,

particularly probative of the underlying diffusive dynamics.

The underlying processes causing IKNM during the G1 and S phases of the cell cycle in pseudos-

tratified epithelia have been largely elusive. Several partially competing ideas have been put for-

ward, ranging from the active involvement of cytoskeletal transport processes to passive

mechanisms of direct energy transfer or movements driven by apical nuclear crowding

(Schenk et al., 2009; Tsai et al., 2010; Norden et al., 2009; Kosodo et al., 2011). The fact that

inanimate microbeads migrate much like nuclei during IKNM in the mouse cerebral cortex

(Kosodo et al., 2011) suggests that active, unidirectional intracellular transport mechanisms are not

directly responsible for these stochastic movements. Instead, we show that a passive diffusive pro-

cess which takes steric interactions between nuclei into account produces an excellent representa-

tion of the time evolution of the actual nuclear distribution within the retinal tissue during early

development. Consequently, our work builds on earlier models of apical crowding based on in silico

simulations of IKNM (Kosodo et al., 2011). However, in contrast to earlier studies, we explicitly

account for the dense nuclear packing within the zebrafish retina. Furthermore, we provide an inter-

pretation for the general scale of the diffusion constant (D ~ 0.1 mm2/min) from microscopic consid-

erations, similar to those used to relate random walks to diffusion (Goldstein, 2018). The results of

these microscopic considerations strongly suggest that nuclei are moved by means of cytoskeletal

transport throughout the entirety of the cell cycle. However, this transport appears not to be unidi-

rectional but highly stochastic during basal IKNM.

Finally, an extension of the single nuclei equations to high concentrations and the results of sto-

chastic simulations of nuclear trajectories suggest that the stochastic forcing of nuclei itself is con-

centration-dependent. On a microscopic scale, this can be interpreted, for example, under the

assumption that cells can sense the nuclear packing density. If they recruited more molecular motors

to areas where nuclei are particularly densely packed, the strength of the stochastic transport forces

would be concentration-dependent. Nuclei would thus be transported away from areas of high

nuclear packing faster. In addition to these microscopic considerations, our work reveals the impor-

tance of simple physical constraints imposed by the overall tissue architecture, which could not be

explored in previous studies which tracked sparse nuclei, and thus lacked the means to explore the

effect of such three-dimensional arrangements. Hence, we paid special attention to the spherical
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shape of the retina and the concentration of nuclei in that space. Examining the evolution in distribu-

tion of nuclei over time unveils the importance of spatial restriction due to the curvature of the tis-

sue. Additionally, the size of the nuclei in comparison to the tissue leads to the emergence of a

maximum nuclear concentration which must be taken into account to model IKNM accurately.

By inhibiting cell cycle progression or changing temperature, we used the model to shed light on

properties and mechanisms of the stochastic movements of nuclei during IKNM. From our results

and previous studies, we know that cell cycle length is affected by change in incubation temperature

(Kimmel et al., 1995; Reider and Connaughton, 2014). However, our results also indicate a signifi-

cant influence of temperature on the mobility of nuclei and thus the underlying processes controlling

their movement. This is reasonable in the light of our microscopic interpretations, which suggested

that nuclei move due to cytoskeletal transport through the entire cell cycle in IKNM. The fact that

the speed and dynamic properties of both the microtubule and actomyosin systems are temperature

dependent may explain the changes in the diffusion constant that we see as a function of tempera-

ture (Hartshorne et al., 1972; Hong et al., 2016). In particular, as thermal diffusion is dependent on

absolute temperature so the changes in temperature used in these experiments would have little

effect on thermal diffusion. Furthermore, disparate observations seem to agree with such an inter-

pretation. For example, a microtubule cage was observed around RPC nuclei (Norden et al., 2009)

and myosin was also shown to surround these nuclei (Leung et al., 2011). Disruption of a microtu-

bule motor (dynactin-1) functionality either by mutation (Del Bene et al., 2008) or introduction of a

dominant negative allele (Norden et al., 2009) leads to a more basal positioning of nuclei and occa-

sional bursts of basal movement. A conjecture consistent with these observations would be that dur-

ing G1 and S phases actomyosin based forces push the nucleus basally, as also seen in the mouse

telencephalon (Schenk et al., 2009), while microtubule motors push it apically. Finally, in G2 a con-

centration of myosin at the basal side of the nucleus leads to its rapid apical migration (Leung et al.,

