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A phenomenological approach to the theory of complex phase diagrams in binary liquid mixtures 
is developed. The random-mixing Flory-Huggins free energy expression is modified by the 
generalization of local pairwise energies to the corresponding free energies which, for systems 
with specific interactions such as hydrogen bonds, are described in terms of multiple-level 
partition functions. The temperature-dependent effective interactions in recent lattice models for 
these systems appear as special cases of this more general result. While characteristic asymmetries 
of various interactional correlation functions evaluated in the coexisting phases are found to 
parallel those of the interactions themselves, the symmetry of the phase diagram is not affected by 
such interactions, in contrast to the results of decorated-lattice calculations. A heuristic 
explanation of this is given, supporting a recent suggestion that the description of interaction­
driven asymmetric coexistence curves requires an enlarged space of statistical variables which 
includes density fluctuations. 

I. INTRODUCTION 

A wide variety of liquid mixtures 1 and polymer solu­
tions exhibits involved coexistence·curve topologies as a 
consequence of intermolecular hydrogen bonding. The clas· 
sic examples are lower critical solution points, which have 
been observed in numerous systems, 1 especially in recent 
studies of aqueous nonionic surfactant mixtures and other 
micellar solutions,2-7 and in microemulsion systems. The 
simple microscopic mechanism8 by which this interaction 
leads to these and other reentrant phenomena is well under­
stood, yet existing theories9- 16 are not correspondingly sim­
ple, invoking complex lattice models9-11 and spin Hamilto­
nians l2- 16 to represent substitutional and molecular 
orientational degrees of freedom. Neither are they readily 
generalized to the wide range of systems exhibiting closed 
solubility loops and related transitions. It is thus of interest 
to investigate a formulation of the thermodynamics which is 
not tied to a particular representation of the degrees of free­
dom, but rather is phenomenological. 

Previous theoretical work shows that the most impor­
tant microscopic property is the existence of a multiple-state 
structure to the local interactions. In the simplest cases, 
there may only be two distinct modes of interaction, such as 
weak van der Waals forces and low entropy, but energetical­
ly favored hydrogen bonds, although a more complicated 
level structure describes multiple transitions in many sys­
tems. 14-16 Section II describes such a phenomenological the­
ory, which uses this idea of multiple states in a straightfor­
ward generalization 17 of the random-mixing free energy 
function familiar from the theory of polymer solubility. 18,19 
The simple replacement of the various pairwise energies with 
(phenomenological)free energies, representing averages over 
orientational degrees of freedom, reproduces all the qualita­
tive results of the previous model calculations in a more phy­
sically and mathematically transparent way. Indeed, the 
previous models are seen to be special cases of the more gen­
eral results obtained here. The main focus of this work is on a 
simple description of the microscopic mechanisms of the 
transitions, so that the prediction of classical critical behav­
ior is not a serious shortcoming. 

Virtually all of the coexistence curves of these mixtures 
lack the compositional symmetry of the Ising model, to 
whose universality class their critical points belong.20 Size 
differences between the components certainly account for 
much of this, but it is equally clear that there is a fundamen­
tal lack of component-exchange symmetry with respect to the 
interactions, quite different from the spin-flip symmetry of 
the Ising ferromagnet in zero field. One of the intriguing 
issues is the role that such interactional asymmetry plays in 
that of the coexistence curves. Recently, 21,22 in the context of 
the spin models, it was concluded (i) that interactional asym­
metry alone will not explain coexistence-curve asymmetry, 
and Iii) that such an explanation requires the incorporation 
of noncritical density fluctuations into the Hamiltonian. 
Even in the absence of these fluctuations, as in the present 
theory, there are characteristic asymmetries in the various 
microscopic correlations related to the specific interactions 
themselves, and these provide a detailed explanation of how 
the free energies of the coexisting phases achieve a balance. 
As shown in Secs. II and III, these correlation asymmetries 
appear with a very clear connection to the free-energy-Ievel 
structure postulated. These results concerning the symme­
try are in disagreement with decorated-lattice (DL) calcula­
tionsII la) for these systems, and a heuristic explanation for 
this discrepancy, along with a justification of conclusion (i), 
is proposed in Sec. IV. Finally, in Sec. V it is suggested that 
this phenomenological treatment of strongly temperature­
dependent interactions has applications in the description of 
surfactant solutions, microemulsions, and certain polymeric 
liquid crystal systems. 

