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A theoretical description of the critical point of a polymer solution is formulated directly from 
the Edwards continuum model of polymers with two- and three-body excluded-volume 
interactions. A Hubbard-Stratonovich transformation analogous to that used in recent work 
on the liquid-vapor critical point of simple fluids is used to recast the grand partition function 
of the polymer solution as a functional integral over continuous fields. The resulting Landau­
Ginzburg-Wilson (LGW) Hamiltonian is of the form of a generalized nonsymmetric n = 1 
component vector model, with operators directly related to certain connected correlation 
functions of a reference system. The latter is taken to be an ensemble of Gaussian chains with 
three-body excluded-volume repulsions, and the operators are computed in three dimensions 
by means of a perturbation theory that is rapidly convergent for long chains. A mean field 
theory of the functional integral yields a description of the critical point in which the power­
law variations of the critical polymer volume fraction c/Jc' critical temperature Tc' and critical 
amplitudes on polymerization index N are essentially identical to those found in the Flory­
Huggins theory. In particular, we find c/Jc _N- 1/2

, To - Tc _N- 1/2 with (To the theta 
temperature), and that the composition difference between coexisting phases varies with 
reduced temperature t as N -1/4t 112. The mean field theory of the interfacial tension (1 between 
coexisting phases near the critical point, developed by considering the LGW Hamiltonian for a 
weakly inhomogeneous solution, yields (1-N -1/4t 312, with the correlation length diverging as 
S -N 1/4t -1/2 within the same approximation, consistent with the mean field limit of de 
Gennes' scaling form. Generalizations to polydisperse systems are discussed. 

I. INTRODUCTION AND SUMMARY OF RESULTS niently taken to be the difference in the compositions c/J' and 
c/J" between coexisting phases. This quantity is known to 
vary with the same singular dependence on reduced tem-

The critical behavior of polymer solutions differs from 
that of simple liquids in exhibiting the phenomenon of uni­
versality not only in the exponents characterizing singulari­
ties in thermodynamic properties but also in their ampli­
tudes. Thus, for any property P that is a function, say, of 
temperature T, and that near the critical point varies with 
the reduced temperature t = IT - Tc liTe as 

p(n=po(N)ttPP, (1.1) 

with t/Jp universal, it is known from both theory and experi­
ment that the amplitude Po exhibits a universal power-law 
dependence on the polymer molecular weight N, 

( 1.2) 

P b being non universal. 
To describe the nature of this additional polymer uni­

versality, we present in Fig. 1 a schematic illustration ofthe 
temperature-composition phase diagram of a binary mixture 
oflong-chain polymers in a solvent and focus on the molecu­
lar weight dependence of several important properties. First, 
consider the order parameter of the phase transition, conve-

a) Present address. 

l1T"'N T 
----- --1- -t 

l1f"'N-tptP 

0" '" N -c" tl' 

FIG. I. The neighborhood of the critical point in the temperature-volume 
fraction phase diagram of a polymer solution. Power-law variations with 
reduced temperature t = (T,. - niT,. and molecular weight N are indicat­

ed. 
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perature t that is found in simple binary mixtures and pure 
fluids, but, additionally, it shows a power-law dependence 
onN,1 

a<p=<p"-<p'=B~N-;fJtfJ, ~fJ=0.31, (1.3) 

withP=0.33. Similarly, the surface tension between coexist­
ing phases varies as2 

a=a~N - !;"II-', ~I-' =0.44 ± 0.03. (1.4) 

Like p, the thermal exponent J.L ( = 1.26) also governs the 
critical properties of simple fluids and mixtures. Other quan­
tities, not related to critical singularities themselves, also ex­
hibit universal power laws in the molecular weight. An ex­
ample is the volume fraction <Pc of polymer at the critical 
point itself, which is known from recent experiments2

•
3 to 

vary as 

( 1.5) 

The existence of universal critical amplitudes may be 
related to the existence of a scaling form of the singular part 
of the free energy density gs in the neighborhood of the criti­
cal point. As is the case in simple fluids and mixtures, one 
expects gs to have the form 

g,(T,,u)=D(N)r-aY[E(N) ~], ( 1.6) 

with D(N) and E(N) nonuniversal metric coefficients, T 

and ~ the "thermal" and "magnetic" scaling fields, a, p, and 
8 the universal exponents, and Y the universal scaling func­
tion of a system in the universality class of an Ising model in 
three dimensions. The exponents ~ of the individual critical 
properties will then be determined by the corresponding uni­
versal power-law variations of the metric coefficients D and 
E. 

The values for the various indices ~ deviate significantly 
from those predicted by mean field theories of polymer solu­
tions, such as the Flory-Huggins4 theory, which gives ~{3 
= 1/4 and ~~ = 1/2. The surface tension exponent ~I-' 

shows a very marked deviation from the mean field predic­
tions ofVrij and Roebersen5 and ofNose,6 namely ~I-' = 1/4. 
One should note that the existence of universal amplitude 
ratios governing Ising-like critical points enforces relation­
ships between the various exponents~, 7 and these are in gen­
eral supported by experiment, but it remains an important 
open problem in the statistical mechanics of polymeric fluids 
to develop a microscopic theory of the power-law variations 
of critical properties with molecular weight. 

To understand these discrepancies between mean field 
theory and experiment it is desirable that there be a theoreti­
cal formalism through which contact may be made with the 
powerful field-theoretic methods available to study critical 
phenomena. For the latter purpose, it is most convenient to 
recast the singular contribution to the partition function as a 
functional integral over continuous fields, 

( 1.7) 

Given that the polymer critical solution point is that of an 
Ising-like system, one expects, in the long-wavelength limit, 

the Landau-Ginzburg-Wilson (LGW) Hamiltonian 
£" LOW for the polymer solution to be of the form 

£"LOW = f ddx{al(jJ + ~a2(jJ 2 + ja3(jJ 3 

( 1.8) 

with the field (jJ related to the order parameter of the phase 
transition. While the Flory-Huggins theory does, of course, 
yield such an expansion in the neighborhood of the critical 
point, its phenomenological character precludes a systemat­
ic study of the role of fluctuations. On the other hand, the 
well-studied Edwards8 Hamiltonian for polymer solutions 
provides a representation that is expected to be more appro­
priate for the study of long-wavelength polymer properties 
near a critical point. Yet, the connection between this con­
tinuum model and the field-theoretic approaches to critical 
phenomena has remained incomplete.9 In the present paper 
we investigate this relationship. 