2011). However, a much closer examination of molecular mechanisms driving stochastic nuclear

movements is required to better understand the connections between these phenomena, as we are

far from understanding the nature of all the different forces involved in this process (Kirkland et al.,

2020). Furthermore, the diffusion constant reported here reflects all types of nuclear movement dur-

ing IKNM as it is derived from the changing nuclear concentration profile over time. It is not immedi-

ately clear how rapid apical migration contributes to this overall diffusion constant. Nonetheless,

despite the large displacement during rapid apical migration at G2, this phase only accounts for

about 8% of the cell cycle in RPCs (Leung et al., 2011). Therefore, the good agreement of our calcu-

lated diffusion constant with those previously reported in the literature for individual nuclei

(Leung et al., 2011) suggests that the proposed model describes tissue-wide IKNM quite well. At

the same time, it raises interesting new questions, such as how cells sense such concentrations and

the mechanisms that increase the stochastic force on nuclear movement at higher concentrations.

The physiological consequences of nuclear arrangements and IKNM associated with all pseudos-

tratified epithelia are not well understood. Our results provide a quantitative description of the sto-

chastic distribution of the nuclei across the retina. This distribution has been implicated in stochastic

cell fate decision making of progenitor cells during differentiation (Clark et al., 2012; Baye and

Link, 2007; Hiscock et al., 2018). Our observations would fit with previous suggestions that a sig-

nalling gradient, such as Notch, exists across the retina and location-dependent exposure to it is

important for downstream decision-making (Murciano et al., 2002; Del Bene et al., 2008;

Hiscock et al., 2018; Aggarwal et al., 2016). Thus, our results not only have important implications

for understanding the organization of developing vertebrate tissues, but may also provide a starting

point for further exploration of the connection between variability in nuclear positions and cell fate

decision making in neuroepithelia.

Materials and methods

Animals and transgenic lines
All animal works were approved by Local Ethical Review Committee of the University of Cambridge

and performed in accordance with a Home Office project license PL80/2198. All zebrafish were

maintained and bred at 26.5 ˚C. All embryos were incubated at 28.5 ˚C before imaging sessions. At
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10 hr post-fertilization (hpf), 0.003% phenylthiourea (PTU) (sigma) was added to the medium to stop

pigmentation in the eye.

Lightsheet microscopy
Images of retinal development for the main data set were obtained using lightsheet microscopy.

Double transgenic embryos, Tg(bactin2:H2B-GFP::ptf1a:DsRed) were dechorionated at 24 hpf and

screened positive for the fluorescent transgenic markers prior to the imaging experiment. The

embryo selected for imaging was then embedded in 0.4% low gelling temperature agarose (Type

VII, Sigma-Aldrich) prepared in the imaging buffer (0.3x Daniau’s solution with 0.2% tricaine and

0.003% PTU [Godinho, 2011]) within an FEP tube with 25 mm thick walls (Zeus), with an eye facing

the camera and the illumination light shedding from the ventral side. The tube was held in place by

a custom-designed glass capillary (3 mm outer diameter, 20 mm length; Hilgenberg GmbH). The

capillary itself was mounted vertically in the imaging specimen chamber filled with the imaging

buffer. To ensure normal development, a perfusion system was used to pump warm water into the

specimen chamber, maintaining a constant temperature of 28.5 ºC at the location of the specimen.

Time-lapse recording of retinal development was performed using a SiMView light-sheet micro-

scope (Tomer et al., 2012) with one illumination and one detection arm. Lasers were focused by

Nikon 10x/0.3 NA water immersion objectives. Images were acquired with Nikon 40x/0.8 NA water

immersion objective and Hamamatsu Ocra Flash 4.0 sCMOS camera. GFP was excited with scanned

light sheets using a 488 nm laser, and detected through a 525/50 nm band pass detection filter

(Semrock). Image stacks were acquired with confocal slit detection (Baumgart and Kubitscheck,

2012) with exposure time of 10 ms per frame, and the sample was moved in 0.812 mm steps along

the axial direction. For each time point, two 330 � 330 � 250 mm3 image stacks with a 40 mm hori-

zontal offset were acquired to ensure the coverage of the entire retina. The images were acquired

every 2 min from 30 hpf to 72 hpf. The position of the sample was manually adjusted during imaging

to compensate for drift. The two image stacks in the same time point were fused together to keep

the combined image with the best resolution. An algorithm based on phase correlation was subse-

quently used to estimate and correct for the sample drift over time. The processing pipeline was

implemented with MATLAB (MathWorks).

