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Slow flow of a viscous incompressible fluid past a slender body of circular cross- 
section is treated by the method of matched asymptotic expansions. The main 
result is an integral equation for the force per unit length exerted on the body by 
the fluid. The novelty is that the body is permitted to twist and dilate in addition 
to undergoing the translating, bending and stretching, which have been con- 
sidered by others. The method of derivation is relatively simple, and the resulting 
integral equation does not involve the limiting processes which occur in the 
previous work. 

1. Introduction 
We consider slow flow of a viscous incompressible fluid past a slender body of 

circular cross section. The body can translate, bend, twist, stretch and dilate. 
Our main result is an integral equation for the distribution along the length of 
the body of the force exerted on it by the fluid. When twisting and dilating are 
absent, the equation is equivalent to  that of Hancock (1953), and then the fist 
approximation to its solution by iterations is the result of Cox (1970). However 
our results do not involve the limiting process which occurs in their results. 
Furthermore the derivation, by the method of matched asymptotic expansions, 
seems to be simpler than theirs. For the motion of slender axially symmetric rigid 
bodies, related integral equations have been formulated and solved asymptotic- 
ally by Tuck (1964), Tillett (1970), and more completely by Geer (1976). Non- 
axially symmetric straight bodies have been treated by Batchelor (1970). 

As an example, we have applied the integral equation to the transverse and the 
longitudinal motion of a rigid circular cylinder of finite length, when it agrees 
with those of the authors just mentioned. In  both cases we have calculated the 
second approximation to the force distribution by iterations, and from it we 
have found the total force. The results include and extend the previous ones for 
this case. 

It follows from the work of TilIett (1970) and Geer (1976) that for axially 
symmetric bodies the solution of the integral equation contains all terms in the 
force distribution which are powers of (log a/L)-l. Here a is the radius and L the 
length of the cylinder. Therefore an infinite number of such terms would have to 
be calculated to yield the same result as could be obtained by solving the integral 
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equation. This is in contrast to Prandtl’s ‘lifting line’ integral equation for the 
force distribution along a slender airfoil. In  that case, as Van Dyke (1964, p. 175) 
has shown, two or three terms in the asymptotic expansion of the solution are 
more accurate than the solution of the integral equation. 

An extensive study of flows around axially symmetric bodies which are not 
necessarily slender has been made by Chwang & Wu (1974, 1975) and Chwang 
(1975). They have analysed in detail the fundamental solutions (Stokeslets, 
rotlets, etc.), some of which we use in constructing our outer expansion. They 
have also compared some of their exact solutions with those of slender-body 
theory to determine its accuracy. 

The rest of this paper consists of the following sections: $2, inner expansion; 
6 3, outer expansion; $ 4, inner expansion of outer expansion; $ 5, outer expansion 
of inner expansion; $6 ,  matching; $ 7, iterative solution of integral equation; 
5 8, drag coefficients; $9, applications; $ 10, twisting and dilating bodies; 
appendix. 

We shall use the body length L as the unit of length. 

2. Inner expansion 
Let x = x0(s), 0 < s < 1, be the centre-line C of a body of length 1, with s being 

arc length along C. Let v(s) be the translational velocity of the body surface at s, 
let w(s)  be its angular velocity about C, let a($) < 1 be the radius of the body 
cross-section at s, and let u(s )  be the radial velocity of the body surface. Finally, 
let u(x) be the velocity of the fluid surrounding the body and let uo(x) be the fluid 
velocity in the absence of the body. Then u(x) must satisfy the Stokes equations 
for slow flow, be equal to v(s) + w ( s )  8 +cE(s) 8 on the body and tend to uo(x) far 
from the body. Here 8 and 8 are unit vectors in the circumferential and radial 
directions in the plane normal to C a t  s. 

In  the fluid near a point xo(s) on C, the flow is essentially that around a trans- 
lating, rotating, dilating circular cylinder. Therefore the leading terms in its 
inner expansion are 

u(x) N v(s) -1- ip(s) log- P + j(s) 
4 s )  

- (j cos2 8 + ksin 8 cos 8) y(s) ( 1 - a;?) - 

4 s )  4 s )  + ( - j sin 8+ k cos 8)  w(s)a2(s) + (j cos 8 + k sin 8)  - . 
P P 

The orthogonal unit vectors i, j and k depend upon the point s, with i = xos being 
tangential to C, j being in the direction of the component normal to C of the 
relative velocity of the body and the fluid near it, and k = i x j .  The direction 
j(s), as well as the coefficients P(s) and y(s), are to be determined. The distance p 
and the angle 0 are the polar co-ordinates of x in the plane normal to C,  with 
B measured from the j direction. 