The physical considerations and mathematical transfor­
mations that relate a microscopically defined Hamiltonian 
to one such as Eq. (1.8) were first discussed formally by 
Hubbard and Schofield 10 in the context of simple fluids and 
are reviewed in Sec. II. A transformation of this kind has 
been studied in considerable detail in recent work ll on the 
correspondence between fluids and magnets in the critical 
region. Central to these results and those presented here is 
the basic relationship between the grand partition function 
E ( T,,u) of the fully interacting system at temperature T and 
chemical potential,u, and that of an arbitrary reference sys­
tem at temperature T and chemical potential,uo, 

E(T,,u) = ='o(T,,uo) 

X (exp[ - P( £" - £"0) + P(,u - ,uo) n])o, 
( 1.9) 

where n is the number of particles. This is the grand canoni­
cal version of the basic result used by Zwanzig l2 in develop­
ing high-temperature perturbation theory in the canonical 
ensemble. For simple fluids with a typical intermolecular 
potential <p(r), it is natural to partition <p into a short-range 
repulsive interaction, <Po, and a long-range attractive tail, <PI' 
such that the difference £" - £"0 in Eq. (1.9) is simply 

1 -L<PI(ri ). (LlO) 
2 ih 

This partitioning is essentially that suggested by Weeks, 
Chandler, and Andersen,13 and is important for both phys­
ical and mathematical reasons. When written in Fourier 
space, (Ll 0) has the form 

1~~~ lk "2 f: PkP - k'l'l ( ), (Ll1) 

where Pk and ¢1 (k) are the Fourier transforms, respective­
ly, of the density and the attractive potential. Since Eq. 
( 1.11 ) is a quadratic form in the density variables Pk' a Hub­
bard-Stratonovich transformation may be employed to re­
write the Boltzman factor in Eq. (1.9) in terms of contin­
uous variables. Such a Gaussian transformation requires 
that - ¢I (k) be positive definite, a requirement that is well 
satisfied in simple fluids by the choice of a hard-sphere refer-
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ence fluid and an attractive potential tPl with some smooth 
cutoff at short length scales. 

In the Edwards model of polymer solutions, actual pair 
interactions are replaced by delta-function pseudopoten­
tials, thereby preventing a clear partitioning of the overall 
intermolecular potential into attractive and repulsive com­
ponents. In theories of the region below the theta point, 
where the two-body excluded-volume parameter is negative, 
it has proved useful to incorporate into the model repulsive 
three-body interactions to prevent the collapse of the sys­
tem. 14

•
15 In the present context, a natural partitioning of the 

Edwards Hamiltonian is one in which these three-body re­
pulsive interactions are associated with the reference Hamil­
tonian, with the perturbing Hamiltonian J¥'I containing the 
attractive two-body terms. This is equivalent to choosing as 
the reference system the polymer solution at the theta tem­
perature for infinite chains. 16 The usefulness of this formal­
ism rests on the ability to compute properties of this nonideal 
reference system. We show in Sec. II that in three dimen­
sions such properties may be computed perturbatively 
around the properties of a Gaussian system. The resulting 
perturbation series, in which the amplitude of the three-body 
interaction constitutes the expansion parameter, is shown to 
be rapidly convergent for long chains. We emphasize that 
contrary to most previous approaches the present formalism 
requires the use of the grand canonical ensemble. This, of 
course, is the preferred ensemble with which to discuss fluc­
tuations. 

The perturbative incorporation of three-body interac­
tions into the reference system for polymer solutions finds a 
parallel in recent studies of the role ofAxilrod-Teller inter­
actions in simple fluids. 11.17 There it was found that the ef­
fects of such ternary potentials on the correlation functions 
of the hard-sphere reference system, computed to lowest or­
der in a virial expansion, lead naturally to the presence of a 
new energy scale at the critical point, one which appears to 
explain certain systematic trends in non universal critical 
amplitUdes. 

Our central result is the explicit form of the operators of 
the LG W Hamiltonian in the limit of small order parameter 
inhomogeneities, including the dependence of those opera­
tors on the amplitude of the ternary interaction and on the 
polymer molecular weight. Under the single assumption 
that the second osmotic virial coefficient is an analytic func­
tion of temperature near the theta point, we find that a mean 
field approximation to the functional integral yields a de­
scription of the bulk and interfacial critical properties that is 
esentially identical to that of the Flory-Huggins approxima­
tion. 

In Sec. III we discuss some of the considerations that 
bear on generalizations of the present approach to the treat­
ment of deviations from mean field theory. 

II. THEORY 

A. General formalism 

In this section we outline the general principles underly­
ing the transformation of the partition function of a fluid, 
written as a trace over particle positions, to one involving 

continuous fields. Having partitioned the interparticle po­
tential tP(r) into its attractive and repulsive components, we 
write 

J¥'-J¥'o=_I-LJ\P_k~l(k) -..!.ntPl(O). (2.1) 
2V k 2 

We define the singular part Es of the grand canonical parti­
tion function through the relation E = EoEs, and introduce 
the reduced variables 

jt={3 [1l-llo+!tPl(O)], vl(k)= -{3~I(k), (2.2) 

with VI (k) > O. Since the number of particles n is just Po, we 
may write 

Es (T,Il) = (exp{jtpo + 2l
V ~ J\p - k VI (k) } t. (2.3) 

The transformation to continuous fields is now made by rec­
ognizing that the term within curly brackets in Eq. (2.3) is a 
general quadratic expression, so that the identity 

exp(~2x2) 

= (21Ta2
) -1/2 JOO dy exp( -..!. < + xy) (2.4) 

- 00 2 a 

may be applied. The result is 

E a:J!P[m]exp{ jtf{Jo __ l_~_l_m m } 
s T vl(O) 2V+vl (k) TkT-k 

X (exp( ~ ~ f{JkP( - k»)) 0 ' (2.5) 

where!P [f{J] = IIdf{Jk' and we have suppressed analytic pre­
factors in the transformation which are irrelevant to the sin­
gular part of the free energy. It is the appearance of V I (k) - I 

in Eq. (2.5) that requires a sufficiently smooth short-dis­
tance cutoff of the attractive part of the pair potential for its 
Fourier transform ~I (k) to be negative definite. Appealing 
now to the cumulant theorem, 18 the expectation on the right­
hand side ofEq. (2.5) may be written as 

(2.6) 

where 

F~ (kl, ... ,kn) = I:'k •• 'ph k )0 c \P I II' 
(2.7) 

is a cumulant average in the reference system. Translational 
in variance implies that 

~o AO 
Fn(kl, ... ,kn) = VOk'+"'+k/.oGn(kl, ... ,kn), (2.8) 

A A 

which serves as a definition of the G ~. The F~ are the Four-
ier transforms offunctional derivatives ofthe reference par­
tition function, 19 

o On In Eo 
Fn(rl,· .. ,rn ) = , 

&(r l )" '&(rn ) 

(2.9) 

with z( r) the spatially varying fugacity. At zero momentum, 
Eq. (2.9) implies the simple relation 
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GO(O ... O)=~JnlnEo, (2.10) 
n " V J(flJ.lo) n 
A A 

so the G~ obey the recursion relation JG~ (O, .. ,O)/J( flJ.lo) 
= G~+I (0, ... ,0). The first few cumulants are simply 
G~ (0) = (Po)o, the av~rage number density of particles in 
the reference system, G~ (0,0) = < p~)o - (Po)~' the vari­
ance in the reference number density, and so on. 