Two photon microscopy
Images for the repetition data set and all other conditions were obtained using a TriM Scope II 2-

photon microscope (LaVision BioTec). A previously established Tg(H2B-GFP) line, generated by

injecting a DNA construct of H2B-GFP driven from the actin promoter (He et al., 2012), was used

for all these experiments. Embryos were dechorionated and screened for expression of GFP at 24

hpf. An embryo was then embedded in 0.9% UltraPure low melting point agarose (Invitrogen) pre-

pared in E3 medium containing 0.003% PTU and 0.2% tricaine. The agarose and embryo were

placed laterally within a 3D printed half cylinder of transparent ABS plastic, 0.8 mm in diameter,

attached to the bottom of a petri dish, such that one eye faced the detection lens of the microscope.

The petri dish was then filled with an incubation solution of E3 medium, PTU, and tricaine in the

same concentrations as above. For the experiment involving cell cycle arrest, hydroxyurea and aphi-

dicolin (Abcam) were added to the incubation solution right before imaging, to a final concentration

of 20 mM and 150 mM, respectively. The imaging chamber was maintained at a temperature of 25 ˚

C, 28.5 ˚C, or 32 ˚C, as required, using a precision air heater (The Cube, Life Imaging Services).

Green fluorescence was excited using an Insight DeepSee laser (Spectra-Physics) at 927 nm. The

emission of the fluorophore was detected through an Olympus 25x/1.05 NA water immersion objec-

tive, and all the signals within the visible spectrum were recorded by a sensitive GaAsP detector.

Image stacks with step size of 1 mm were acquired with exposure time of 1.35 ms per line averaged

over two scans. The images were recorded every 2 min for 10–15 hrs starting at 26–28 hpf. The

same post-processing procedure for data compression and drift correction was used on these raw

images as on those from lightsheet imaging.

Obtaining experimental input values for the model
The radial coordinates rn of nuclei were calculated by subtracting ln from a, wherein ln is the distance

from the center of a nucleus n to the apical surface and a is the distance from the center of the lens

Azizi, Herrmann, et al. eLife 2020;9:e58635. DOI: https://doi.org/10.7554/eLife.58635 19 of 31

Research article Developmental Biology Physics of Living Systems

https://doi.org/10.7554/eLife.58635


to the apical surface. We estimated a total uncertainty of Dr ¼ �3 mm for each single distance mea-

surement of rn. This value is a result of uncertainty in detecting the center of the nucleus and in

establishing the position of the apical surface.

Because each nuclear position has an error bar Dr, binning the data leads to an uncertainty in the

bin count. In order to calculate this uncertainty, we considered the probability distribution of a

nucleus’ position. In the simplest case, this probability is uniform within the width of the positional

error bar and zero elsewhere. The probability, pn;bin, of finding a given nucleus n within a given bin,

is proportional to the size of the overlap of probability distribution and bin. It follows that the expec-

tation value for the number of nuclei within a bin is given as EðNbinÞ ¼
P

n pn;bin. Correspondingly,

VarðNbinÞ ¼
P

n pn;binð1� pn;binÞ is the variance of the number of nuclei within this bin. Thus, the error

bar of the bin count is sy;bin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðNbinÞ

p
. The nuclear distribution profile Nðr; tÞ is not expected to

be uniform or linear, therefore the expectation value EðNbinÞ does not correspond to the number of

nuclei at the center of the bin. Since the position of the expectation value is unknown a priori, it is

still plotted at the center of the bin with an error bar denoting its positional uncertainty. Here we

assume this error bar to be the square-root of the bin size Drbin, that is, sx;bin ¼
ffiffiffiffiffiffiffiffiffiffi
Drbin

p
.

In order to obtain the experimental nuclear concentration profile cðr; tÞ, and its error bars, from

the distribution of nuclei Nðr; tÞ, the volume of the retina also has to be taken into account, since

c ¼ N=V . The total retinal volume within which nuclei tracking took place was estimated directly

from the microscopy images. To this end, we outlined the area of observation in each image slice

using the Fiji software and multiplied this area with the distance between successive images. Given

the total volume, Vtotal, we proceeded to calculate the volume per bin, which depends on the radii

at the inner and outer bin surfaces. In general, the volume of a spherical sector is Vsector ¼ 1

3
Wr3sector,

where W denotes the solid angle. Knowing the apical and basal tissue radii, r ¼ a and r ¼ b, one can

thus calculate W as W ¼ 3Vtotal=ða3 � b3Þ. This gives the volume of each bin as

Vbin ¼ 1

3
W r3bin;outer � r3bin;inner

� �
, where rbin;outer and rbin;inner denote the outer and inner radii of a bin,

respectively. Similarly, we calculated the effective surface area S through which the influx of nuclei

occurs (see Equation 3) from the solid angle W. This surface area is simply given as S ¼ Wa2.