II. ASYMMETRIC SPECIFIC INTERACTIONS IN A MEAN 
FIELD THEORY 

A. Free energy 

In the Flory-Huggins (FH) mean field approximation, 
the free energy is conveniently separated into contributions 
from the substitutional (mixing) degrees of freedom, and 
from the molecular interactions. For a mixture of Np poly­
mer molecules, each composed of M identical monomer 
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units, and Ns solvent molecules, this random-mixing free 
energy is l8,19 

F= NkBT {(I - tfJ )In(l - tfJ) + (tfJ IM)ln(tfJ 1M)} 

+dN{(1-tfJ)2ess +tfJ2epp +2<P(l-tfJ)eps }' (1) 

where tfJ = MNpl(MNp + Ns) is the polymer volume frac­
tion, N = MNp + Ns' and d is one-half the coordination 
number.23 The microscopic solvent-solvent, polymer-sol­
vent, and polymer-polymer energies eij in Eq. (1) enter the 
expression for the free energy of mixing, 

Fmix = NkBT 

x [(1- tfJ )In(l - tfJ) + (lIM)tfJ In(tfJ) + xtfJ (1 - tfJ )],(2) 

only through the linear combination w = epp + ess - 2eps ' in 
the dimensionless Flory parameter X = - dwlkB T. 

For systems with multiple-state interactions, it is not 
possible to specify uniquely the microscopic energies eij­
only local/ree energieshj having meaning since the orienta­
tional degrees of freedom upon which the various energies 
depend are in thermal equilibrium. We make the phenomen­
ological assumption that the totality of relative orientational 
states may be grouped into levels, each with a characteristic 
energy and "degeneracy." If the interactions can be grouped 
into two classes, e.g., van der Waals-like and hydrogen 
bonds, these local free energies are described by two-level 
partition functions Zij' with/ij = - kB Tln(Zij)' and 

Zij = ro~ exp [ - e~/kB T] + rot exp [ - etlkB T], (3) 

where ro~ and rot are orientational phase space factors asso­
ciated, respectively, with the nonbonding and bonding 
states, with energies e~ and et. Clearly, the energy and en­
tropy of formation of this specific interaction are et - e~, 
and k B In(rot I rog), 15 respectively. In the description of lower 
critical solution points the most important two-level system, 
and the one considered previously,17 is that for polymer­
solvent interactions, since the one-phase region below the 
LCST is characterized by, and indeed stabilized through sig­
nificant polymer-solvent hydrogen bonding. Generalizing 
all the energies to free energies yields the reduced free energy 
per particle/= - (lIN)F IkBT: 

/ = - {(I - tfJ )In(l - tfJ) + (tfJ IM)ln(tfJ 1M)} 

+ d {(I - tfJ )21o(Zss) + tfJ 21o(Zpp) + 2<P (1 - tfJ )lo(Zpsll, 
(4) 

and the reduced free energy of mixing 

/mix = - [(1 - tfJ )10(1 - tfJ) + (1IM)tfJ lo(tfJ)J - XetrtfJ (1 - tfJ), 
(5) 

where, 

Xetr =dKetr =dln[ZssZppl[Zps]2}. (6) 

The parameter Ketr is now the generalization of the dimen­
sionless energy - wi k B T of the original theory, and it arises 
from a thermal average over the noncritical 24 orientational 
degrees of freedom. From the general structure of the parti­
tion functions Zij' it is clear that the temperature depen­
dence of Ketr may be quite complicated, especially for sys­
tems with more than two interaction modes. 14 

Note that, independent of the complexity of the local 

free energies, and independent of any asymmetry between 
polymer-polymer and solvent-solvent interactions, the free 
energy of mixing, Eq. (15) is symmetric under the exchange 
~ 1 - tfJ when M = 1. In this theory, then, interactional 
asymmetry does not produce coexistence-curve asymmetry. 
In addition, for M> 1, the deviation of the diameter from 
tfJ = 112 is solely a consequence of this size difference. These 
points are discussed further in Sec. IV. 