From these results, we conclude that the singular contri­
bution to the grand partition function is given by the integral 
in Eq. (1.7), where, in momentum space, the LGW Hamil­
tonian has a more general form than in Eq. (1.S), namely 

00 1 1 
JYLGW = L I" Vn-I L'" L 

n = 1 n. k, k n _ I 

XKn (kl, ... ,kn_ l , - k l " - k n _ l ) 

XlP -k, "'lP -kn_llPk, + ... +kn _ I ' 

where the operators are 

and 
A 

A Ao it 
KI(O) = - G 1 (0) ---, 

VI (0) 

A AO 1 
K 2 (k, -k) = - G 2 (k, -k) +-A-' 

VI (k) 

Kn (kl, .. ·,kn _ I' - kl - ... - k n _ I ) 

(2.11 ) 

(2.12) 

(2.13) 

= -G~(kl, ... ,kn_l>-kl- ... -kn_I)' (2.14) 

for all n>3. Thus, given any approximation for the partition 
function Eo of the reference system and knowledge of the 
integrated strength of the attractive part of the pair poten­
tial, all of the operators of the LGW Hamiltonian may be 
computed. 

B. Application to polymer solutions 

The extension of the above ideas to a system of polymers 
employs a model in which the polymers are described as 
continuous curves in d dimensions. A vector r( 1') specifies 
the spatial location of a given segment that is an arc-length l' 
from the chain end. To simplify notation, we employ a sys­
tem of units in which thelengthr = (d 1/) 1/2C, where c speci­
fies the Euclidean coordinates of the chain, and I is the Kuhn 
length. Thus, [r] = /1/2. The chains are assumed to interact 
through two and three-body delta-function excluded volume 
potentials, with the total Hamiltonian JY, in units of the 
thermal energy k B T, given by 

1nlN 1 IN JY = - L dr If; (1') 12 + - V L dr 
2;=10 2! ;,j 0 

X iN dr'<5[r;(r) - rj(r')] 

1 iN iN iN + - W L dr dr' dr" 
3! ;,j.k 0 0 0 

(2.15 ) 

=JYg + JY2 + JY3, 

where the first term JYg describes the Gaussian character of 
the chains in the absence of excluded-volume interactions. 
The phenomenological two-body excluded-volume param-

eter V represents the integrated strength of some potential of 
mean force, and is assumed to have a linear temperature 
dependence of the following form 

, T-To 
v(T)=v, (2.16) 

T 

with To the theta temperature and v' some dimensionless 
proportionality constant. The observed positivity20 of the 
third virial coefficient at the theta point indicates that w is 
positive, and this in tum is known21 to ensure the stability of 
the polymer against collapse below To. The actual magni­
tude of w in real polymer solutions is somewhat uncertain, 
but appears to be of order 0.1-1 as judged from the size of the 
third virial coefficient and the measured dimensions of poly­
mers at the theta point. 22.23 

As alluded to earlier, the reference Hamiltonian JYo is 
taken to be JYg + JY3, with JY2 acting as a perturbation. 
Below the theta point, this partitioning of the full Hamilto­
nian implies that the attractive part of the two-body poten­
tial between monomers, analogous to that in simple fluids, is 

CPI(r) = k B Tv8(r), vI(k) = v'b(To - T)IT (2.17) 

with b a microscopic volume whose presence arises from the 
rescaled units adopted in Eq. (2.15). 

For a monodisperse distribution of chain lengths, the 
full reference partition function then takes the form 

'::'0 = nto ~! (q(T)ePl"o)n f til fi1 [rde - "'o[r;], (2.1S) 

where q (T) is some arbitrary function of temperature alone 
with the dimensions of inverse volume, which in the present 
system of units implies [q] = I - d 12. Note that J.lo is the 
chemical potential conjugate to the number of chains. The 
generalization of the results below to a polydisperse system is 
developed in Sec. II D. 

In the dilute regime of interest for the critical point, 
where the chains are at the overlap concentration but the 
actual monomer concentration is low, the volume fraction of 
polymer cp=.nNa3 IV -< 1, with a3 an N-independent elemen­
tary segment volume, may be related to the monomer den­
sityp(r), 

1 n rN 

p (r) = T ;~I Jo dr8[r - r;(r)], (2.19) 

by 

(2.20) 

where crl/ = a3
• The appearance of the Kuhn length in the 

definition ofp is again a consequence of the present system of 
units. With this definition, the reference Hamiltonian 
JYo = JYg + JY3mayberewritteninamorecompactform, 

1 nlN If JYo=- L drlf;(rW+-w drp3(r).(2.21) 
2 ;= 1 0 3! 

The identity22,23,24 

exp[ -A3({P})] 

= exp[ - A3 ( {81M}) ]exp(f dr J(r) p (r») I J= 0' 

(2.22) 
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with 

A3[{P}] =J... wf drp (r)3, 
3! 

(2.23) 

enables the canonical partition function for n chains to be 
factorized into a product of single-chain partition functions 
in the presence of the external field J, 

Eo= f ~Z~ exp[ -A3({Mc5J})]Q(N,J)nI J=0, (2.24) 
n=O n. 

where 

Q(N,J) = f ~[r]exp{ - ~ iN d1'lr(1')1 2 

+ f dr iN d1'J(r)c5[r-r(1')]}, (2.25) 

is the single-chain partition function, and where we have 
introduced the reference fugacity Zo = q( nexp( f3 fLo)· 

The series in Eq. (2.24) may be summed exactly to give 

Eo = exp[ -A3({c5/c5J})]exp[zoQ(N,J)]IJ=0' (2.26) 

If we now define the action of the operator exp( - A 3 ) on 
the k th term in the expansion of the exponential involving Q 
as 

(Qk) =e- A'Q k, 

we may write 

(2.27) 

(2.28) 

The computation of ( Q k ) is carried here to first order in the 
three-body amplitude w, and is facilitated by a diagrammatic 
analysis in which one expands both the operator exp ( - A 3 ) 

and the partition function Q as 

exp[ -A3({c5/c5J})] 

=1--w dx--+O(w2), 1 f c5
3 

3! c5J(x) 3 

Q(N,J) = f ~ [r]exp{ - ~ iN d1'lr( 1') 12} 

X { 1 + f dr iN d1' J(r)c5[r - r( 1')] 

+ ;! f f drdr' iN iN d1'd1" J(r) 

(2.29) 

xc5[r - r( 1') ]J(r')c5[r' - r( 1")] + ".}. (2.30) 

As a consequence of one-, two-, and three-chain ternary 
interactions, three types of contributions to the first-order 
expansion of (Q k ) may be distinguished. The diagrammatic 
structure of these terms is shown in Fig. 2. The reader is 
referred to Appendix A for a discussion of the evaluation of 
such diagrams. The resulting expansion of (Q k) has the 
form 

(Qk) = V
k {I - W[kPI + 2G)P2 + (~)P3] + O(W2)} , 

(2.31 ) 

where Vis the volume of the system, and the Pi are numeri­
cal coefficients obtained from the analysis of the diagrams. 

,. ...... - .... 
" I , 

I I \ 
I I \ 

(a) 

i 
I 

_L ..... ," , 
I \ 
, I 

(b) 

..... " y 
I 
I 
I 
I 

(e) 

" 
" " 

FIG. 2. Diagrammatic representation of the leading (a) one-, (b) two-, and 
(c) three-chain contributions to the perturbation expansion of the reference 
partition function in powers of the three-body excluded-volume amplitude 
w. Solid lines represent the polymer chain, dashed lines the three-body in­
teraction. 