To retrieve the average cell cycle time TP for each of the data sets, we used two different

approaches. In the case of the main data set, sufficient number of nuclear tracks consisting of a

whole cell cycle were present. Thus, we directly calculated the average cell cycle duration from these

tracks. For the other data sets, we make use of the fact that the number of nuclei follows an expo-

nential growth law depending on TP (see Equation 2). Knowing the initial number of tracked nuclei

N0 for each data set, we obtained TP from fitting the following equation to the number of nuclei as a

function of time in a log-lin plot: lnNðtÞ ¼ lnN0 þ t=t ¼ lnN0 þ ðln 2=TPÞt. Then TP was deduced from

the slope of this fit.

In order to determine the maximum nuclear concentration cmax for the nonlinear model, we first

randomly selected 100 nuclei from our dataset of tracked nuclei and measured the size of their lon-

gest diameter in both XY and YZ planes. From these measurements, we established that the size of

the principal semi-axis of each nucleus is likely to lie in the range of about 3 mm to 5 mm, where the

nuclear shape is regarded to be ellipsoidal. This led to the range of possible maximum concentra-

tions cmax, although we did not measure the precise nuclear volume. The lower limit for the nuclear

volume is set by the volume of a sphere of radius 3 mm, the upper limit by a sphere of radius 5 mm.

Taking into account the maximum possible packing density of nuclei, which for aligned ellipsoids is

the same as that of spheres (Donev et al., 2004), p= 3
ffiffiffi
2

p� �
» 0:74, we obtained a range of

1:41� 10�3 �m�3 � cmax � 6:55� 10�3 �m�3.

Obtaining the initial condition
We determined the prefactors hi from the experimental nuclear distribution at the start of the exper-

iment, cexpð�; 0Þ. For convenience, we chose to determine first ehi ¼ hi þ aif0=ðs þ l2i Þ and then

obtained hi by subtracting aif0=ðs þ l2i Þ from the results. The ehi can be calculated from the data,

using Equation 6 for s ¼ 0, as

ehi ¼
X

m

�2mHið�mÞcexpð�m;0ÞD�m� f0

1� �

Z
1

�

�2Hið�Þ
1

2
�2 � ��þ g0

� �
d�; (17)
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where m denotes the m-th binned data point, �m its position and D�m the width of bin m. As in

Equation 6, the index i denotes the i-th eigenfunction or -mode.

The concentration profile in the nonlinear model
The non-linear concentration profile was determined numerically from the same initial condition as

used for the linear model, Equation 6, at s ¼ 0 with ehi as in Equation 17. Time evolution of the initial

condition, according to Equation 9, was performed using the pdepe solver in MATLAB.

Fitting the model
The range of sizes of the nuclear principal semi-axes was used to determine the range of data to be

included in our fits. Any data closer than 3 mm to 5 mm from the apical or basal tissue surfaces was

not taken into account for fitting because the center of a nucleus cannot be any closer to a surface

than the nuclear radius. Thus, all data collection very close to the apical or basal tissue surfaces must

have been due to the above-mentioned measurement uncertainties Dr.

In principle, the full solution for cð�; sÞ is composed of infinitely many modes. However, in practice,

we truncated this series and only included the first eight modes in our fits. This is due to the fact

that we have a finite set of data points, so adding too many modes could lead to over-fitting. Fits

with a wide range of numbers of modes were found to result in the same optimal D-values.

For fitting, we first rescaled the data in accordance with the non-dimensionalization of the theo-

retical variables r and t (see Equation 5). Thus we obtain cexpð�; sÞ from cexpðr; tÞ. Then both models

were fitted to the experimental data using a minimal-�2 approach. The goodness of fit parameter

�2 ¼Pm cexpð�; sÞ � cð�; sÞ
� �2

=s2

m, where
P

m denotes the summation over all bins m. Since binning

resulted in uncertainties sy;bin and sx;bin in the y- and x-directions, both had to be taken into account

when calculating sm and �2. The combined contribution of x- and y- uncertainties is:

s2

m ¼ s2

y;m þ s2

y;indirect;m with sy;indirect;m ¼ sx;m dcð�; sÞ=d�ð Þj�¼�m (Bevington and Robinson, 2003). In our

fits, the value �2 was calculated for a large range of possible diffusion constants D, from

D ¼ 0:01 mm2/min to D ¼ 10 mm2/min. By finding the value of D for which �2 became minimal for a

given data set and time point, we established our optimal fit.