The first term on the right side of (1)  is the translational velocity of the body, 
the second term is due to the component of relative velocity along the body, the 
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third and fourth terms are due to the component of relative velocity normal to 
the body in the j direction, the fifth term is due to rotation and the sixth term is 
due to dilation. All these terms are those for uniform motion of a circular cylinder. 

3. Outer expansion 
Far from the body we can represent u as u, plus the flow due to a distribution 

of Stokeslets with density a(s), rotlets with density Q(s) i(s)  and sources with 
density 6(s), (See Chwang & Wu 1975; or Lighthill 1975, chap. 3.) Thus the leading 
terms in the outer expansion of u are 

+- ds'. -+-+- 1 1 a RR.a  Q i x R  6R 
u(x) uo(x)+jo [R R3 R3 R3 

Here R(s') = x - x,(s') and R = IRI . The force exerted by the fluid on a Stokeslet 
of strength ads is - gmpads, while that exerted on a rotlet or source is zero, where 
p is the viscosity of the fluid. Therefore the total force F exerted by the fluid on 
the body is 

F N - 877,~L/~' a(s) ds. 

T N - 87r,~Lz1~' [R(s) x a(s) + Q(s) i(s)]  ds. 

(3) 

The torque exerted by the fluid on a rotlet of strength M(s) ds is - 8npQ d5 while 
that exerted on a Stokeslet or source is zero. Therefore the total torque T exerted 
by the fluid on the body is 

(4) 

4. Inner expansion of outer expansion 
To determine a,  p, y,  6, s2 and j, we must match (1) and (2). For simplicity we 

shall first omit twisting and dilation by setting w = ci = 0 in (1). Then we can 
set i2 = 0 and 6 = 0 in (2) and (a), since (1) and (2) can be matched when we do 
so. In  order to match we must evaluate (2) for x near xo(s) on C. This evaluation 
is done in the appendix, with the result 

u(x) - uo(s) - [4a,(S) i + 2a2(s) j + 2a3(s) k] logp +uf(s). ( 5 )  

Here uo(s) = u,[x,(s)] while a,, a2 and a3 are the components of a. 
The function ur(s) in (5) is the velocity at  xo(s) due to that part of the body 

away from xo(s), i.e. outside a neighbourhood of xo(s). It is given by the finite part 
of the integral in (2) with D = 0 and 6 = 0, and is defined as follows: 

RR.a  
= lim ( lo1 [ ; + ds' + [4a,(s) i + 2a2(s) j + 2a3(s) k] logp 

P-+O 

In  the last line of (6), R is the vector from xo(s') to a point at a distance p from 
xo(s). In the appendix it is shown that, with the logp term given in (6), the limit 
is finite. 
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5. Outer expansion of inner expansion 

the p-2 term, since then (1) will match with ( 5 ) .  
We next evaluate (1) for x far from C, i.e. for p B a. To do so we merely omit 

6. Matching 

omitted and with w = ci = 0, and by (5 ) .  From the coefficients of logp we get 
Now we equate the two expressions for u given by (1) with the p-2 term 

i/3+jy = -4ali-2a2j-2a3k. (7) 

(8) 

P(s)  = - 4a, (s), y(s) = - 2 4 4 ,  a3(s) = 0. (9) 

The terms independent of p yield 

v - (ip+ jy) log a + i y j  - y(j cos2 8 + ksin 8 cos 8) = u,+ u, 

From ( 7 )  it follows that 

By using (9) and ( 7 )  in (8) we obtain the following integral equation for a ( s ) :  

1 - 2a,(s) ( j  cos28 + ksin 8 cos 8) + -/A I 
We can consider separately the i and j components of (10) and recombine them 
to get 

- 2a2(s) ( j  cos28+ ksin Bcos8) +f, I ;+; 
Here I is the identity matrix. This equation can be shown to be equivalent to the 
equation obtained by combining equations (47) and (48) of Hancock (1953). 