In arriving at Eq. (2.31), we have explicitly accounted for 
the combinatorial factors arising from l' ordering of the seg­
ments along the chains. Summing the series in Eq. (2.28) 
explicitly to first order in w, one obtains 

Eo=eVz,.{ 1 - W[ZoPl + roP2 + ;! roP3] + O(W2)}. (2.32) 

Appendix A describes the evaluation of the diagrams in Fig. 
2 by the method of dimensional regularization. 25 We find 

P = V_1_(_2_)2r(2-d/2)2 N 3 - d , (2.33) 
I (21T)d d - 2 r(4 - d) 

p = V 1 _2 __ 2_N3 - d /2 (2.34) 
2 (21T)d/2 2 - d 4 - d ' 

and 

where r is the gamma function. 
Thus far, we have carried out the expansion to leading 

order in the three-body excluded volume amplitude w. To 
estimate the contributions from higher-order terms, consid­
er the nth order diagram arising from the interaction of 3n 
chains coupled by n three-body interactions. From the pat­
tern evident in Eqs. (2.32)-(2.35), it is apparent that the 
term with the strongest N dependence possible at this order 
scales like (roN3)n. Anticipating results derived below, 
which estabish that the fugacities of interest at the critical 
point are of the order zo_N- 3/2, it may be seen that in the 
limit oflong chains that all terms beyond leading order make 
negligible relative contributions to the reference free energy. 

From Eq. (2.32) we conclude that the logarithm of the 
reference partition function has the expansion 

J...ln(Eo( T'fLo» 
V 

=Zo{1 - W[PI + pzZoN 3/2 + P3roN3] + O(w2)}, 
(2.36) 

where, in three dimensions 

PI = 112r, P2 = - 4/(21T)3/2, P3 = 1/6. (2.37) 

The cumulants G ~ that enter into the definition of the opera­
tors in the LGW Hamiltonian are now obtained from Eq. 
(2.36) by straightforward differentiation. Recall that Zo is 
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~e fugacity of chains, so that the cumulants are given by 
G~ (0, ... 0) = (lIV)N n[a n In EoiaOnzo)n]. For later use 
we define the reduced cumulants gk' 

-N - (k - 3/2)G'" 0 gk (x) = k (0, ... ,0) 

= x{l - W[PI + 2kp2X + 3kp3X2] + O(w2)}, (2.38) 

wherex=N 3/2zo' These cumulants for k = 1 to 5 are shown 
in Fig. 3 as a function of the fugacity variable x for the case 
W = 0.1. The variation ofthegi with fugacity is of the utmost 
importance in obtaining a well-behaved field theory of poly­
mer solutions. Recall that the operators Kn of the LGW 
Hamiltonian are, for n>3, simply the negative cumulants of 
order n. In a mean field theory of the functional integral 
which we discuss in more detail below, it is necessary that the 
fourth-order operator at zero momentum be positive in or­
der that the system be stable. This requires that the corres­
ponding fourth cumulant (;4 (0,0,0,0) be negative. Note that 
an ensemble of Gaussian chains does not have a negative 
fourth cumulant; indeed all cumulants are positive in the 
noninteracting limit. Only at sufficiently high fugacities in 
the presence of three-body excluded-volume interactions 
does the fourth cumulant of the reference system change 
sign. We shall see below that a natural choice of the reference 
fugacity Zo is that at which the third cumulant vanishes (in­
dicated by x* in Fig. 3), and at that point the fourth cumu­
lant is negative, as are all higher cumulants. 

It is instructive to compare the cumulant structure of 
the reference polymer solution with that of the analogous 

c:: 
.2 2 
+-
:::::s 
0 
V'I 0 ..... 
(l) 

E 9 >. -2 (5 
Q.. 

(0) ->< -4 
0> 

0 1 3/2 
x=N Zo 

0.6 -V'I 
0 

0.4 0> 

(l) 
u 0.2 +-+-
0 

-0 
N 

~_-0.2 (b) 
0> 

0 

FIG. 3. Reduced cumulants of the reference polymer solution (a) and hard 
core lattice gas (b) as a function of fugacity. The vanishing of the third 
cumulant atx* (a) and z;\' (b) defines the mean field critical isochore of the 
two systems. 

reference system for an interacting lattice model of fluids, 
namely the hard core lattice gas. 26 This system, in contrast to 
the polymer solution, exhibits an exact symmetry between 
the thermodynamic functions of the two phases in coexis­
tence below the critical point. This particle-hole symmetry is 
perhaps most clearly seen in the structure of the cumulants. 
The grand partition function of this reference system is tri­
vial, since each site can be in either of two states, empty or 
occupied, independent of the states of all other sites. Then, 

ELG(T,fl) = (1 +z)'l, (2.39) 

with n the number of lattice sites, playing the role of the 
volume of the system in a continuum fluid. One finds that the 
cumulants at zero momentum are simply 

gn (zo) =Gn (0, ... ,0) 

= J-. Dn I + J-. an - I tanh( P pol2) 
2 ' 2 a( P flo) n - I 

(2.40) 

At low fugacities where the excluded-volume effects are neg­
ligible, all cumulants are positive, as in the polymer reference 
system, and as the density is increased the cumulants tend 
back toward zero, with all odd cumulants vanishing at 
Zo = z~ = 1. This point corresponds to the density Po = 112, 
which is the critical isochore of the interacting lattice gas and 
serves as the natural density at which to choose the reference 
system. The fourth cumulant is negative at z~, as in the poly­
mer solution, and successive even cumulants oscillate in 
sign. Figure 3 (b) illustrates the first five such cumulants. 
The presence in the continuous-field Hamiltonian of the 
polymer solution of odd terms of every order is directly relat­
ed to the extreme asymmetry of the two branches of the 
coexistence curve, whereas the vanishing of all odd cumu­
lants in the lattice gas reflects the underlying particle-hole 
symmetry of the Hamiltonian. 

c. Bulk properties in mean field theory 

The present section considers the application of the 
above formalism to the computation of the bulk coexistence 
properties of solutions oflong-chain polymers within a mean 
field treatment. The simplest such approximation to the sin­
gular part of the Gibbs free energy neglects the momentum 
dependence of all operators in the LGW Hamiltonian, and 
identifies the free energy density with the Hamiltonian, the 
equilibrium value ofthe field rp being that which extremizes 
the free energy. In keeping with the known Ising-like behav­
ior at the critical point, the expansion is truncated at fourth 
order in the fields rpk . Converting the resulting Hamiltonian 
in Eq. (2.11) to real space by means of relations of the form 
(lIV)l:krpkrp _ k = Sd 3 rrp(r)2, etc., yields 

- In Es "" f d 3r g.[ T,fl;rp(r) 1 

f {'" 1 '" = d 3r KI (O)rp(r) + 2! K2(0,0)rp(r)2 

1 '" + - K3 (0,0,0)rp(r)3 
3! 

(2.41 ) 
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Before proceeding to analyze this mean field theory, it is 
useful to rescale the continuous field q;. Note that the singu­
lar variation of the density of chainsp is obtained by differen­
tiation of E s ' and in conjunction with the definition of the 
operator KI in Eq. (2.12), one finds 

1 a In 2's _ _ (q;(r» 
V ---;;;;- - p - Po - NUl (0) . (2.42) 

Recalling that VI (0) ex To - T, and anticipating the subse­
quent result To - Tc-N- 1/2, we introduce the re­
scaled continuous field l/J(r) =.N 1/2q;(r), with 

a3 To (l/J) 
f/J-f/Jc =W To - Tc N I/2 . 