The minimal-�2 approach furthermore enabled us to determine the optimal binning width Drbin or

D�bin and width of data exclusion for the fits. In order to do so, fits of the normal data set were per-

formed for different data binning widths and exclusion sizes of 3 mm to 5 mm. For each of these fits

the �2-value and the number of degrees of freedom n, that is, the number of data points minus the

number of free fit parameters (here number of data points minus 1), were registered. From �2 and n,

we calculated the reduced �2 value, �2

n ¼ �2=n (Bevington and Robinson, 2003). Using n and �2

n,

the probability P�ð�2; nÞ of exceeding �2 for a given fit can be estimated, which should be approxi-

mately 0.5 (Bevington and Robinson, 2003). Therefore, we found our optimal data binning width of

3 mm to 4 mm as the width that resulted in a P�ð�2; nÞ as close to 0.5 as possible for all the different

time points when fitting the nonlinear model. The exact choice of exclusion width was found not to

influence the fitting result for the nonlinear model.

In addition to finding the optimal D-value for individual time points, we also modified the mini-

mal-�2 routine to find the value of D that fits a whole data set (i.e. all time points simultaneously) in

the best possible way. In order to do so, we summed the �2-values obtained for each D over all time

points, in this way producing a
P

t �
2ðDÞ-curve. The minimum of this curve indicates D� for the whole

time series. Furthermore, dividing
P

t �
2ðDÞ by the number of time points included in the optimiza-

tion yields an average �2- and reduced �2-value corresponding to this D�. In addition, the width of

this time averaged curve at �2 ¼ �2

min þ 1 indicates the standard deviation of the optimal D-value,

sD. By approximating the minimum with a quadratic curve, we obtain an estimate for this standard

deviation as sD ¼ DD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �2

D��DD
� 2�2

D� þ �2

D�þDD

� �r
(Bevington and Robinson, 2003) where DD is the

step size between individual fitted D-values, here DD ¼ 0:01 mm2/min. Lastly, based on the average

reduced �2-values, we also compared several cmax-values for each data set to find the fit with proba-

bility P�ð�2; nÞ the closest to 0.5 in each case.
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All fits were performed using custom MATLAB routines. Horizontal error bars were plotted using

the function herrorbar (van der Geest, 2006).

Nuclear radius for interpretation of D
The average nuclear radius used to calculate the friction coefficient and thermal diffusion coefficient

of IKNM nuclei was the radius corresponding to the maximum concentration cmax obtained from the

fitting procedure.

Experimental nuclear birth times and mean-squared-displacement curve
Among all the nuclei tracked in the experiments, we selected those nuclei where tracking data was

available beginning right from cell division and also over a sufficiently long period of time to cover a

substantial part of the cell cycle (at least 75 time steps, i.e. 150 min). For these nuclei, we extracted

their respective birth times within the experiment from the full tracks and sorted the nuclei accord-

ingly. The first 40 nuclei were chosen for further analysis, as these were nuclei with a minimum of

150 min of tracking data completely within the first 200 min of experiments, corresponding to the

time frame used for D-optimization in the non-linear diffusion model. The exact distribution of their

birth times was stored for use in the individual nuclei simulations.

Further, the nuclear tracks of the chosen 40 nuclei were transformed from being a function of

experimental time to being a function of cell cycle time by simply subtracting a nucleus individual

birth time from the experimental time for each step of its tracking data. Then the experimental

mean squared displacement curve was calculated from the so obtained cell-cycle-dependent tracks.

