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Nonlinear Dynamics of Stiff Polymers
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A formalism is presented for the nonlinear dynamics of inextensible stiff polymers within the model
of local viscous dissipation. By casting the internal elastic forces in an intrinsic representation,
enforcing the constraint of local inextensibility through a Lagrange multiplier function, and utilizing
techniques from the differential geometry of curve motion, the dynamics of configurations of arbitrary
complexity is reduced to a scalar partial differential equation amenable to analytical and efficient
numerical study. As an example, the formalism is applied to the “folding” dynamics of stiff polymers
with pairwise self-interactions and intrinsic curvature.

PACS numbers: 61.41.+e, 03.40.Dz, 87.10.+e

Imaging and manipulation techniques capable offorces. They are also completéhtrinsic, making no ref-
probing the conformation and dynamics of biologicalerence to any idealized reference shape. This is particu-
macromolecules have revealed a variety of phenomenarly important since from the foundations of elasticity
involving complex molecular configurations. Among theory [5] we know that the mathematical problem of the
these are long DNA molecules undergoing electrophoretiequilibrium configurations of such an object is intrinsically
motion in structured environments [1] and collapse fromnonlinear, and we must expect the same for the dynamics
near full extension [2], and actin filaments moved by[10]. These nonlinearities arise from the fact that the arc-
molecular motors on surfaces [3]. In contrast to studiesength parametrizatiom of a space curve is not indepen-
focusing on thestatistical properties of ensembles of dent of its position vector(s), and while unimportant for
molecules, these studies adgnamicalinvestigations of weakly curved configurations these nonlinearities are es-
single molecules. sential for the many complex experimentally observed con-

Central features of these dynamical phenomena are tfermations. Utilizing geometrical methods we reduce the
inextensibility and finite bending elasticity of the poly- intrinsic nonlinear shape evolution to an extremely com-
mers. A natural continuum model with these features, thgact form as a pair of coupled partial differential equations
Kratky-Porod or “wormlike” model [4], derives from the (PDE’s) of a type familiar in the field of pattern formation
elastic theory of thin rods with an energy quadratic in[13], and for which there are highly developed computa-
the local curvature. The study of equilibrium aspects oftional methods.
this model is highly developed [5,6], but its dynamical The complex dynamical processes that may be described
properties in viscously dominated flow are far less wellby these methods are illustrated with the model problem
understood. Dynamical formulations that address inextensf a competition between bending elasticity and a pair
sibility date back to the important work on stiff polymers potential having a short-range repulsion (preventing self-
of Harris and Hearst [7], and others [8] who have em-crossing) and an attractive minimum. These elastic and
phasized the fundamentallyonlocal nature of this con- potential forces are mutually frustrating; in order for seg-
straint. It has been touched upon as well in more recennents widely separated along the curve to be in the at-
studies of electrophoresis [9], hairpin defect motion intractive minimum there must be energetically costly bends
polymeric liquid crystals [10], supercoiled DNA [11], and in the chain. This deterministic “folding” problem is one
motility assays [12], but no general method has beemf the simplest in which to address such issues as the
proposed to answer the basic questioWhat is the uniqueness of ground states and the pathways to them [14].
motion of a nonstretching flexible polymer in a viscousln this regard, we expect these methods to be useful in
medium? theoretical studies of gene regulation and topoisomerase

Here we develop a unifying formalism for the dynamicsactivity.
of flexible but inextensible polymers within the simplest The equations of motion derive from an action prin-
hydrodynamic model in which the polymer is subject tociple used often in polymer physics [15] and recently
local viscous forces. The methods are completely generafpr interfaces and membranes [16]. The polymer is
capable of incorporating both local and nonlocal energetiparametrized byr € [0, 1], with generalized coordinates
contributions including elasticity with intrinsic curvature, r(a) and velocitiesr,(«). If £ is the Lagrangian and
pair interactions among polymer segments, and externd is the Rayleigh dissipation function, the equations of
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motion are contribution to the energgy is

i oL B oL _ R (1) 1 )

di or(@)  or(@)  or(a)’ Eo =54 fds (k = Ko)", (8)
R measures the rate of energy dissipation by the viscous