The free energy density then has the expansion 

1 
gs (T,/1) [l/J] "",a l (/1,/1o,nl/J +"2 a2(/10,nl/l 

(2.43) 

1 T .,,3 1 .,,4 + 3" a3 (/10' ) 'f' +"4 a4 (/10' n 'f' +"', 

a = n 

(2.44) 

(2.45 ) 

In order that there be coexistence between two phases 
with differing equilibrium values of the order parameter q; 
the Gibbs free energy density must exhibit two minima of 
equal depth. This may be achieved by requiring that both the 
linear and cubic terms a I and a3 in the Landau expansion 
vanish. The vanishing of a I (or, equivalently, of K I ) leads, 
through Eq. (2.12), to a relation between the bare chemical 
potential /1 and the as yet unspecified reference chemical 
potential/1o' The further vanishing of a3 (equivalently, K3 ) 

defines a locus of points /1~ (n along which the truncated 
Landau model is symmetric, and hence is the coexistence 
curve in the /10 - T plane. The critical point is then defined 
as that temperature Tc for which a2 (/1~ ( Tc ), T J = O. 

The requirement that the third cumulant G3 vanish to 
first order in w is equivalent to the solution x* (w) of the 
quadratic equation 

27P3W(X*)2 + 8p2WX* + Plw - 1 = 0, (2.46) 

which is shown in Fig. 4. Using the relationship between the 
fugacity and the volume fraction of polymer in the reference 
system, 

f/Jo = f/Jc =a3(;1(0) =a3N- I/2gl(x), ( 2.47) 

and the fact that x* is of order N°, we conclude that the 
critical isochore in mean field theory lies at a volume fraction 
f/Jc"",a3N-1/2gl(X*)_N-1/2, with a molecular weight de­
pendence identical to the Flory-Huggins result, that is, ;", 
= 1/2. 

Further correspondence with the Flory-Huggins theo­
ry may be established by computing the deviation of the criti­
cal temperature from the theta point. Returning to the ex­
plicit form of the quadratic Landau coefficient in Eq. (2.13) 
and specializing to the mean field critical isochore in the 
neighborhood of the theta point, we deduce that 

a2(T,/1~)""'~{ To -N I/2g2(X*)}. (2.48) 
N bv'(Tf} - n 

• x 

2 

FIG. 4. Scaled fugacity x· = N 3/2zt at which the third cumulant 03 (0,0,0) 
vanishes, as a function of the three-body amplitude w. 

The critical temperature thus satisfies (see Fig. I) 

tlT=.To -Tc=N-1/2 To , 
bV'g2(X*) 

(2.49) 

which is again the Flory-Huggins result ; T = 1/2. This 
scaling implies, through Eq. (2.43), that f/J - f/Jc 
= d1g2(x*) (l/J). Equations (2.48) and (2.49) imply that in 

the neighborhood of the critical point, and for T < Tc ' the 
mean field free energy density is 

gs [1/1] "'" - ~[bV'g2(X*)2]tl/l 
2 

+ ! [ - ! g4(X*) ]NI/2l/J4 + .... (2.50) 

The equilibrium order parameter follows from minimizing 
Eq. (2.50) as 

(1/1)" - (1/1)' = 2( - a2(T,/1~) )112 _N-I/4t 1/2 
a4( T,/1~) , 

(2.51 ) 

with;(3 = 1/4 as in Flory-Huggins theory. 
The dependence of amplitudes such as that in Eq. 

(2.51) on the microscopic length scales b and a may be eli­
minated if the thermal scaling field t is replaced by 7, where 

7= (2.52) 

to leading order in N on the mean field coexistence surface. 
From Eqs. (2.51) and (2.47) we find 

f/J" - f/J' - 1/2 
-'----'- = A 1/27 . 

f/Jc 

where the N independent amplitude is 

1 (w) _ '24 [g2(X*) p/2 
1/2 -yk~ (*)[ (*)]1/2 gl X -g4 X 

(2.53) 

(2.54) 

In the Flory-Huggins approximation, 11/2 =../24, a pure 
number with no additional energy scales, in contrast to Eq. 
(2.54) in which the parameter w appears explicitly. While in 
the Flory-Huggins model, as in the present work, all coexis-
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tence curves are predicted to collapse onto a universal form 
in the reduced variables 7 and N I12¢ (and perhaps with dif­
ferent variables in the presence of fluctuations) , we see here 
that a small element of deviation from a pure "law of corre­
sponding states .. 27 may be introduced by the possible sys­
tem-to-system variation of the three-body amplitude w. That 
is to say, there is a/amily of curves in the reduced variables. 
On the other hand, it is possible that a relationship exists 
between wand other energy scales in the system. For in­
stance, it has been suggested l5 that wcxv2 cx (T- To)2, 
equivalent to the statement that the third virial coefficient is 
proportional to the square of the second. While this is so for 
the entropic part of hard-sphere virial coefficients, it is not 
expected to hold in general for the full virial coefficients 
themselves. If this assertion were true, it would imply that 
the characteristic size of w at the critical temperature is N 
dependent through the scaiing To - Tc -N -1/2, with 
w = 0 at To. The experimental observation20 ofa finite third 
virial coefficient at the theta point of polymer solutions 
(where the second virial coefficient vanishes) requires that 
w be nonzero there. We return to the question of the size of 
triplet interaction in Sec. III. 

D. Polydisperse systems 

Experimental studies of phase equilibrium in polymer 
solutions are generally carried out on polydisperse samples, 
and it is, therefore, of interest to generalize the results ob­
tained above to systems with a distribution of chain lengths. 
For this purpose, we extend the definition of monomer den­
sity in Eq. (2.19) to include a sum over the different polymer 
species present, there being nk polymers oflength N k , 

1 nk (NJ. 
p(r) = I ~ i~1 Jo d78[r - r k /(7)]. 

The reference partition function is now given by 

Eo = IT f _1 -, IT (ZO.k ) n
k 

k nk~O fink' k 

x f IJ iVI g [rik]e -JVo[r;J, 

where the reference Hamiltonian becomes 

(2.55 ) 

(2.56) 

1 n, n", n" (N, (Nm (N" 
+ 3! w /~n i~1 j~1 k~1 Jo d7 Jo d7'Jo d7" 

x8[ri/(7) - rjm (7') ]8[rjm (7') - rkn (7")], 

while the perturbing Hamiltonian takes the form 

1 nk n, (Nk 

dY1 = 2! v f,; i~1 j~1 Jo d7 

(N{ 
XJo d7'8[rik (7)-rj/(7')], 

(2.57) 

(2.58 ) 

with v( T) as in Eq. (2.16), assumed the same for all chains. 
In Appendix B we show how the diagrammatic analysis 

described in Sec. II C of the perturbation expansion of the 

reference partition function is modified by the occurrence of 
polydispersity. In the grand canonical ensemble, polydisper­
sity is represented by a set of distinct chemical potentials for 
the species I, and it proves convenient to define certain mo­
ments of the distribution of chain lengths in terms of the 
reference fugacities ZO,k as 

(2.59) 

Defining further the total fugacity zo as 

(2.60) 

we find, in three dimensions, that the logarithm of the refer­
ence partition function has an expansion in the three-body 
amplitude with the same form as in the monodisperse case 
[Eq. (2.36)], namely, 

~ log Eo=zo{1 - W[PI + P2(N) (N 1/2)ZO 
V 

+ P3(N)3:z6] + O(w2
)}. (2.61 ) 

The vanishing of the third cumulant of the reference 
system defines, as before, the mean field critical isochore. 
The relation between the total volume fraction and total fu­
gacity leads, through Eq. (2.61), to the scaling result for the 
critical composition 

(2.62) 

For a monodisperse distribution, Eq. (2.62) reduces to the 
Flory-Huggins result S'" = 1/2. 