B. Connection with the spin models 
In the model of Walker and Vause (WV), 12-16 which is in 

the same spirit as the earlier work of Barker and Fock,9 and 
Wheeler and Andersen,IO,l1 substitutional degrees of free­
dom are represented by Ising variables s = ± 1 (A,B), as in 
the usual model of a binary mixture,25 and q-state Potts26 

spins 0' = 1,2, ... ,q represent a discretization of orientational 
phase space. The form of the coupling (see below) between 
the Potts spins captures, for q> 1, the essence of the hydrogen 
bond, its low degeneracy. For the simplest systems showing 
closed solubility loops, the appropriate reduced Hamilton­
ian isl2 

- /3H = ~ [KI(l -l5s .,)I5U <7 + K2(1 -l5s .,)(l -l5uu.)], (7) 
rJ ' j 'J I 1 

ij 

where /3 = 1IkB T, the sum is over nearest neighbors on a 
cubic lattice, 15 is the Kronecker delta, and the reduced ener­
gy parameters KI and K2 establish the following energy lev­
els for nearest-neighbor pairs: 

(i) K I , the AB hydrogen bonding level, with degeneracy 
2q, 

(ii) K 2, the AB van der Waals energy, with a consider­
ably higher degeneracy of 2q(q - 1), and, 

(iii) zero, the like-molecule energy level, independent of 
the orientational correlations of the AA or BB 
pairs, thus having a high degeneracy of2q2. 
In comparing this model to experimental systems, 
the proper interpretationl5 of the parameter q is 
that the entropy of formation of the AB hydrogen 
bond isAS = - kBln(q - 1). 

This Hamiltonian has been studied with two approxi­
mation schemes, real-space renormalization-group (RG) 
theory27 and a high-temperature series 
expansionI2(b),14-16,2I,22 which, to leading order, maps the 
system onto the Ising model with a temperature-dependent 
nearest-neighbor coupling. This latter transformation is 
equivalent to the RG results in its qualitative predictions 
concerning the solubility transitions and the microscopic 
correlations (see below), and quite useful in matching theory 
to experiment. The general form of this "single-bond" ap­
proximation is illustrated in Fig. 1. A bond Hamiltonian H12 
coupling Ising spins s I and S2' and dependent on other fluctu­
ating spin degrees of freedom 0'1 and 0'2 (such as orienta­
tions), is mapped onto that of a simple Ising model by an 
exact trace over those noncritical variables, written as 

FlO. 1. Schematic illustration of the single-bond approximation which 
maps a multiple-variable model onto the Ising model. 
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Z(SI,sz)= L exp[ -PHdsl,s2;U1,U2)] 
(u"u,) 

(8) 

thus defining the conditional partition functions Z (s 1,s2)' For 
the AB-symmetric Hamiltonian in Eq. (7), 
Z ( + , + ) = Z ( - , - ), but the inclusion of interactional 
asymmetries makes them distinct. The effective bond Ha­
miltonian for the symmetric case is 

-PH~~=Ketf(I-8s,s,)+Ko, (9) 

where Ketf is the Ising model coupling, and Ko is a zero-spin 
coupling. Solving Eqs. (8) and (9) for K etf , and transforming 
to the standard form of the Ising Hamiltonian, with an inter­
action K/sjsj , one finds 

K/ = (1/4)lnIZ( +, + )Z( -, - )/[Z( +, - WJ·(lO) 

This is precisely Eq. (6) of the phenomenological theory, just 
transcribed into the magnetic "language". The spin Hamil­
tonians thus involve a particular set of the more general con­
figuration-counting "rules" embodied in Eq. (3) and its mul­
tiple-state analogs. More importantly, the formal 
equivalence of these results demonstrates that, for most pur­
poses, the particular geometric interpretation envisioned in 
constructing the bonding rules is irrelevant; the resultant 
free energy level structure is the central object. 

Equation (10) is also the form of the effective coupling 
between nearest-neighbor sites of the primary lattice in a 
decorated-lattice calculation. 10,1 1 However, the "dedecora­
tion transformation" in such calculations involves traces 
over the entire sees of statistical variables of the particles on 
the secondary lattice, and not just on the non-Ising degrees 
of freedom, which are, of course, absent from the primary 
lattice sites. The implication of the existence of these inequi­
valent sites in the study of asymmetric coexistence curves 
has been noted in the literature,29 and is further discussed in 
Sec. IV. 