forces, and is quadratic in the velocities. Assuming local. " which we have included an intrinsic curvatukg(s),
. ' quadratic - : 9 and whereA is an elastic constant. Eg. (8) leads to
isotropic drag with friction coefficient,

nonlinear forces

4 f‘ 2
_ 2 Jo \/— t _ U, = Ak + %K3 — OgKo — %KK(Z)),
whereg = r, - r, is the metric. Since the motions of
interest occur at extremely small Reynolds numbers, we W, = Alko — K)9,Kp . (9)

neglect inertial terms, the dynamics beconfiest order )
in time derivatives, and the Lagrangian is simply theNote that for closed polymers anindependentc, does

Rewriting (1) in terms of functional derivatives, to the energy (8) are constant if the polymer length and
1 §F R R topology are fixed. _
{r,=———=Uh + Vb + Wt, 3) If the polymer experiences an external potentidlor a
V8 or pair interactiond (e.g., from electrostatic, dispersion, or

where fi, b and t are the unit normal, binormal, and steric forces), it has energy functionals

tangent vectors and/, V, and W are the associated 1

forces. Equation (3) is like the Rouse model [17], Ev = fds Vr((s)), Fop = —jéds jéds’CI)(R),
but allows for an arbitrary energy functiondl rather 2

than the simple collection of Hookean springs originally (10)
considered in that context. Generalizations of (3) 1Oy herer = Ie(s)

_ /
stochastic dynamics will be described elsewhere. r(s)l. These produce purely normal

. . forces
The no-stretching olocal arclength conservationon-
dition (also clearly enforcing fixed total length) is imposed Uy = —(k + 8- Vi)V
with a Lagrange multiplier function («),
1 Up = —(k + 1 - Vr(s)) ds' ®(R) . (12)
f=fo—f da \Jg Aa). 4
0

The invariance of the dynamics under redefinitions of the
zero of V and ® is easily verified by noting from (11)
that if, for instance,V — V + ¢ the bare normal force
transforms ad/y — Uy — c¢k. Equation (7) shows that
this corresponds to the shiff — A + ¢, so the total
force Uy + Ak is unchanged.

Consider first the geometrically simplest case of a poly
mer confined to the plane, and 1&% and W, be those
forces derived via Eq. (3) from the intrinsic energy func-
tional Z, alone. Functional differentiation of (4) yields
total normal and tangential forces

U=Uy+ Ak and W =W, —ao,A. (5 In the absence of potential¥’ and®, and withk, =
The curvaturex(s) is determined by the Frenet-Serret0, the normal velocity iU = A[x,, + (1/2)x*] + Ax.
equationst, = —«h and i, = «t. In Eq. (4) we see For constantA this gives the “curve-straightening equa-

that — A plays the role of a locally varying line tension tion” [21], and U = 0 defines Euler elastica in the plane
[9], and thus its contributions to (5) can be interpreted5]. It resembles “geometric” models of interface motion
as a Young-Laplace force in the normal direction and 422] used for dendrite growth, which invoke expansions

Marangoni force in the tangential direction. of U in powers of the curvature and its derivatives, but it
Local inextensibility requires a time-independent met-arises here from a variational formulation not envisioned

ric. This impliest - a,r, = 0, which from (3) leads to in those nonequilibrium processes.
oW = —kU, 6 The intrinsic dynamical evolution is completed by

known also in the context of integrable nonstretchinggczli(;w(;?gaﬁ?\/eatﬂgi(g)e p;egdeggsorc(;fin;hetota:tr]\ger;tDgnsgle
s

curve dynamics [18,19]. Using Egs. (5) and (6), we find[ _ _ )
A X ; ; ; 22],£0; = —o,U + O,W andlk, = — (9, + k?)U +
that A obeys an elliptic ordinary differential equation at x.W. Apart from the clear simplification of considering

each instant of tlme2[20]. scalar rather than vector PDE'’s, these intrinsic dynamics
(955 = k)A(s) = kUo + I Wo. (7)  allow for a natural treatment of the inheremamerical
Equations (3)—(7) constitute a complete dynamical destiffness associated with elastic forces. Note thaté&he
scription of the polymer shape evolution once an energwand « evolutions both have the fornfiu, = —Aug, +
functional E, is given. .-+, where the ellipsis stands for nonlinear terms and
As a sample problem, consider a polymer with bendingerms of lower order ins derivatives. The fourth-order
elasticity and a monomer pair interaction. The elastidderivative severely limits the acceptable time steps in
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standard finite-difference schemes, but by its linearityis how the presence of preferentially curved segments

may be treated exactly in pseudospectral methods utilizin
integrating factors [23].