Note that the corrections for polydispersity involve the 
variance in the radius of gyration N 1/2 (for Gaussian 
chains), in contrast to the Flory-Huggins result in which the 
variance in molecular weight N enters. 28 That the radius of 
gyration should be the fundamental quantity in the discus­
sion of poly disperse properties may perhaps be understood 
as arising from the resemblance of the polymer critical point 
to that of simple fluids, the size of the polymer coil playing 
the role of the hard sphere radius. 

E. Interfacial properties 

The generalization of the mean field models of polymer 
solutions to situations in which an interface is present re­
quires the determination of the molecular weight depen­
dence of the nonlocal (Le., square-gradient) contribution to 
the free energy. In the simplest such model, that of van der 
Waals, Widom29 has pointed out that the nonlocal contribu­
tion to the free energy density could be taken as independent 
of N, in the same way that the energetic component of the 
Flory-Huggins free energy, which originates in the statistics 
of unconnected segments, is independent of N. This ap­
proach leads to the result S" = 1/2, in disagreement with 
experiment. It was shown, however, that a generalization of 
certain scaling arguments21 could be used to find the non-
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classical value of bl' given its classical value. The application 
of these ideas to the recent mean field theories of Nose and of 
V rij and Roebersen, which use both the local density of chain 
centers and of chain segments as order parameters, leads to 
the nonclassical value bl' =0.37, in reasonable agreement 
with experiment. This level of agreement does not appear, 
however, when such scaling arguments are applied to the 
theory with an N independent nonlocal contribution. Ste­
panow30 has presented analogous scaling arguments for bulk 
exponents, finding reasonable agreement with the nonclassi­
cal observations. 

The present analysis of interfacial properties makes use 
ofthe van der Waals31 theory. Here, the interface separates 
the two phases, one polymer rich, the other solvent rich, 
which coexist below the critical temperature. For this pur­
pose, we adopt a variational approach to the spatial profile of 
the monomer density within a square-gradient approxima­
tion. We continue to work with the variable 1/1, proportional 
to the deviation of the local volume fraction from rPc with an 
N independent constant of proportionality. The surface ten­
sion then takes the form 

U= min fO<> dz{~m(d1/1)2 +r(1/1)}, 
["'(xl) _ 0<> 2 dz 

(2.63 ) 

where the function r( 1/1) is the deviation of the bulk free 
energy density, evaluated at the local 1/1(z) , from the com­
mon tangent to the free energy surface, 

(2.64) 

withgs (1/1b) the common value of the Gibbs free energy den­
sity in the two phases. 

It is first necessary to compute the coefficient of (V1/1)2 
in Eq. (2.63), and from the operator structure of the LGW 
Hamiltonian defined in Eqs. (2.11)-(2.14), this is equiva­
lent to the determination of the coefficient of (momentum) 2 

in the small-momentum expansion of the operator 
A 

K 2 (k, - k). We see that contributions to m arise both from 
the potential rPl and from the reference system correlation 
function G2• This is in contrast to the original formulation of 
van der Waals, in which the coefficient m of the gradient­
squared term in Eq. (2.63) is purely energetic, being propor­
tional to the square of the range of the pair potential through 
which particles interact. More rigorous formulations31 show 
it to be governed by the second moment of the two-particle 
direct correlation function of the homogeneous fluid, and 
the quantity K2 is essentially a mean spherical form of that 
function. The momentum independence of the Fourier 
transform of the delta function pseudopotential between 
chain segments implies that the only contribution to this 

"'-
expansion comes from the reference cumulant G~ (k, - k), 
the computation of which is provided below. Thus, if one 
considers the polymer reference system as analogous to the 
purely entropic hard-core reference fluid used to describe 
systems of small molecules, then the nonlocal contribution 
to the free energy is likewise "entropic" in origin. That it 
should depend on molecular weight is then clear. 

In general,G~(k,-k) = (Ap-k)O- (A)O(P-k)O' 
but, from the nature of cumulant expansions, only the con­
nected diagrams which enter into the quantity 

xe-;k(r-r'l(o[r - rj(s)] 

xo[r' - rk (s')])o (2.65) 

need be considered. The techniques described in Sec. II C 
enable this average to be represented as 

n 

xo[r - rj(s»o[r - rk (s'» II 
;=1 

xexp{ - ~ iN dTlr;(T) 12 

+ f dr iN dTJ(r)O[r-r;(T»}. (2.66) 

Appendix A describes the structure of the expression in 
Eq. (2.66), which is represented diagrammatically in Fig. 5. 
We find, by dimensional regularization of the integrals ap­
pearing in the expansion, that the second cumulant has the 
small momentum behavior 

G~ (k, - k) =N I/2g2(X) 

- !N3/2x{1 + w[r. + r2x + r3x2] 

+ O(w2 )}k 2 + O(k4) (2.67) 

with the numerical coefficients obtained from those tabulat-
ed in Table I, 

I 
(7) ... .1., 

~ , 
).M' ! 

I 

(8) 
I 

... .L, 

1151/,\ ~ , 
M • " I 

/"T .... I 
I , 

(9) 
I 

(1) If"' , , ... .L, 
~ , 

M « , M I 
... T, 

)C M ' I I , 
(2) M'N' I I 

I 1161/,\ .......... (10) ... '- .... 
I I , ~ , 

(3) N « IN' , )( M I 

,'1 .... ' I( " I 

(II) 
I 

(4) 
"' I '" 

... ..L, I 
~ \ " I " I .... T' 

(5) 
I I , 

(
171/1'\ 'MM' I " I " I 

... T, (12) ... .&., 
I I , ~ , 

(6) '"! "I , I 

" I I 

(13) 
I 

" I 
... .L, 

I , 
,. « I 

" I 
I 

(14) ... .1., 
~ , 
• " 

! 

FIG. 5. Diagrammatic representation of the contributions linear in w to the 
perturbation expansion of the second cumulant G~ (k, - k). Notation is as 
in Fig. 2, with crosses representing the positions of the two scattering 
centers. Values of the diagrams are shown in Table I. 
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TABLE I. Values of the diagrams appearing in Fig. 4, in three dimensions. 