Calculation of the shapes of retinal cell shapes
Here, we give more information on the numerical calculation of cell shapes. Further details can be

found elsewhere (Herrmann, 2020). Minimization of the elastic energy (Equation 12) leads to the

equilibrium condition on the shape, expressed in terms of the mean curvature H and the Gaussian

curvature K (Zhong-can and Helfrich, 1989),

�gHþ 2k H3 �KH
� �

þkDH¼ 0; (18)

where, for an axisymmetric shape dðzÞ,

K¼� dzz

d 1þ d2z
� �2 (19)

and D is the Laplacian operator,

r2 ¼ 1

d

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2z

q q

qz

dffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2z

q q

qz

0
B@

1
CA: (20)

The resulting shape equation is fourth order in z-derivatives and thus requires four boundary con-

ditions. Given the symmetry of the system, we solve for the shape in the left half of the domain

z¼ ð0;L=2Þ and impose dð0Þ ¼ da and dzð0Þ ¼ 0 at the apical surface. Imposing boundary conditions

like dðL=2Þ ¼R and dzðL=2Þ ¼ 0 at the top of the nucleus usually leads to solutions that are incompati-

ble with the presence of the nucleus (the resulting membrane shapes would cut through the

nucleus). Therefore, we further divide the domain z¼ ð0;L=2Þ into a region away from the nucleus

and a region where the membrane is in close contact with it. In the latter region, we assume the

membrane to be bent into a spherical arc around the nucleus, leaving a small equilibrium gap as esti-

mated by Daniels, 2019. The contact point zcontact between the two regions is adjusted until the

membrane radius and its derivative are continuous through the contact point. The membrane shape

away from the nucleus is then found using the MATLAB bvp5c solver. As can be seen from energy

minimization using (Equation 12), the solution in each case turns out to be the one for which zcontact

has been chosen such that the resulting H in z2 ½0; zcontact� is equal to Hcircle ¼�1=Rtube for z! zcontact,

where Rtube is the radius of the membrane arc around the nucleus.
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Simulations of individual nuclear trajectories
Simulations of nuclear trajectories for each of the three Langevin-type models were performed using

a custom Python 3 routine. Time discretization of the stochastic differential equations was achieved

via the Euler-Maruyama method. Simulations were performed using 0.2 min time steps and were

checked against those with smaller time steps to ensure that this choice was sufficiently small.

In each run of a simulation, 40 nuclei were simulated and their birth times within the simulation

were chosen to be the same birth times as those obtained from the nuclei within the experiments.

Each nucleus was simulated for a total of 150 min, corresponding to the chosen experimental data.

The value for the diffusion constant in these simulations was set to be the previously obtained value

D�
nonlin. For simulations with nuclear concentration-dependent Langevin equations, cmax and the aver-

age nuclear concentration field cðr; tÞ were similarly extracted from the results of the previous fits

using the non-linear diffusion equation. Herein, cðr; tÞ was provided for each time step of the simula-

tion. As cðr; tÞ can only be provided for discrete spatial coordinates r but the Langevin-type simula-

tions were continuous in the spatial coordinate r, c was averaged over the values at the two closest

spatial points whenever a nucleus’ position did not exactly coincide with a point where the value for

c was provided.

The resulting simulated nuclear trajectories were treated in the same way as the experimentally

obtained ones. That is, the nuclei’s birth times were subtracted from the trajectories to obtain cell

cycle dependent tracks. Then, the mean squared displacement curve was calculated from the result-

ing set.

For each model, the same simulation was repeated 2500 times to obtain the range of distribu-

tions of the resulting mean squared displacement curves. For each cell cycle time step, the minimum

and maximum of the mean squared displacement values out of all 2500 repetitions were calculated

to obtain the areas depicted in Figure 8.

t-tests
To compare results between data sets, the values D� and corresponding sD from the overall fits

were considered. It should be noted that these values were not obtained by averaging several data

sets of the same experimental condition but instead each value results from one data set only. How-

ever, the sample size for each data set was set to 100 because 100 time points were taken into

account for each overall optimization. These time points might not be completely uncorrelated, limit-

ing the predictive power of the t-test. Two sided tests, specifically unequal variances t-test, also

known as Welch’s t-test, (Precht and Kraft, 2015), were performed in order to determine whether

samples differ significantly from each other.