In addition, unlike the present mean field theory, none 
of the spin models is capable of being generalized to polymer 
solutions, except by changing composition variables at the 
end ofthe calculation,30 a procedure which neglects all of the 
entropic effects from particle-size asymmetry. 

c. Interactional correlations 

The various interactional correlations which re-
veal I4.16.21 th h' b h' d .. e mec amsms e 10 reentrant transitions 
driven by hydrogen bonding may be calculated from appro­
priate derivatives ofthe free energy. In the WV model, it is 
straightforward to see that the ensemble averages conjugate 
to KI and K2 in Eq. (7) are14.16 

ajlaKI = «(1 - 8s.,)8UQ) 
t") I ] 

-the fractional hydrogen bonding among unlike-molecule 
neighbors, and 

ajlaK2 = «(1 - 8s,.)(1 - 8u ,o» 
-the fractional nonbonding among unlike-molecule neigh­
bors, 

wherej = f Id is the reduced free energy per bond. With the 
introduction of symmetry-breaking fields one may further 
calculate the separate contributions to correlations due to 
AA and BB pairs. 21 .22 

In the mean field approximation, these same thermody­
namic derivatives may be calculated, and although there is 
no explicit conjugate spin correlation, they clearly have pre­
cisely the same meaning as in the lattice theory: The deriva­
tive of the reduced free energy per bond with respect to any 
particular energy parameter is the fraction of bonds correlat­
ed through that interaction. From Eq. (3), the general form 
of such derivatives is 

(Gij)± =(ajlaKij)± 

where 

{

[cP 2] ± 

=CijX [(1-cP)2]± 

[2cP(1-cP)]± 

Cij = wijexp(Kij)/Zij' 

i=j=p 

i=j=s, (11) 

i=h 

(12) 

TheKij = - eijlkBT aredimensionlessinteractionparam­
eters of the form as those in the WV theory, where a = *,0 
represents the two possible interactions, bonding or non­
bonding. Subscripts + ( - ) refer to the polymer-(solvent-) 
rich phases, and the compositions cP ± are determined from 
the standard common-tangent constructionls.19 at a value of 
the effective parameter X corresponding to Eq. (5). Thus, the 
fractional "occupation" of any level of the interaction hier­
archies is simply the usual Boltzmann-factor-times-degener­
acy expression C ij: Each of the various interactions occurs 
to an extent dictated by a simple equilibrium rule, and com­
plex mUltiple phase separations in these systems arise from 
competition between the various association equilibria. This 
result appears in previous work, although perhaps in a some­
what less transparent way.31 

Inasmuch as the functions C ij are smooth, the singular 
properties of the difference between the values of a given 
interactional correlation in the coexisting phases are gov­
erned by the quantity (cP 2+ - cP 2_ ) which, near a critical 
point, varies like t f3 (t = IT - Te liTe), where P is the expo­
nent characterizing the order parameter variation. In con­
trast, the average value will have a singular term proportion­
al to the internal energy of the system,22 and will vary as 
t I - a , a being the specific heat exponent. Of course, in this 
mean field theory, P = 1/2 and a = O. 

Since the free energy Eq. [(4)] is already decomposed 
into separate terms arising from the substitutional entropy 
and from the specific interactions, we may easily compute 
the contribution to the total entropy due to each of the two­
level interactions. As with the correlations above, one finds 
that these contributions (Sij) ± are (per bond) 

i=j=p 

i=j=s, 
{

[cP 2 ]± 

(Sij)± =LijX [(1-cP)2]± 

[2cP (1 - cP)] ± i=h 
where 

(13) 

Lij = In(Zij) - Z;; IIK~ w~exp(K~) + Kt wtexp(Kt)J. 
(14) 

J. Chem. Phys., Vol. 83, No.3, 1 August 1985 

Downloaded 01 Jan 2011 to 150.135.239.98. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



Raymond E. Goldstein: Multiply reentrant solubility 1249 

0.3 
(a) 

2.0 
(b) (el 

2 w ( ) (+) I-
0:: ~ 0.2 - ~ 1.5 "-- <t ....... 

CI> ~c 

>< 0:: 
W ~ 

1 PHASE ~ 1.0 ::I... 
I 0.1 

w 0::1... I-

0.5 
(-) (+) (j i) 

0 
0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 0.5 1.0 1.5 2.0 

TEMPERATURE MOLE FRACTION A TEMPERATURE 

FIG. 2. Phenomenological description of a binary mixture with three critical solution points. The temperature dependence to the effective mixing parameter 
[Eq. (6)] shown in (a) arises from the parameters in Table I, and yields the temperature--composition phase diagram in (b). The temperature scale here and in 
Figs. 3-5 is in units of e~B/kB' and critical points are indicated by solid dots. The labeling of the two branches of the coexistence curve corresponds to that 
used in Figs. 4 and 5(c). The chemical potential shift is shown as line (i) in (c), contrasted with that for a "simple" system with only one veST (ii). 