V- IN- 2(21T)3D,(0) V-IN -3(21T)3D ;'(0) 

1 21T - 21T 

2 -1T ( 13/12)1T 
3 -1T ( 13/12)1T 
4 21T -41T 

5 - (1/4)1T ( 1/16)1T 
6 (l/l)1T - (1/12)1T 

V-IN-712(21T)312D,(0) V-IN -912(21T)312D ;'(0) 

7 - 16/15 32/35 
8 8/15 - 52/105 
9 - 16/15 64/35 

10 2/15 - 1/35 
11 - 2/3 1/4 
12 - 2/3 1 
13 -4/3 44/15 
14 2/3 - 11/15 

V- IN- 5D,(0) V- IN- 6D;'(0) 

15 1/6 -1/8 
16 1/6 - 1/4 
17 1/4 -1/2 

43 605 5 
rl = - 6(217")2 ' r ----:-:-

2 - 21 (217")3/2 ' r3= -"2' 
(2.68) 

in three dimensions. When evaluated on the mean field criti­
cal isochore, where x = x*-O(N°), we find that the net 
effect of the three-body interactions has simply been to alter 
the numerical prefactor of the Gaussian chain behavior 
N 3/2k 2. From the rescaling of the Landau coefficients in Eq. 
(2.45), we find that the coefficient of (gradient)2 in Eq. 
(2.63) is of the from 

m(w,N,x*)=moN I/2
, (2.69) 

with some N independent function mo(w). The explicit mo­
lecular weight dependence of the nonlocal part of the square 
gradient free energy density distinguishes the present calcu­
lation from one discussed by Widom.29 

We treat here only the region asymptotically close to the 
critical point, and approximate gs by its expansion truncated 
at fourth order in the order parameter tP, gs [tP(z)] 
= (1I2)02tP(Z)2 + (1I4)a4tP(z)4, with 
gs [tPb] = - a~/4a4' The Euler-Lagrange equation for the 
interfacial profile is 

(2.70) 

This functional equation displays the explicit N dependence 
of the nonlocal contribution to the free energy. With the 
boundary conditions tP(z = ± 00 ) = ± tPb' Eq. (2.70) 
yields the standard profile 

tP(z) = tPb tanh(z/25'), (2.71) 

where the width of the interfacial region is proportional to 
the correlation length 

(2.72) 

The power 114 of the molecular weight dependence of S is 
the same as that of de Gennes,32 scaling hypothesis, 

S-N 1
/2 (;c ~~ r, (2.73) 

with the mean field approximation to the correlation length 
exponent, V= 1/2, and the scaling Te - Tc -N- 1/2

• The 
surface tension itself is 

23/2 m l/2 
u=----( _02)3/2_N- 1/4 t 3/2, (2.74) 

3 0 4 

with the mean field exponent !1- = 3/2. The N dependence 
obtained here is identical to that found by Vrij and Roeber­
sen5 and by Nose6 who, as remarked earlier, considered two 
distinct spatially-varying order parameters in the descrip­
tion of the interfacial structure. In the present approach 
there is a single degree of freedom, the local monomer den­
sity p(r) [or, equivalently, the scaled quantity tP(r)]. 

III. DISCUSSION 

The present work establishes a systematic and con­
trolled path from a microscopic continuum model of poly­
mer solutions to a field-theoretic description of the critical 
properties of such a system. It reveals an interesting parallel 
between the descriptions of critical phenomena in simple 
fluids II and in polymeric mixtures in which the effects of 
three-body interactions are incorporated perturbatively into 
a reference system, with the attractive interactions treated 
by means of a Hubbard-Stratonovich transformation to a 
continuous field representation. A microscopic definition of 
the square-gradient term in the free energy density of a 
weakly inhomogeneous system reveals an important entro­
pic contribution absent in the van der Waals picture, one 
which is shown here to imply a functional equation for the 
interfacial profile with an explicit dependence on the poly­
mer molecular weight. Interestingly, the entropic portion of 
the square-gradient coefficient also plays in important role II 
in the validity of particle-hole symmetry in critical fluids 
through its density dependence. There too, three-body inter­
actions alter the magnitude of the square-gradient coeffi­
cient. 

Whereas the phase behavior of a model on the level of 
that due to Flory and Huggins obeys an exact law of corre­
sponding states,27 such is not the case with the Edwards 
model studied here if the phenomenological three-body ex­
cluded-volume parameter W is considered system depen­
dent. On the other hand, we have found that the scaling 
behavior of the critical phenomena arising from the Ed­
wards model is essentially identical to the Flory-Huggins 
results, which arise from a lattice model with no explicit 
three-body interactions at all. One is thus led naturally to 
inquire into the relation between the Edwards model and the 
original lattice description. Is the presence of a three-body 
term in the Edwards model a consequence of real three-body 
forces in the underlying lattice description, or is it instead a 
consequence of the nature of the continuum limit of a system 
with purely pairwise-additive interactions? If, as would ap­
pear to be the case, the latter is true, then one expects a 
relationship between the three-body amplitude wand other 
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energy scales in the problem. Indeed, a study33 of this issue 
within the context of field-theoretic representations34.3s of 
lattice models of interacting, self-avoiding polymers (n vec­
tor models in the limit n -+ 036 ) suggests that the continuum 
limit of such lattice systems is an Edwards model with arbi­
trarily high-order many-body excluded-volume interactions 
whose strength is related in a simple way to the thermal 
energy at the theta point. 

In the present work, we have confined the analysis to the 
immediate region of the consolute point, emphasizing the 
molecular weight dependence of the critical amplitudes de­
fined in the asymptotic critical region t -+ 0 at fixed polymer­
ization index N. Elsewhere,37 following Widom,29 we will 
address in detail more general scaling properties of the phase 
boundary and surface tension with both molecular weight 
and temperature within the critical region. 

Having established an exact and analytically tractable 
formalism for the study of critical phenomena in polymer 
solutions by field-theoretic techniques, it is naturally of in­
terest to investigate fluctuation corrections to the mean field 
results obtained here, both at the level of Gaussian fluctu­
ation theory38 and with more sophisticated renormalization 
group techniques. 39 Of particular interest is the fact that the 
LGW model obtained here is identical in form to that of an 
Ising-like system, with the polymeric nature of the solute 
entering only through the parametric dependence on N of 
the various operators in the Hamiltonian. Unlike the Ising 
model, this field-theoretical Hamiltonian contains certain 
symmetry-breaking odd operators which render an analysis 
of coexistence curve more subtle. In mean field approxima­
tion the critical isochore is defined by the vanishing of the 
third cumulant of the reference system. An investigation of 
fluctuation corrections to the mean field coexistence surface 
in the space of the coefficients of such asymmetric models40 

may be a fruitful approach toward an understanding of the 
nonclassical exponent governing the molecular weight de­
pendences of the critical composition.37 The nonclassical ex­
ponents found in critical amplitudes would follow from simi­
lar techniques applied to the scaling law equation of state. 
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APPENDIX A: CALCULATION OF THE REFERENCE 
PARTITION FUNCTION 

As an example of the methods used to determine the 
properties of the reference system, we consider in this Ap-

pendix the calculation of a particular two-chain contribution 
to the second cumulant arising from three-body interac­
tions. The full expression for G~ (k, - k) is 

(PkP - k ) 0 - (A) 0 (p - k ) 0 

= zo{Sg (K) - 2w[2(D I + D2 + D3 + Ds) + D4 + D6 

+ zo(2(D7 + DB + DII + D 14 ) 

+ D9 + DIO + DI2 + 4D13 ) 

+~z6(2DI5+DI6+4DI7)] +O(w2
)}, (AI) 

with Dn = Dn (k) standing for the labelled diagrams in Fig. 
5. Here, the scattering function of a Gaussian chain is 