Description of Matlab files
Source code files 1, 2, 3, 4, 5, 6 are Matlab files containing the tracking data, as follows.
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Additional files
Supplementary files
. Source code 1. All track information for main data set. The fields within this data structure are:

fullTr: n x six matrix where n is the number of all nuclei within one lineage. In this matrix: column 1 -

object ID at each time point; columns 2–4 - (x,y,z); column 5 - parent ID (=ID from previous time

point); column 6 - time point (2 min per time point). indTracks: Separated, ”individual’ tracks of a

lineage where each track starts at t = 0 or a division and ends at t = end or another division. Each

cell in the array is a track and contains a matrix with only nuclei of that track (same columns as

fullTr). distVel: The distance and velocity vector for each nucleus at each time point. Each row corre-

sponds to distance and velocity of the nucleus going from that time point to the next. Each cell cor-

responds to the same one in indTracks. In the matrices: column 1 - time point; column 2 - distance

(magnitude of velocity vector); column 3 - cumulative distance; columns 4–6 - velocity vector (x,y,z)

corrIndTracks and corrDistVel: The exact same as indTracks and distVel, but corrected for drift. Cor-

rection was carried out by calculating the sum of all displacement vectors at each time point and

then changing all position vectors in indTracks to make that sum zero, which gave us corrIndTracks.

That was then used to calculate corrDistVel. As for the second column of cells in corrIndTracks, it

relates to the neighbours of each nucleus. Each element of a cell in the second column stores the

address of neighbours of the corresponding nucleus in the first column (address matrix: column 1 -

Tracks row index; column 2 - corrIndTracks row index; column 3 - object row index). apBasProj: The

projection of velocity vectors onto the calculated normals to the apical surface. In this matrix: column

1–3 - apicobasal velocity vector (x,y,z); column 4 - magnitude of the vector; column 5 - direction

(negative = apical and positive = basal). lateralProj: The component of the velocity vectors perpen-

dicular to the apicobasal one. Same columns as in apBasProj without column 5.

. Source code 2. Set of distances of all nuclei from the apical surface for each time point for the nor-

mal condition data set (this was originally extracted from Tracks.mat but used in this way for all the

analysis of nuclear distribution or concentration). The time points are every 2 min (including t = 0

min in the first column) except for the HUAC data set where they are every 40 min (including t = 0

min which is 120 min after drug treatment).

. Source code 3. Set of distances of all nuclei from the apical surface for each time point for the high

temperature data set. The time points are every 2 min (including t = 0 min in the first column) except

for the HUAC data set where they are every 40 min (including t = 0 min which is 120 min after drug

treatment).

. Source code 4. Set of distances of all nuclei from the apical surface for each time point for the low

temperature data set. The time points are every 2 min (including t = 0 min in the first column) except

for the HUAC data set where they are every 40 min (including t = 0 min which is 120 min after drug

treatment).

. Source code 5. Set of distances of all nuclei from the apical surface for each time point for the

repeat normal condition data set. The time points are every 2 min (including t = 0 min in the first col-

umn) except for the HUAC data set where they are every 40 min (including t = 0 min which is 120

min after drug treatment).

. Source code 6. Set of distances of all nuclei from the apical surface for each time point for the HU-

AC treatment data set. The time points are every 2 min (including t = 0 min in the first column)

except for the HUAC data set where they are every 40 min (including t = 0 min which is 120 min after

drug treatment).

. Transparent reporting form

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.
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Appendix 1

Full solution of the linear diffusion equation
After rescaling space and time as in Equation 5 and introducing � ¼ b=a<1, Equation 1 and the

boundary conditions Equation 3 and Equation 4 read

qcð�; sÞ
qs

¼ 1

�2
q

q�
�2
qcð�; sÞ
q�

� �
;

qcð�; sÞ
q�

����
�¼1

¼ f0e
ss ¼ f ðsÞ and

qcð�; sÞ
q�

����
�¼�

¼ 0;

(21)

where we have defined f0 ¼ aN0=DSt and s¼ a2=Dt . We transform this homogeneous differential

equation with inhomogeneous boundary conditions into the problem of solving an inhomogeneous

differential equation with homogeneous boundary conditions by writing cð�; sÞ as a sum of two

contributions,

cð�; sÞ ¼fð�;sÞþ ð�; sÞ; (22)

where we require fð�;sÞ to satisfy the inhomogeneous boundary conditions

qfð�; sÞ
q�

����
�¼1

¼ f0e
ss and

qfð�; sÞ
q�

����
�¼�

¼ 0: (23)

These conditions are satisfied if fð�; sÞ has the form

fð�; sÞ ¼ 1

1� �
1

2
�2� ��þ g0

� �
f0e

ss: (24)

where g0 is a constant of integration to be determined later. The remaining problem to solve for

 ð�; sÞ is

q ð�; sÞ
qs

¼ 1

�2
q

q�
�2
q ð�; sÞ

q�

� �
þ f0e

ss

1� � 3� 2�

�
�s

1

2
�2 � ��þ g0

� �� �
; (25)

with homogeneous boundary conditions

q ð�; sÞ
q�

����
�¼1

¼ 0 and
q ð�;sÞ

q�

����
�¼�

¼ 0: (26)