gay determine the chosen folded configurations of an
elastic polymer. In the context of DNA supercoiling there

The treatment of space curves involves both the curvais experimental [28] and theoretical evidence [29] for

ture k = 0 and the torsionr, obeying the Frenet-Serret
equationst, = ki, iy = —«t + 7b, and b, = —7i.
The curve dynamics may be studied directly at the leve
of the evolution equations fot and 7,

lk; = OU — PV + kW,
(1= o[k OV + PU)] + 2k7U — K,V + 7,W.
(12)

where® = d,, + k> — 72 and?P = 279, + r,. These
are unnecessarily complicated. Indeed, the force
that arise from the simplest elastic energs,[=
(A/2) $ds k2],

Ue

—A(kgs + %K3 — k72,

V, = —AQk,T + k7y), (13)

and W, = 0, conspire with (12) to present a formidable
computational problem. Moreover, the torsion dynamic
is problematical at inflection points, wheke= 0.

The curve dynamics can be drastically simplified by

utilizing Hasimoto’s transformation [24] relating vortex
filament motion to the nonlinear Schrédinger equation
Define the complex curvature

(s, 1) = (s, 1)e'?, d(s, 1) = ] ds' 7(s',t), (14)
and the complex velocity' perpendicular to the curve,
I =(U + iV)e'®. (15)

Then for general/, V, andW, ¢ obeys [19]

(= (055 + YT + ¢Imfsds’ U I* + YW,
(16)

Three important features arise from this formulation.
(i) The form of I', = (U, + iV,)e'? is remarkably com-
pact:

the localization of regions of high intrinsic curvature at
hairpin loops, an effect that may be relevant to structural
tegulation.

Figure 1 shows the succession of straightening pro-
cesses that takes a highly distorted initial configuration
to a ground state having three hairpin loops [30]. These
shapes have lengti. = 10 X 277, with a Lennard-
Jones potential ®(r) = 4e(r 12 — r®) of strength
e€/A = 0.05, and a spontaneous curvatukg(s) having
ghree plateaus (as shown in the lower panel). The three
regions along the chain in whicky > 0.5 are indicated
by heavy lines, and it is apparent that the relaxation
process indeed localizes the regions of intrinsic bend at
the hairpin loops. The two sequences shown have the
same initial condition, but the second has the peaks in
ko(s) shifted along the chain. We see that this same
ground state (modulo rotations and reflections) may be
obtained even when the peakss«n do not correspond to

Sthose in the initial condition; these and other results show

in at least a limited sense that this ground state is reached
independent of initial conditions. As an aside, we note
that these structures bear an intriguing resemblance to
those of transfer RNA.

Te = —Aly + 3lwlPy). (17)
(As noted previously [25], nonplanar elastica [26] are
defined by the time-independent nonlinear Schrédinger
equationI’, + A¢ = 0.) (i) The dynamics of inflec-
tion points is mathematically well defined, behaving
much like phase slips in one-dimensional superconduct-
ing wires [27]. (iii) The dynamicgy, = —Aggs + -
is again amenable to integrating factor methods. Finally,
by defining the complex vectow = (i + ib)exp(ic),

FIG. 1.

the Frenet-Serret equations becomse = —yt, w*
-y, t, = (W*'w + Yo*)/2, and the curve may be re-
constructed fromy andy* alone.

We turn finally to the folding problem described in
the introduction. The issue we address by simulation
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Folding of a closed elastic polymer in two dimen-
sions. Time evolution proceeds from upper left to lower right.
Regions of the polymer for whicky(s) > 0.5 (lower panel) are
indicated by heavy lines. Two temporal evolutions are shown
(black and gray), corresponding to the same initial condition,
$ut with a displacement of the functio(s) along the chain.
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