Sg(K)=2{~+:2(e-K-l)}, (A2) 

with K = Nk 2/2, and is represented by a diagram with a sin­
gle polymer chain and two scattering points. At zero mo­
mentum, the individual D; sum up with the weights given in 
Eq. (AI) to give the coefficients in Eq. (2.38); i.e., 
N 2P 1 = 2[2(D1 + D2 + D3 + Ds) + D4 + D6], 22N 2P2 
= 2[2(D7 + Ds + DII + D 14 ) + D9 + DIO + DI2 + 4D13 ], 

and 32N2p3/3! = 2DI5 + DI6 + 4D17• 

We consider the evaluation of the general polydisperse 
diagram DI4 in Fig. 5 (shown with labelled internal variables 
in Fig. AI), to illustrate the application of the method of 
dimensional regularization. At zero momentum, it is simpler 
to study the corresponding diagram P2 shown in Fig. 2, to 
which DI4 contributes as described above. From the expan­
sion of the operator A3 in Eqs. (2.29) and (2.30), we obtain 

p2=fdX~R2 
bJ(X)3 ' 

where 

x f dr f dr' f dr" foNt dr i Nm 
dr' Lr'dr" 

X Go(r - rj,r)J(r)Go(R j - r,Nj - r) 

X Go(r' - rm,r')J(r')Go(r" - r',r" - r') 

XJ(r")Go(R m -r",Nm -r"), 

where the zero-order Green's function is 

...... ...1--., 
1'/ , 

o IT' cr' T'~ Nm ----~,----~*~--~\~---
V' X R I.J ~ ~m 

(A3) 

(A4) 

FIG. AI. Two-chain diagram (number 14 of Fig. 5) contributing to the 
perturbation expansion of the second cumu1ant, labelled as in the general 
polydisperse case with scattering points y and y'. 
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Go(R,N) = (21TN) -d/2 exp( - R2/2N). (AS) 

The integrations over the end-vectors R/, Rm , r/, and r m and 
the internal coordinate x yield unity by the normalization 
and translational invariance of the unperturbed Green's 
functions, with the result 

P2 = V 1 rN

/ d'T rNm d'T' ( d'T" ('T' _ 'T") - d /2. 
(21T)d/2 Jo Jo Jo 

(A6) 

The 'T integral trivially yields a factor of N I , and dimensional 
regularization of the remaining integral (convergent for 
d < 2) leads to the final result 

p = V 1 _2 __ 2_N N 2- d/2. (A7) 
2 (21T)d/2 2 _ d 4 _ dIm 

In the monodisperse case, NI = N m , this reduces to the value 
quoted in Eq. (2.34). 

We wish to compute 

d a2 

D;'(O)= L -2 D;(k)lk=o' (AS) 
;=1 ak j 

The evaluation of the diagram in Fig. Al at finite momen­
tum k is facilitated by considering its Fourier-Laplace repre­
sentation. The complete expression is 

D 14(NI ,Nm ;k) 

= f dy f dy' f dRI f drl f dRm f drm 

X f dx f du f dd f d'T f d'T' f d'T" 

xe;k'(Y-Y')GO(y - r/,u)Go(x - y,'T - u) 

X Go(RI - x,NI - 'T) 

X Go(x - rm,'T')GO(y' - x,u' - 'T') 

XGo(x - y','T" - u')Go(Rm - x,Nm - 'T"). (A9) 

Introducing the double Laplace transform D14 (SI,Sm;k) 
=.!f [D14(NI ,Nm ;k)] and using the convolution property 
of the transform of the time-ordered diagram, we find 

A k A. 2A 2 
D 14 (SI,Sm; ) = V [GO(O,S/)] [GO(O,Sm)] 

A A 

X GO(q,sm )Go(k + q,Sm)' (AlO) 

where the Fourier-Laplace transform of the zero-order 
Green's function (AS) is 

Go(k,s) = (s + ~k 2) -I. (All) 

To evaluate the low-momentum behavior of (AlO), use the 
relationships41 

_1_= r(a+p) t x a
-

1(1_X)p-l (A12) 
aab P r(a)r(f:1) Jo [ax+b(1-x)]a+ P ' 

and 

f dd 1 
P [p2 + 2k.p + m2]a 

rca - d 12) ~/2 

rea) (m2 _ k 2)a - d/2 ' 
(A13) 

to rewrite Eq. (AlO) as 

All 1 1 
D I4 (SI,Sm;k) = V----2--

1T s7 r,., k + 2s1 

i l 1 
X dx . 

o [2sm +x(1-x)k 2 ]1/2 

(A14) 

Subsequent expansion for small k and inverse Laplace trans­
formation, using .!f - 1 [s - a] = N a-I Ir( a), gives 

D 14(NI,Nm;k) = V 1 3/2 {2 NyN;;,2 
(21T) 3 

__ 1_ (N 2N 5/2 
90 I m 

+ lON~N~2)k2 + O(k 4
)} • (A1S) 

In the monodisperse case, this yields the N7/2 dependence 
shown in Table I. 

APPENDIX B: POL YDISPERSE SYSTEMS 

In this Appendix we give further details of the general­
ization of the perturbation theory to polydisperse systems. 
The three-body interactions in the polydisperse reference 
Hamiltonian Eq. (2.57) may be rewritten as in the monodis­
perse case Eq. (2.21) as (wI3!)fdr p3(r), allowing a decou­
pling of the chains by the introduction of the operator A3 as 
in Eqs. (2.22) and (2.23). With this decoupling, the summa­
tions in the grand partition function (2.56) may be done 
explicitly, yielding 

::0 = exp[ - A3( {8!8J}) ]exp(~ Zo,IQ(NI,J») I J=O ' 

(B1 ) 

where the single-chain partition function Eq. (2.25) be­
comes 

Q(NI,J) = f ..@[r]exp{ - ~ iN/ d'Tlt( 'T) 12 

+ f dr iN/ d'TJ(r)8[r - r('T)]} . (B2) 

Generalizing Eqs. (2.27) and (2.2S) in the monodisperse 
case, the effect of the operator A3 can be written as 

e - A, exp( ~ ZO.IQI) 

00 1 n 

= L I" L ... L II ZO.I,(QI, "'QI)' (B3) 
n = 0 n. I, 11/ i = t 

with the abbreviated notation QI = Q(NI,J). To first order 
in the three-body excluded volume amplitude, the contribu­
tion ofthe term of order Q n in the expansion of (B 1) is 
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The m chain diagrams whose values are represented by the 
quantities Pm are the same as in Fig. 2, but with distinct 
polymerization indices for each of the chains. By the compu­
tational rules discussed in Appendix A, and by explicit sum­
mation of the series in (B3), we find to first order in w 

Eo=exp(v~zO,j) {l-WV[pl~ZO'kN~-d 

+ P2 L Zo,kzo,lN/N;" - d/2 
1<,/ 

+ P3 L Zo,kZo,/Zo,mNkN/Nm] + O(W2)}. (B5) 
k,/,m 

Introducing the total reference fugacity Zo = 1: /ZO,l and fuga­
city moments (Na) = zo- 11:/zo,lNf, we obtain the final re­
sult quoted in Eq. (2.61). 
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