The finite part of the integral in (1 1) is the sum of the two integrals given by 
(A 12) and (A 18) with Q = 6 = 0. We can use them to replace the h i t e  part of 
the integral by an ordinary integral. In  doing so we find that the term 2 3 .  u in 
(A 18), in which 8 is a unit vector pointing from xo(s) to x, exactly cancels the 
term - 2o12(j cos2 8 + k sin 8 cos 8 )  in (1 1). Then (1 1) becomes 

[21- i(s) i(s)] . (.,(a) - v(s) + a2(s) j + a(8) log [4s( 1 - s)] 
1 

4 log a( s) 
a ( s )  = 

+al(s)i(s) [log(4s(1 -s))-2] 
R,R,. a ( s  + t )  al(s) i(s) t2 - 

R?l ltl3 
Here R, = xo(s) - xo(s + t )  and j is in the direction of the component normal to i 
of the expression in curly brackets on the right side of (12). Apart from the term 
a2 j, this expression is the velocity of the fluid relative to C. 
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Equation (12) is the main result of our analysis in the case of a non-twisting, 
non-dilating body. Since - 8npa(s) is the force per unit length exerted by the 
fluid on the body, it is essentially an equation for this force distribution. Once (12) 
has been solved for a ( s ) ,  all the quantities in the inner expansion (1) and in the 
outer expansion (2) are known in terms of it, when o = ci = 0. 

7. Iterative solution of integral equation 

approximation a(O)(s) to a ( s ) ,  given by 
By setting a = 0 on the right side of (12), we obtain a lowest-order or zeroth 

I 
a(O)(s) = [2l - i(s) i(s)] . {u&) - v(s)}. 4 log a( s) 

The first iterate a@)(s), obtained by using a(O)(s) in the integral in (12), is 

@(s) j+a(O)(s)log[4s(l-s)] 
1 

4 log a(s) 
a@)(s) = a(O)(s) + 

+ i(s) a'f'(s) (log [4s( 1 - s)]  - 23 

The force density - 8npa(l)(s) can be shown to agree exactly with the result (6.2) 
of Cox (1970), which is in a quite different form. 

8. Drag coefficients 
Various authors have attempted to represent the force per unit length at  the 

point xo(s) on a slender body as a multiple of the relative velocity u0(s) - v(s) a t  s. 
If u,, - v is independent of s this is possible, and the coefficient of proportionality 
is a matrix C, called the drag-coefficient matrix. However, if u0(s) - V(S) varies 
with s, then the force density a t  s is not determined by uo - v at the point s alone. 
Instead it depends upon the entire function uo(s) -v(s). Therefore there is no 
local or pointwise proportionality between force density and relative velocity. 
If we wish to represent the force density in terms of the relative velocity, we must 
introduce a non-local drag-coefficient operator C,. 

To illustrate this, let us consider the approximation (14) for a(l)(s), so that the 
force density is - 87rpa(l)(s). By substituting (13) into ( la) ,  we can write this in 
the form - 87r,ua(l)(s) = CD[uo(s) - v(s)]. The operator C, clearly consists of a 
multiplicative part plus an integral operator. When uo(s) - v(s) is a constant, 
C, becomes a matrix. 
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9. Applications 

R, = It], with i a constant. Then (12) can be simplified to the following: 
When the curve C is a straight line segment then xo(s) = is, R, = i t  and 

uo(s)-v(s)+a2(s)j+a(s)log[4s(l-s)] 

+ 1)  - at). (15) 

1 
a ( s )  = 

4 log a(s) 

It1 
+a1(s)i{log[4s(l -~)]-2}+/~-’[l +ii]. 

- 5  

If uo(s) -v(s) = iU(s) is parallel to C, then we assume that a ( s )  = ia,(s), and (15) 
becomes 

If, instead, uo(s) -v(s) = jU,(s) with j constant, so that the relative velocity is 
normal to C, then we assume that a ( s )  = aZ(s) j. In  this case (15) becomes 

For a circular cylinder moving as a rigid body along its axis, we have 
a = constant and U, = constant. Then the iterative solution of (16) yields for the 
second iterate 

1-8 at 
(log [(s + 1)  (1 - s - t ) ]  -log [s( 1 - s)]} -1. (18) 

It1 
+ 

The total force Fli, obtained by integrating - S p ~ a ~ ~ ) ( s ) ,  is also in the direction 
i and is given in dimensional form by 

The integral in (18) does not contribute to the force, nor would the last term in 
(16) contribute no matter what a, was. 