III. MICROSCOPIC DESCRIPTIONS OF COMPLEX 
PHASE DIAGRAMS 

In the following, two examples of complex phase dia­
grams are analyzed, with particular emphasis on the effects 
of interactional asymmetry. First, systems with no size-in­
duced phase diagram asymmetry (M = 1) are studied to elu­
cidate clearly the essential physics. There then follows a brief 
discussion of the M> 1 case. 

A. A symmetric phase diagram 

In many aqueous mixtures showing LCSTs, such as 
those with the pyridines,32-34 there is, in addition to strong 
AB hydrogen bonding, significant hydrogen bonding 
between water molecules, but little between the organic mol­
ecules. For sufficiently strong like-molecule bonding, it is 
possible1°-15 for a further phase separation to occur below 
the LCST, yielding a total of three CSTs. 

Shown in Figs. 2(a) and 2(b) are the temperature depen­
dence of X eft" and the phase diagram for such a mixture, at the 
critical composition, described by the parameters in Table I. 
Temperature is measured in units of llB/kB' The phase sep­
aration at the highest CST is due to the relatively favorable 
nondirectional interactions for AA and BB pairs. In general, 
the logarithm of the degeneracy ratio between the nonbond­
ing and bonding level sets the scale for the temperature ratio 
between this UCST and the onset of bonding correla­
tions. I 2-14,16 When the loops are small, though, these tem­
peratures move closer together, as is seen in the average in­
teractional correlations (1/2) [ (G ij) + + (G ij) _ ] shown in 
Figs. 3(a) and 3(b). Since the BB bonding is stronger than that 

TABLE I. Energy and entropy parameters for the system studied in Sec. 
n A, with M = 1. 

j It)~ tiJ: e~/e~B et/e~B 

A A 200 1 0.15 -4.2 
B B 200 1 0.15 -7.2 
A B 200 2 1 - 5.15 

of AA pairs, its conjugate correlation is the larger of the two, 
and the BB nonbonding correlation is consequently smaller. 
The phase space factors a>L and a>:B are smaller than a>!B' 
so the LCST, driven by AB bonding, occurs at a distinctly 
different temperature than the lower UCST, driven by AA 
and BB bonding. The like-molecule bonding correlations in 
each of the coexisting phases are shown in Figs. 4(a) and 4(b), 
and we see that there is no component-exchange symmetry 
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FIG. 3. Average interactional correlations in the two phases for the system 
shown in Fig. 2. 
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FIG. 4. Bonding correlation functions in the coexisting phases. The labels 
( + ) and ( - ) refer to the coexistence curve branches in Fig. 2. 

in that, for instance, the AA correlation in the A-rich phase 
differs from the BB correlation in the B-rich phase. In the 
case that M = 1, though, the AB correlations are the same in 
the two phases, and have the values shown in Fig. 3. The 
separate contributions to the total entropy per bond of the 
system, computed using Eqs. (13) and (14), are shown in Fig. 
5. The nonmonotonicity of the mixing entropy in Fig. 5(a) is 
compensated by the rapidly decreasing total orientational 
entropy, which is decomposed into its various contributions 
in Fig. 5(b). As we would expect, the temperature at which a 
particular bonding correlation begins to set in also marks the 
start of a rapid decrease in the orientational entropy asso­
ciated with that interaction. Figure 5(c) shows that the orien­
tational entropy, and hence the total entropy, is larger in the 
( + ) branch, balancing against the lower energy and entropy 
of the ( - ) branch, which is more highly correlated through 
hydrogen bonds. The basic mechanism for a mixing free en­
ergy balance between the phases is this tradeoff of orienta­
tional energy and entropy.21,22 

Finally, returning to Fig. 2(c), we see that the tempera­
ture dependence of the chemical potential shift f.t(x A) - f.t( 1) 
of component A contrasts sharply with that for the Ising-like 
system with a simple VeST, shown as a dotted line. While 
the chemical potential shifts of A and B have more compli­
cated temperature dependences than those of the simple sys­
tem, their difference is exactly zero at coexistence, just as the 
Ising model transition occurs in zero external magnetic field. 
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FIG. 5. Contributions to the entropy per bond. The average total, orienta­
tiona!, and mixing entropies are shown in (a); the separate contributions to 
the orientationa! entropy are in (b). Panel (c) displays the orientational en­
tropy in each of the two phases. 

