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An analytical method is developed describing the approach to a finite-time singularity associated
with collapse of a narrow fluid layer in an unstable Hele-Shaw flow. Under the separation of time
scales near a bifurcation point, a long-wavelength mode entrains higher-frequency modes, as described
by a version of Hill's equation. In the slaved dynamics, the initial-value problem is solved explicitly,
yielding the time and analytical structure of a singularity which is associated with the motion of zeros
in the complex plane. This suggests a general mechanism of singularity formation in this system.

PACS numbers: 47.20.Gv, 02.30.Jr, 68.10.—-m

One of the most fundamental questions underlyingof a thin layer of fluid in Hele-Shaw flow, bounded from
a broad class of hydrodynamic phenomena is: Howabove and below by mutually immiscible fluids. The
do smooth initial conditions evolve to form finite-time equation of motion in rescaled form is [6]
singularities? Historically, two main classes of systems h; = =3 (h[hyx + Bh,)), (1)
and phenomena have been investigated in this context

o A - " “Where the Bond numbeB = 2gApL?/o is the single
[1]. The flrs:t mvolve_s distributions of vorticity evolving dimensionless parameter characterizing the competition
under Euler’s equation [2]. The second, dating back t . '
. ; . etween the surface tensien and buoyancy associated
classical work of Rayleigh [3], concerns the motion of

interfaces bounding masses of fluid undergoing fission [43\/Ith density jumpAp in a gravitational fieldg, and

11], or in other problems of pattern formation [12]. An whereL is the lateral width of the Hele-Shaw cell. An

; . ) unstable density stratification correspondsBto> 0 [6].

issue on which considerable progress has been made . . .
o - . e solutioni(x, r) can also be interpreted as the height

the relevance of self-similar solutions that may describe

i . .. _—0of a fluid layer lying at a wall and beneath another fluid.
the region asymptotically close to the topology transition. uation (1) is also relevant to recent experiments on
However, there is little understanding of how such specia hq inchi f lar i £ fluid in th pH le-Sh
solutions emerge from the large scale dynamics. ?I pllgc Ing of annular rings of fluid in the Hele-Shaw

We report here an approach to titial-value prob- CeAs[ in]r.elated earlier models with = 0[5,7], this partial
lem associated with a topological rearrangement of fluid,. . . Tl
interfaces. Under the assumptions of lubrication theoryd'ﬁerent'al. equation (PDE) ha_s'g qu)g fprrh, +ve
an approximation valid for long-wavelength deformationsj — 0 arising fr.om_ incompressibility, withj B }.lU the .
of thin lavers. the method is develooed for the Ravlei h_hallmark of lubrication theory. The characteristic velocity
ayers, | b YCI9y ~ —vp arises from Darcy’s law, and the pressute
Taylor instability of two-phase Hele-Shaw flow [6,13]. . by bound diti involvi f .
This lubrication approximation has been the focus of a> set by boundary conditions involving suriace tension
. . -~ .._and gravity. In other contexts, the velocity has the more
considerable body of recent theoretical work on thin mmgeneral formU ~ —h™VP, such as in the spreading of
and even identieal eqations of motion describe phenor/OPS 1 = 2).  Equation (1), wth a diffrent physical
ena as diverse as Marangoni convection [14], pattern fo meaning froms, arises in the dynamics of the population

I . . . .
mation in superconductors [15] and in biological systemsdensnyh of feeding herbivores [16], and also in the long-

= - wavelength limit of the homogenized model of type-ll
[lﬁ]h:n?ngmgznoer;Oroftim,;ﬁgnggcfr;;ggag?sﬂ[ég' scale ssuperconductors [15], with the local density of vortices.

. P the separation It is sufficient for our purposes to consider Eq. (1) in
occurring close to the first instability in a system O]fasystem of lengt@# with periodic boundary conditions.

finite lateral extent, where the spectrum of modes 'St h(x,r) is even and periodic, then it also describes a flow

g?ﬁ\zﬁ{vf irlr;afgi?] stil#]dsyt/a?;lﬂic;r?[aigf r?;];);pl):\zﬁlor;sf ?ﬁ:ﬁetween two rigid walls at which the interface has & 90
9 X 9 contact angle. Linearizing about a flat interface= h,

hlgh—fr_equency _modes allows thg derivation qf a nonllnea(Ne obtain the growth rates
evolution equation for the amplitude of the first unstable R .
mode. It also allows an analytic approximation of the v(k) = h(BK* — k) (k =0, 1’2:-~)~ ()
singular contribution from all other modes. The numbern of unstable modes scalesd8. If B < 1