For a cylinder moving normal to its axis, a&“’ is given by (I  8) with +U, replaced 
by U, and with log [4s( 1 - s)] - 1 replaced by log [4s( 1 - s)] + I. Then the force 
F, j is found to be 

The results (19) and (20) extend the previous results mentioned in the 
introduction. 
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10. Twisting and dilating bodies 
Let us now return to the general case of a body which can twist and dilate in 

addition to translating, bending and stretching. Then the inner and outer expan- 
sions of u are given by (1) and (5), and the outer expansion of the inner expansion 
is given by (I) with the p-2 term omitted. The inner expansion of the outer 
expansion is evaluated in the appendix with the result 

u(x) N u&) - [40ll(S) i + 2a2(s)j + 2a3(s) k] logp 
+ 2Qp-l( - j sin 8 + k cos 0) - Q(c3 j - c2 k) log p 

+ 2Qp-l(j cosO++ssin6) +{-is'+ jc,S+ kc36)logp+u,(sj. 
(21) 

The functions c,(s) and c3(s) are defined by i,(s) = c2 j + c3 k and uf is defined by 

+ [4a1(s) i + 2a2(s) j + 2a3(s) k] log p - 2Qp-l( - j sin 6 + k cos 8) 

+ Q(c3 j - c2 k) logp - 2Sp-l(j cos O -k k sin 8) + logp[i28 - jc, 6 - kc, 61 . 1 
(22) 

We now equate the expressions for u in (1) and (21), omitting the p-2 term 

ip+ jy = - 4a1i- 2a2j - 2a3k- Q(c3j -c2k) + ( -  2i6' + jc26+ kc36). (23) 

in (1). From the coefficients of logp we get 

From the terms independent of p we get 

v(s)-(ifl+jy)loga+ Byj--y(jcos2B+ksin8cosO) = uo(s)+uf(s). (24) 

From the coefficients of p-1 we obtain 

Q(s) = &W(S)U2(8 ) ,  S(s) = &u(s)6(9). (2% (26) 

(27) 

Next we get from (23) 

p = - 4a1 - 26', y = - 2a2 - Qc3 + 6c2, a3 = &( Qc, + 6c3). 

Upon substituting (22) and (23) into (24) we obtain 

2a,i + a2 j + a,k = - @(c, j - c2k) -is' + &jc2S + &kc36 

+ 2 log u(s) (u&) -v(s) - &yj + y(j cos2 8 + ksin 8 cos 8) 

RR.a Q i x R  6R +fl [l -+-+- R3 R3 +a] as'). 

This is the integral equation for a ( s )  in the general case. The functions a3, p, y ,  6 
and SZ are given by (21)-(23), while j is in the direction of the component normal 
to  i of the expression in curly brackets in (28), which is the relative velocity of the 
body an.d the fluid, except for the term - iyj. Furthermore, the integral equation 
can be riolved by iteration as before. 
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The finite part of the integral in (28) is the sum of the integrals given by (A 12) 
and (A 18). Therefore, by means of those equations, it can be replaced by the 
ordinary integrals plus the additional terms given on the right sides of those 
equations. 

This work was supported in part by the National Science Foundation under 
Grant MPS74-19234 and the Air Force Office of Scientific Research under Grant 
AFOSR-76-2884. 

Appendix 
Let I(x) denote the integral in (2), which we wish to evaluate for x near 

xO(s). To do so we set x = xo(s) +p, where p.xos(s) = 0 because xo(s) is the 
point on C nearest to x. We also set s’ = s + t and integrate with respect to t .  
Then we can write I(x) in the form 

Here h,(t) = a(s+t), h,(t, p) is the sum of the last three numerators in (2) and 
R(t, p )  = x - xo(s + t )  = p + xo(s) - xo(s + t ) .  If R,(s, t) = xo(s) - xo(s + t )  then 

h3(t, p) = [p + R,] [p + R,]. a(s + t )  + Qi x [p + R,] + S[p + R,]. (A 2) 

R2(t, p) = p2 + 2p. R, + Rg = p2 + t2c2(t, p). (A 3) 

c2(t, p) = t-2{Rg + 2p. R,}. (A 4) 

Next we write R2 in the form 

Here we have introduced c2(t, p), defined by 

By writing xo(s + t )  as a Taylor series in t, and using this series to expand R, in 
(A 4)) with xos(s) = i(s), we obtain 

c2( t7p)  = 1-p.i ,+O(t).  (A 6 )  

Now let us consider the integral of hn(t, p) R+(t, p) for any positive integer n 
and any hn with n continuous derivatives. As p tends to zero, R tends to 
tc(t, 0) and the integral becomes infinite, provided that t = 0 is in the range of 
integration. To isolate the divergent part we write the integral as follows: 

The first integral on the right side of (A 6) is finite a t  p = 0. To see this we merely 
set p2 = 0 in the denominators and put both numerators over tn. The new 
numerator is just h,c-n minus the first n terms in its Taylor series in t ,  so it 
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begins with t", which cancels the denominator. Thus the integrand is finite a t  
p = 0 for all t ,  and therefore the integral is finite at p = 0. 

