
Comment on “Faceting and Flattening of Emulsion
Droplets: A Mechanical Model”

García-Aguilar et al. [1] have shown that the deforma-
tions of “shape-shifting droplets,” reported in a series of
experimental papers spawned by Refs. [2,3], are consistent
with an elastic model. Here, we show that the interplay
between surface tension and intrinsic curvature in this
model is mathematically equivalent to a physically very
different phase-transition mechanism of the same process
described previously [4,5]. Hence, the models cannot
distinguish between the two mechanisms, and it is not
possible to claim that one mechanism underlies the
observed phenomena without a more detailed comparison
of the predictions of both mechanisms with experiments.
We suggest that the increasing number of seemingly
contradictory experimental results indicates that the two
systems [2,3] are different. Therefore, the observed shape-
shifting processes are likely to be similar outcomes of two
very different physical mechanisms.
Using the notation of Ref. [1], we consider a faceted

droplet deforming under the interplay of surface tension
and bending elasticity, with energy

E ¼
ZZ

½γ0 þ 2κðH −H0Þ2� dA; ð1Þ

we shall justify neglect of the stretching and gravity terms
in Eq. (1) of Ref. [1] presently. If the droplet radius R is
much larger than H−1

0 , then ðH −H0Þ2 ≈H2
0 everywhere

except in a neighborhood of characteristic extent fðδÞH−1
0

near the facet edges, in which H ≈H0, as in Fig. 1(d) of
Ref. [1]. The dimensionless fðδÞ depends on the edge
geometry, for example through the dihedral angle δ. With
these approximations,

E ¼ γ

ZZ
dA − 2κH0

Z
fðδÞ dl; ð2aÞ

where γ ¼ γ0 þ 2κH2
0, as in Ref. [1], and the line integral is

along the facet edges. Rescaling lengths with R, the scaled
energy Ê ¼ E=γR2 is

Ê ¼
ZZ

dÂ − α

Z
fðδÞ dl̂; ð2bÞ

with dimensionless tension α ¼ 2κH0=γR. In Ref. [5], we
obtained the same functional form (2b) for a phase
transition model in which deformations are driven by

formation of a metastable rotator phase [2,4,5] near the
droplet edges. In that case, α ¼ AΔμ=γR, where A is a
characteristic cross-sectional area of rotator phase and Δμ
is a difference of chemical potentials.
To justify neglect of stretching and buoyancy energies,

we consider a typical droplet radius R ¼ 10 μm [2], so
R ≫ H−1

0 ≈ 60 nm [1] and r≡ RH0 ≈ 170. The relative
importance of stretching, buoyancy, and intrinsic curva-
ture depends on r, the nondimensional parameters ϒ, Π
defined in Ref. [1], and the nondimensional energy
differences ΔES, ΔEG, ΔEH computed from its Table I.
With ϒ ≈ 4, Π ≈ 10−8 [1], for the icosahedron-platelet
transition,

jΔEHjr≈ 9400; ϒjΔESjr2 ≈ 33; ΠjΔEGjr4 ≈ 27: ð3Þ

Hence, jΔEHjr ≫ ϒjΔESjr2, ΠjΔEGjr4; the same separa-
tion holds at the sphere-icosahedron transition. Thus, from
Eq. (3) of Ref. [1], intrinsic curvature swamps stretching
and buoyancy, justifying Eq. (1).
Estimating α reinforces the equivalence: for the elastic

mechanism, using Fig. 2(d) of Ref. [1] to estimate
Γ ≈ 0.02 at the icosahedron-platelet transition, we find
α ¼ 2ðΓrÞ−1 ≈ 0.6; for the phase transition mechanism,
A ≈ 0.3 μm2 [6], Δμ ≈ 6 × 105 N=m2 [4], γ ≈ 5 mN=m
[7], so α ≈ 4.
The calculations of García-Aguilar et al. consider static

shapes [1], and cannot show, for example, that an icosa-
hedral droplet would dynamically flatten into a hexagonal
platelet rather than a different, lower energy shape. Because
of the model equivalence, the results of Ref. [5], showing
that an icosahedral droplet can flatten dynamically into a
hexagonal platelet under the phase-transition mechanism,
also show it is possible under the elastic mechanism
of Ref. [1].
Experimental studies of shape-shifting droplets have

obtained seemingly contradictory results: surface tension
measurements [7,8] differed by orders of magnitude;
cryo-TEM experiments showed monolayers at the drop-
let surface [9], while differential scanning calorimetry
detected multilayers [6]. However, the cationic surfac-
tant C18TAB used in Refs. [3,8,9] has a relatively high
surface freezing temperature, while Refs. [2,5–7] used
different surfactants covering a range of freezing tem-
peratures. These real differences of the experimental
systems [6,7,10] and the corresponding and mathemati-
cally equivalent phase-transition and elastic mechanisms
are, therefore, physically different realizations of a more
general shape-shifting mechanism based on the interplay
of positive surface tension and negative edge tension in
faceted droplets.
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