We can further write  ð�; sÞ as the sum of two contributions,

 ð�; sÞ ¼ hð�; sÞþ pð�; sÞ; (27)

where  h is the general solution of the homogeneous problem

q hð�;sÞ
qs

¼ 1

�2
q

q�
�2
q hð�; sÞ

q�

� �
;

q hð�;sÞ
q�

����
�¼1

¼ 0 and
q hð�; sÞ

q�

����
�¼�

¼ 0;

(28)

and  p is a particular solution of the full inhomogeneous problem Equation 26. The full solution

of the homogeneous problem is given as a series of linearly independent eigenfunctions, each of the

form

e�l2sWð�Þ ¼ e�l2s A
sinl�

�
þB

cosl�

�

� �
; (29)

where the eigenvalues l can be found from simultaneous solution of the boundary conditions,
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A lcosl� sinlð Þ�B l sinlþ coslð Þ ¼ 0

A
lcosl�

�
� sinl�

�2

� �
�B

lsinl�

�
þ cosl�

�2

� �
¼ 0;

(30)

which yields the transcendental relation

tanl 1� �ð Þ ¼ l 1� �ð Þ
l2�þ 1

; (31)

for which each eigenvalue li is a solution corresponding to one of the linearly independent eigen-

functions (only li>0 need to be taken into account). We can further deduce from the Equation 30

that Bi ¼ biAi, where

bi ¼
li cosli� sinli

li sinli þ cosli
; (32)

and we normalize the obtained expression for Wið�Þ from Equation 29

Hið�Þ ¼
1

Yi

sinli�

�
þbi

cosli�

�

� �
; (33)

with

Y2

i ¼
1

2
1� �ð Þ 1þb2

i

� �
� 1

4li
sin2li� sin2li�ð Þ 1�b2

i

� �
þbi

li
sin2 li � sin2 li�
� �

: (34)

Thus, the homogeneous solution  h is

 h ¼
X¥

i¼1

hiHið�Þe�l2i s; (35)

with prefactors hi to be determined from the initial condition.

In order to find a particular solution of the inhomogeneous problem, we first rewrite Equation 26

as

q ð�; sÞ
qs

� 1

�2
q

q�
�2
q ð�; sÞ

q�

� �
¼Rð�; sÞ: (36)

Now, we express Rð�; sÞ, as well as the unknown inhomogeneous solution  pð�; sÞ in terms of the

normalized eigenfunctions Hð�; sÞ of the homogeneous problem,

Rð�; sÞ ¼
X¥

i¼1

RiðsÞHið�Þ; (37)

and

 pð�; sÞ ¼
X¥

i¼1

CiðsÞHið�Þ: (38)

Substituting these forms into Equation 36, and noting that each term in the series must vanish

separately we obtain

qCiðsÞ
qs

þl2i CiðsÞ�RiðsÞ ¼ 0: (39)

From the form of Rð�; sÞ it follows that RiðsÞ ¼ aif0e
ss with some purely numerical prefactors ai, so

we expect CiðsÞ / pie
ss and find

pi ¼
aif0

sþl2i
: (40)

Finally, we determine the ai by reconsidering Equation 37. We multiply both sides by �2Hjð�Þ,
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where Hjð�Þ is one specific but arbitrary eigenfunction of the homogeneous problem, and then inte-

grate over the whole volume V. By the orthogonormality of these eigenfunctions, we obtain

aj ¼
Z

1

1� � 3� 2�

�
�s

1

2
�2� ��þ g0

� �� �
�2Hjð�Þd�; (41)

and all the ai can be calculated explicitely. Thus, the full solution of the linear problem is

cð�;sÞ ¼
X¥

i¼1

hie
�l2i sþ aif0

sþl2i
ess

� �
Hið�Þþ

1

1� �
1

2
�2� ��þ g0

� �
f0e

ss: (42)

The constant g0 can now be calculated from the requirement that
R
cð�; s¼ 0ÞdV ¼N0. Here, we

make use of the fact that
R
Hið�Þ�2d�¼ 0 if li satisfies Equation 31, thus

g0 ¼
ð1� �Þ=s� 1

10
þ 1

4
�þ 1

10
�5 � 1

4
�5

1

3
1� �3ð Þ : (43)
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