8. An asymmetric phase diagram 

The second system studied in this section is that of a 
moderate sized polymer (M = 10) dissolved in a polar sol­
vent, as is typical of the nonionic surfactant mixtures. The 
phase diagram which results from the parameters in Table II 
is shown in Fig. 6. Here, the temperature is in units of e~s /k B' 

Although the coexistence curve is no longer symmetric 

TABLE II. Energy and entropy parameters for the system studied in Sec. 
II B, with M = 10. 

j liJ~ w& e~/e~ etle~ 

p p 100 0.9 -2.7 
s s 100 0.9 - 4.317 
p s 100 1 - 3.45 
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FIG. 6. Phase diagram for a hydrogen bonding polymer (M = 10) in a polar 
solvent. The model parameters are listed in Table II. Temperature is in units 
ofe':,.lkB • 

about volume fraction one-half, there is a residual symmetry 
in the theory in that all of the critical points (which occur at 
X eft' = Xc = (1 + N 1/2)2 12N) are at the same critical compo­
sition <Pc = 1/(1 + N 1/2). Indeed, in many solutions with 
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FIG. 7. Polymer-solvent bonding correlations and entropy contributions in 
the two phases for the system in Fig. 6. In (b), the ( + ) and ( - ) curves at the 
lowest temperatures are indistinguishable at the scale of the graph. 

closed-loop phase diagrams, the upper and lower critical 
compositions are roughly equal, with the diameter showing 
the characteristic curvature which emerges from the present 
calculation. 

The qualitative features of the various correlation func­
tions and contributions to the entropy are similar to those of 
the symmetric phase diagram in the previous section. Of 
course, the unlike-molecule correlations now differ in the 
two phases [Fig. 7(a)] because of the asymmetric distribution 
of polymer and solvent between them. Again, the differences 
in polymer-polymer and solvent-solvent interactional char­
acteristics lead to one phase having more orientational en­
tropy than the other, and less (favorable) interaction energy. 
Shown in Fig. 7(b) is the orientational entropy per bond in 
the two phases due to the polymer-solvent interactions. 

The size asymmetry also accentuates the extent to 
which a given set of monomer-solvent interactions leads to 
immiscibility. Thus, for a larger polymer than the one stud­
ied here, the phase diagram would consist of a single two­
phase region with only an upper critical solution tempera­
ture and a pinched-in coexistence curve at roughly the 
temperature of the lower UCST in Fig. 6. 

IV. THE ROLE OF SPECIFIC INTERACTIONS IN 
COEXISTENCE-CURVE ASYMMETRY 

The failure of interactional asymmetries alone to 
change the symmetry of the coexistence curve may be under­
stood through the following heuristic argument, which is 
supported by detailed calculations. 21 ,22 

It is perhaps simplest to discuss this issue in the context 
of magnetic systems, which have an intrinsic symmetry. 
Consider3s a "complex" magnet (CM), with degrees offree­
dom beyond those accounted for by the Ising model, a "sim­
ple" magnet (SM). It is often possible to account for these 
extra variables by mapping the CM approximately (or occa­
sionally exactly) onto the SM, but with an effective tempera­
ture (Teft') and field (Heft') which are functions of the tempera­
ture (T) and field (H) of the complex system, and also of the 
physical parameters which describe its "complexity." This is 
exactly what was done with molecular orientations in arriv­
ing at Eqs. (6) and (to), and is the essence ofthe decorated­
lattice approach. Denoting the free energy of the SM by 
Fs(T,H) and that of the CM by Fc (T ,H), we are then assum­
ing it is possible to write 

Fc(T,H) =Fs [Teft'(T,H),Heft'(T,H)] + G(T ,H), (15) 

where G is a smooth function analogous to the zero-spin 
coupling Ko in Eq. (9), and the effective fields Teft', Heft' are 
assumed to be free of singularities. The phase transition in 
the simple system occurs at zero field, and the condition 
Heft' = 0 then determines the value of the "bare" field H in 
the two-phase region of the complex magnet.36 Along this 
curve, Herit (T), the entropies of the two phases ( +, - ) of the 
complex system are 