It follows that the singular part of the integral on the left side of (A 6) is given 
by the second integral on the right. But that integral can be evaluated explicitly, 
and thus the singular part can be found explicitly. For n = 1 and n = 3, the 
following integrals, in which t > 0, are needed: 

J:t(t2+p2)-3dt = p--l-(t2+p2)d = p-l-t-l+O(p2), 

For n = 1 the last term in (A 6) is just hl( 0, p) c-l( 0, p) multiplied by the integral 
in (A 7) with limits - s and 1 - s. The part of this integral which is singular as 
p tends to zero is just -2logp. Furthermore, from (A5), c(0,O) = 1, and if 
h,(t) = a(s+t) then h,(O) = a(s). Thus the singular part of the last term in (A6) 
is - 2a(s) logp. If we subtract this part from the integral on the left of (A 6), the 
resulting difference has a finite limit as p tends to zero. We call this limit the 
finite part of the integral and write it as follows: 

1 - 3  a(s  + t )  1-5 Q 

dt = lim [ dt + 2a(s) logp] . 

Another expression for the b i t e  part of the integral can be obtained by using 
(A 6) for the integral on the right side of (A 11). Then we can just set p = 0 in the 
first integral on the right of (A 6) and use (A 7) to evaluate the second integral. 
In  this way we get 

For = 3 the integrals (A 8)-(A 10) enter the last term in (A 6). From (A 2) 
and (A 5 )  their coefficients are 

h3(0Jp)c-3(0,p) = [Pp*a(s)+Q(s)i(s) p+S(s)pl [i-iS(s)*p]-' 

= [Szi x p + Sp] [l +#is. p] + pp. a+ O(p3), (A 13) 

(A 14) 
d 

p) C-3(tJ p)lt=o = -iS+ O(p)J 

(A 15) 
1 d2 Sz 6 -- [h3c-3],=, = ii .a+- ixi5--i8+O(p). 2 dt2 2 2 

Now (A 8) and (A 13) yield the singular term 2p-2(!3 x p + Sp), (A 9) and 
(A 14) yield no singular term because (A 9) has an odd integrand, and (A 10) and 
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(A 15) yield - (2ii.  a + Qi x is - 6is - 26,i) log p. Upon combining these singular 
terms with the term - 2a(s) logp from the integral of h,/R, we obtain as &he 
singular part of I the following: 

Z ~ - ~ ( s l i  x p + Sp) - (2a + 2ii. a + Qi x is- 8,- 26,i) logp. (A 16) 

By subtracting (A 16) from I and letting p tend to zero, we get the finite part of I, 
denoted by u,in (6) and (22). Then I is the sum of the singular part, the finite part 
and terms which tend to zero with p. The expression (A 16) is given in (21) and is 
used in (22) to define the finite part of I. With 6 = Q = 0, it  is used in (5) and (6). 

We can obtain another expression for the finite part of the integral of h3/R3 by 
using (A 6) as we did in deriving (A 12). The singular part of the integral is given 
by (A 16) without the term - 2a(s) logp. Thus the finite part is defined by 

)'-" [RR. a + Qi x R + 6R] R-3dt 
S 

h3R-3dt-2p-2(Qi x p+6p)+(2ali+Qixis-6is-26,i)logp , 
= Ern[ P-tO /:is I 

(A 17) 

Now we use (A 6) for the integral on the right side of (A 17), setting p = 0 in the 
first integral on the right side of (A 6). We also use (A 8)-(A 10) and (A 13)-(A 15) 
t o  evaluate the limit as p tends to zero of the last integral in (A 6). In  this way 
we get 

f '-" [RR . a + Qi x R + 6R] R4 dt 
- S  

1-S R,R,. a(s + t )  + Q(s +t )  i(s +t )  x R, + 6(s +t )  R, =I-. [ Ri3% t )  
-i(s)6(s)t+(ali+ 4Qix is- &Xs-6,i)t2 - 

i t 1 3  

Here 8 = p/p is a unit vector in the direction of p. The finite part of I is obtained 
by adding (A 12) to (A 18). 
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