Dynamics and separation of time scalesWe begin all modes are linearly stable, whereas fox B < 4 the

with the equation of motion for the half thicknesér, 1) modek = 1 is unstable, while those with = 2 remain
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damped. Moreover, iB is tuned to be slightly larger and we rescale (4) with

than unity, sayB = 1 + ¢, then the first mode evolves -

on a time scale of ordee ™!, while the others rapidly B=1+e, 7=cht, q=€0Q. (5)

equilibrate, thus beinglavedto the first. At O (€) we obtain an inhomogeneous Ince equation [20],
A contracting flow forB = 1.—Exactly at the bifur- i

cation pointB = 1 there is amanifold of steady-state (I T @COS)Qux + asineQ, + Q

solutions, hg(x) = h(1 + acos), for anya < 1. This =a, COSx — %(1 + acosx)? + C, (6)

manifold is also an attractor. Lét = hy + 6 (6 < )

1), with £ of zero mean. The linearized evolution aboutWhere C = (1 + a*/2)/2 by the orthogonality of p

ho is & = —hoL1¢,, Where Lz = 0, + Bd,, and it andg.

preserve<?) = 0. Consider then the norm Solvability and the amplitude equatierThe solution
- ) of Eqg. (6), found by variation of parameters, contains a
F = f dxm secular term proportional t@ sinx. Its removal is the

0 2h0(x) solvability condition that determines, and yields the

with nonlinear equation of motion
Fo= =3 RE - DILP. ar = 5(1+1=a). @

K
One may verify the inequalitiesf, = 7F,(0) exp(+H), For a <« 1 this yields the exponential growit. = a +
where H = 2min,{ho(x)} > 0 [19]. Sincef, =0, and " of the linear stability result (2), but this behavior

further, F, = 0 iff ¢ is entirely in the null space of;  Crosses over to a much different form in the nonlinear
(and then¢ is a steady-state solution). One inequality "€9ime near pinching. Defining the function

from above then gives the boud = F;(0)e ", where 1-V1-a&2 1 - V1 =&

F(0) =0. And so F, — 0 as t — o, which proves (a) = S e Inf| ——— ). (8
that the null space off; is attracting. Actually,hg =

h(1 + acoskx) is a steady state for any integerwhen — with ap = a(r = 0), we findf(ap) — f(a) = 7 by direct
B = k?, but is unstable to subharmonic perturbations ifintegration of (7). The singularity (or “pinch”) time,

a

k> 1. occurs whert /' 1, sof(ap) — 1 = 7,, and thus
Motion along the manifold foB > 1.—As the Bond Flag) — 1
number is increased slightly beyond unity, the first mode t, = 0L (9

grows in time, but we expect that the amplitudes of higher h(B = 1)
modes will remain small. More generally, for largBr  For ay < 1, t, ~ In(2/ae)/h(B — 1), again consistent
we expect a finite number of active modes including with the exponential growth of the linear instability. Near
those that are linearly unstable. A natural approach thethe touchdowna(r) =1 — (¢, — t)/2 + ---. Figure 1
is to partition into low (p) and high ¢) modes. LetP,  shows excellent agreement between these asymptotic
project a periodic function onto its lowen modes and results and numerical studies of the lubrication PDE (1)
write for the pinch times, (ag), and for the minimum height
— — — Ruin = E[l - a(t)]'

h=prtq Bup = p, Pug =0). 3) The correction? is found to be
Substituting this decomposition into (1), ignoring contri- .
butions of orderg?, invoking slaving of higher modes  g(x) = ,\+{,/1 2 sinxtan”(ﬂ)
(9,q = 0), and integrating twice with respect tg we I — A cose

obtain 1 )
NN — —(a + cosx)In(1 — 2A_cost + A%)
Pdxx — Pxqx + (px + Bp)g = —p, — J, + C, 2