Sc(T ,Herit) ± = Ss(T eft')(aTeft'laT)c 

- (aG laT)c ± Ms(T eft')(aHeft'laT)c' (16) 

where 

Ms(Teft') = - aFs(T eft',O+)laHeft' 
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is the spontaneous magnetization of the simple system, eval­
uated at its effective temperature, in the limit Heff-o+, and 
similarly for the reference entropy Ss (Teff ). The sUbscripts on 
the derivatives indicate that they are evaluated along 
Hcrit (T). Since the entropy of the SM is continuous at 
Heff = 0, as is G by hypothesis, the difference in entropy 
across the magnetization curve of the CM is 

.tJ.Se(T,Hcrit ) = Se(T,H--+Hcrit +) - Se(T,H--+Hcrit -) 

(17) 

where.tJ.Ms is the order parameter jump of the SM. Thus, the 
criterion for an entropy difference between the phases is a 
temperature-dependent effective field. The field-like energy 
asymmetries of the system studied on Sec. III A are respon­
sible for the difference in both the total entropy in the two 
phases, and the separate contributions from the pairwise in­
teractions shown in Fig. 5. 

Similarly, the order parameter jump of the CM, at the 
field Hcrit, is 

.tJ.Me(T ,Hcrit) = Me(T ,H--+Hcrit +) - Me(T ,H--+Hcrit -) 

(18) 

proportional to that of the simple magnet, although its tem­
perature dependence can be quite different, as in the case of 
reentrant transitions. The average magnetization has a more 
complicated structure, 
Me(T,Hcrit) 

= 1121 Me [ T ,H--+Hcrit +] + Me [T,H--+Hcrit - ] l 
= - (JGIJH)e +Ss(Teff)(JTeffIJH)e' (19) 

showing that the criterion for a nonzero average magnetiza­
tion, and hence a shifted coexistence-curve diameter, is a 
field-dependent effective temperature. 37,38 Yet, the effective 
"temperature" in the present theory, Eq. (6), has no depen­
dence on the chemical potentials, hence the symmetry of the 
"simple" coexistence curve is preserved in averaging over 
the orientational degrees of freedom (in the case M = 1). 
This independence is not simply a consequence of the mean 
field level of the approximation, for it appears in calculations 
which explicitly account for fluctuations. 21 ,22 

A more microscopic argument that the orientational de­
grees of freedom, as considered here, do not mix the thermo­
dynamic fields so as to give asymmetry is as follows: In the 
standard correspondence between the Ising model and a lat­
tice model of a simple binary mixture, there are two impor­
tant circumstances involving component asymmetry in 
which the latter can be mapped exactly onto the former. In 
the first, the mixture can be described by the usual micro­
scopic energies eij' but eAA # eBB . This contrasts with the 
zero field Ising model, which has the same energy for up-up 
and down-down nearest neighbor spins. It is straightfor­
ward to show19 that this inequality acts simply to redefine 
the values of the component chemical potentials by additive 
constants, and does not affect any thermodynamic proper­
ties. A second instance in which one recovers the Ising model 
with a shifted field is when one of the species has some degree 
of freedom which gives it an extra overall degeneracy. 
Again, the only significant effect of this asymmetry is, in the 
magnetic language, to shift the zero of the reduced field 

- H IkB T by (l/2)ln(w) where w is the extra degeneracy.22 
This shift also does not alter the symmetry of the coexistence 
curve. 

This preservation of the symmetry remains valid if, in 
either or both ofthese two cases, the microscopic dissimilari­
ties are given an arbitrary temperature dependence: The 
only result is that the derivative (JHeffIJT)e in Eq. (17) will 
be nonzero, leading to an entropy asymmetry between the 
phases. We believe that the orientational degrees offreedom 
studied herein have done nothing more than introduce such 
a temperature dependence to the energy and degeneracy 
splittings between like-molecule pairs, where the origin of 
the dependence is the multiple-level structure of the local 
free energies. 2 1,22 

This significance of a field-dependent interaction sug­
gests why decorated-lattice calculations with asymmetric 
nearest-neighbor interactions have produced coexistence­
curve asymmetry. If the bare field (chemical potential differ­
ence) is the only odd interaction in the theory then the sym­
metry is, of course, not broken.28 However, interactional 
asymmetries conditional upon non-Ising degrees offreedom 
introduce in addition the field-like terms described above. 
Thus, because the partial partition functions involve a statis­
tical trace over the Ising variables on the secondary sites, in 
addition to their orientational degrees of freedom, there ap­
pears more than one field-like term, and the decimation step 
explicitly creates a dependence of the effective interaction on 
the bare field. 22 Stated another way, asymmetric coexistence 
curves appear to be due to the way in which a DL projects a 
system with/our types of particles (A and B molecules on 
both primary and secondary sites) onto the Ising model. In 
real-space renormalization-group calculations for these sys­
tems,22 which also involve statistical traces over the Ising 
variables in their decimation steps, the two-component na­
ture of the system is preserved since all sites have the same 
set of spin variables. 