4) — a<§)\_ cosc — l)} (10)
whereJ, = p Lpp is theflux associated with the lower 4 2

modes,C is an integration constant, affd= [“dx/f(x’).  where . are the two reakerosof the quadraticzA® +
Since p is periodic in x, we find rather remarkably 2A + a =0, for which AytA_ =1 and A_ = 1. As

the computation ofg reduced to the solution of an « /1, A- — —1, and thus within this analysis the
inhomogeneous Hill's equation [20]. Coupling to the interface curvature, through’(x), develops a logarithmic
partition constraints®,,p, = p, and P,,q = 0, gives a singularity. This divergence can also be interpreted as the

complete set of equations to determipand p,. collision on the real axis of two singularities, located at
The slaving approximation(3) and (4) is particularly = + iIn(A-) in the complext plane.
easy to analyze in the limiB — 1 = € — 0, for which A spectral cascade-The finite-time singularity can be

there is only one active mode, thus= h[1 + a(t)cosc],  understood by considering the spectrum @f writing

3666



VOLUME 75, NUMBER 20 PHYSICAL REVIEW LETTERS 13 NVEMBER 1995

4_)9-!8 T |||||||| T |||||||| T |(||)||||:. (),2;,,..l....l....l....l....E
VS - - E u
— 6 F a 3 . 0.1 ?\ ;
| 4f = X oo e Vé:
M o E Y N
|'Q 0: 1 1 IIIIIIl 1 1 IIIIII| 1 1 111 d _02 S S E— EE— SE—
0.0 0.2 0.4 0.6 0.8 1.0
0.001 0.01 0.1 1 x/m
ao T T T T T T T T T T T T T T
- I I | ]
10‘lIlIlIIII||III|IIII|IIII_ :kzigg :
’ 0.10 - —
= - 600 800 1
a0 L ]
o) C ]
T 0.05— ]
F (b) ]
0‘00 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1
8.55 8.60 8.85 8.70
t
AP B, PP B W FIG. 2. (a) The functionQ(x) in Eq. (10) obtained from the
0 10 20 30 40 50 asymptotic analysis (solid), compared with numerical solution
t of the full PDEs forB = 1.05 (dots). Results are for four times

) ) ) ~ ranging from close to the initial condition to near the singularity
FIG. 1. Comparison between numerical solution of lubricationtime. (b) Collapse of the analyticity strip width as a function
equation (1) and asymptotic analysis ®r 1. (a) Singularity  of time from numerical studies. For the largest two values of
time versus initial amplitude, from the numerical solution of shown, deviations from the common curve arise from these
Eq. (1) (solid circles) forB = 1.05, and from asymptotics in  amplitudes lying initially beneath machine precision.
Eqg. (9). (b) Minimum interface height as a function of time.
Solid lines are the results of Eq. (7) withhy = 0.01,0.05,0.30
from top to bottom of figure, all withB = 1.05; solid circles

show numerical results for those same initial conditions. cation point B = 1. Using an initial conditions =

h(1 + acost), with a = 0.01, Fig. 3 shows how the sin-
x . . , gle symmetrictouchdown atx = 7 seen forB = 1 bi-
Q= 2= Ox coskx. The recursion rel_atlon forthei's  frcates for = 1.55 into two asymmetrictouchdowns.
obtained from Eq. (6) has trexactsolution (fork = 3) This behavior reflects the general increase in the number
0 = C. Ak +C AR ’ (11) of active modes with increasirg. While the asymptotics

kK3 —k K3 —k
whereC- are constants determined by the inhomogeneous
terms. SincdAi| > 1 for a < 1, the first term in (11) is L i
the secular term eliminated by the solvability condition, S .
and thus the power-law spectrum ¢f is cut off by
an exponential factor which tends to unity as/ 1. 0.6
Full simulations show very good agreement, to very nea i
the singularity time, between the form of the correction
function (and its spectrum) with the asymptotic result &
(10). Figure 2(a) shows a comparison between the twi~_ 0.5
in real space, and Fig. 2(b) shows the strong agreemel N"*
between pointwise estimatesin|A| = In(Qy/Qx+1) for
four wave numberg > 1, illustrating the collapse of the
analyticity strip width in accord with Eq. (7). Atextremely 0.4
small values oh,;,, the slaving assumptions should break
down, and terms such as cannot be neglected. Indeed,
Bertozzi has noted that the ultimately negative divergenci
of Q.., while only logarithmic, is inconsistent with the
existence of a single touchdown [21]. Her numerical
studies followingh,i, down to @ (1073°) suggest instead B

as"’!‘“ra“‘?” of the Curyature.__ . ) FIG. 3. Bifurcation diagram showing singularity locations
Bifurcation of the singularities-Finally, we consider yersus Bond number. Insets (a) and (b) show interface

values of the Bond number well beyond the bifur- evolution atB = 1.25 and 2.0.
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