The necessity of including density fluctuations in a the­
ory of phase diagram asymmetry can be seen even at the level 
of the van der Waals equation of state of a binary mixture. 39 
In the infinite-pressure limit of that model, the free energy of 
mixing of equal-sized particles is symmetric around compo­
sition one-half, independent of the symmetry of the like-par­
ticle attractive interactions. Only when the pressure is finite, 
and hence density fluctuations are allowed, do energetic 
asymmetries shift the coexistence curve. 

In the usual mixture-magnet correspondence, the lat­
tice is taken to be completely full, which is analogous to the 
above close-packed limit of the van der Waals model. As 
shown in detail elsewhere,21,22 the finiteness of the pressure 
may be incorporated into the description of binary mixtures 
by embedding the complex hierarchy of pairwise energy lev­
els described in this paper in a larger space of statistical var­
iables which includes lattice vacancies controlled by an ap­
propriate chemical potential. This approach is quite 
different from that of the decorated-lattice calculations, in 
which the structure of the lattice (i.e., two inequivalent sub­
lattices with different coordination numbers) appears to 
mimic the effects of density fluctuations. In this sense, the 
DL has a quenched extra "degree offreedom", whereas the 

J. Chem. Phys., Vol. 83, No.3, 1 August 1985 

Downloaded 01 Jan 2011 to 150.135.239.98. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



Raymond E. Goldstein: Multiply reentrant solubility 1253 

vacancies are in thermodynamic equilibrium, and thus aptly 
described as annealed. 

v. DISCUSSION 

The notion of considering local free energies described 
in terms of multiple-level partition functions, as a general­
ization of simple energies, finds application in a variety of 
systems. In fact, many quite distinct "reentrant" phenomena 
can be viewed as essentially the same manifestation of this 
basic free energy structure. 

For those nonionic surfactant systems which do not 
form micelles, such as the shorter members of the polyox­
yethylene series, the approach in Sec. III B is directly appli­
cable. In micellar solutions and microemulsions, showing 
lower consolute points, for which a theory of the micelle 
structure may be developed, the interactions of the polar 
head groups of the amphiphiles with the aqueous component 
can be represented by a multiple-level hierarchy.40 Recent 
theoretical studies of the nonionic surfactant systems have 
been unable to describe the existence of both upper and low­
er critical solution temperatures in a unified way.41 

Kahlweit and collaborators5
-
7 have studied in great de­

tail the phase equilibrium properties of aqueous solutions of 
nonionic surfactants and a third, nonpolar species. Their ba­
sic conclusion is that the properties of the regions of three­
phase coexistence can be understood as arising from the con­
fluence of the upper miscibility gap of the binary 
surfactant + water mixture with the lower phase separation 
of the aqueous + nonpolar system. The present theory, gen­
eralized to three components, explicitly accounts for the 
strongly temperature-dependent surfactant-water interac­
tions and the entropic effects due to molecular size asymme­
try. 

Finally, very recent experimental work42 by Subraman­
ian, Wittebort, and Dupre highlights the important role that 
hydrogen bonding has on a variety of thermodynamic and 
molecular properties. They investigated the effect that the 
conformational (helix-coil) transition of poly-y-benzyl-L­
glutamate (PBLG) has on its nematic ordering.43

-46 In cer­
tain hydrogen-bonding solvents, PBLG shows an inverted 
helix-coil transition,43 which is, in many respects, thermo­
dynamically equivalent to a lower critical solution point in a 
binary liquid mixture.47 At sufficiently high concentrations, 
the conformational transitions intersect a region of two­
phase coexistence which has the topology of a closed-loop 
phase diagram, and within the coexistence curve nematic 
ordering occurs. The same temperature-dependent interac­
tions which drive the reentrant solubility transition are 
clearly responsible for the reentrant conformational transi­
tions, and may be described with the present methods. 
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