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Recent work on distinct multicellular organisms has revealed a hitherto unknown type of biolog-
ical noise; rather than a regular arrangement, cellular neighborhood volumes, obtained by Voronoi
tessellations of the cell locations, are broadly distributed and consistent with gamma distributions.
We propose an explanation for those observations in the case of the alga Volvox, whose somatic
cells are embedded in an extracellular matrix (ECM) they export. Both a solvable one-dimensional
model of ECM growth derived from bursty transcriptional activity and a two-dimensional “Voronoi
liquid” model are shown to provide one-parameter families that smoothly interpolate between the
empirically-observed near-maximum-entropy gamma distributions and the crystalline limit of Gaus-
sian distributions governed by the central limit theorem. These results highlight a universal conse-
quence of intrinsic biological noise on the architecture of certain tissues.

Some of the simplest multicellular organisms consist
of tens, hundreds, or thousands of cells arranged in an
extracellular matrix (ECM), a network of proteins and
biopolymers secreted by the cells. They often have a sim-
ple geometry: linear chains and rosettes of choanoflagel-
lates [1, 2], sheets and spheres of algae [3], and cylin-
ders of sponges [4]. While at first glance the arrange-
ment of cells in the ECM appears regular, recent work
[5] revealed a hitherto undocumented disorder found by
assigning neighborhoods to cells through a Voronoi tes-
sellation based on cell centers. Strikingly, both the lab-
evolved “snowflake yeast” [6] (a ramified form found after
rounds of selection for sedimentation speed) and the alga
Volvox carteri have broad distributions of Voronoi vol-
umes v accurately fit by k-gamma distributions

p(v) =
1

v̄ − vc

kkxk−1

Γ(k)
exp(−kx), x =

v − vc
v̄ − vc

, (1)

where v is the mean volume and vc is the cell size. Par-
ticularly for Volvox, these observations are central to a
general question in developmental biology: How do cells
produce structures external to themselves in an accurate
and robust manner?

Volvox is one of the simplest multicellular systems with
which to study statistical fluctuations in ECM genera-
tion. The adult (Fig. 1(a)) consists of ∼ 103 somatic
cells embedded at the surface of a transparent ECM, the
uppermost layer of which is a thin elastic shell ∼500µm
in diameter and ∼ 30µm thick, with a more gelatinous
interior below; the organism is > 98% ECM. Daughter
colonies develop from germ cells below the outer layer
through rounds of binary division that yield a raft of
cells held together by cytoplasmic bridges remaining af-
ter incomplete cytokinesis. Following “embryonic inver-
sion” that turns the raft inside-out [7], daughters enlarge
by export of ECM proteins, expanding the colony to its
final size over the course of a day, during which the
widely-distributed neighborhood volumes appear. Fig-

ure 1(a) shows a a section of the Voronoi tessellation ob-
tained by light-sheet imaging [5]. The area distribution
of Voronoi partitions across 6 organisms is shown in Fig.
1(b) along with a fit of the gamma distribution (1) that
yields k ≈ 2.35± 0.04 (95% CI).

The general issue above becomes the question of how
cells generate ECM so that the spheroidal form is main-
tained during the dramatic colony growth despite the
strong right-skew of the neighborhood volume distribu-
tion (1). A biological answer might invoke cell signal-
ing in response to mechanical forces as a mechanism to
coordinate growth and would ascribe the distribution
(1) to imperfections in that process. Surprisingly, the
novel problem of neighborhood distributions is so little-
studied that we do not even understand quantitatively
the feedback-free case, surely a benchmark for any anal-
ysis of correlations. Work in granular physics [8] has
shown that (1) arises from maximizing entropy of parti-
tions subdividing a volume subject to a fixed mean par-
tition size. But this begs the question of why biological
systems should follow a maximum-entropy principle.

Here we study perhaps the simplest models for cellu-
lar positioning within a thin ECM, where noisy matrix
production by statistically identical cells causes them to
space apart randomly during growth. We formulate the
resulting stochastic cellular configuration as a point pro-
cess [9] whose Voronoi tessellation is a well-studied topic
in stochastic geometry [10] and serves as a model for cel-
lular neighborhoods. A class of analytically solvable 1D
models is used to illustrate how gamma distributions (1)
may arise from feedback-free growth processes, and a one-
parameter family of 2D stochastic Voronoi tessellations
is introduced as a prototype of systems with interactions
between polygons. The following is a non-technical sum-
mary; details are in Supplementary Material [11]. In the
following, capital letters Xi;θ1,... denote random variables
(r.v.s) i with parameters θ1, . . ., and W,X, Y, Z denote
Gaussian, exponential, gamma, and beta r.v.s.
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FIG. 1: The green alga Volvox and 1D models for cell po-
sitions. (a) Adult with cell types labelled, and section of
Voronoi tessellation around somatic cells (dots within each
Voronoi polygon), adapted from [5]. (b) Voronoi areas x fol-
low the translated gamma distribution (1), computed by a
fit of k. (c) Model I.1 [11], the Poisson process on [0,∞),
where cells are indicated by dots, Voronoi boundaries by ver-
tical line segments and intercalating ECM is colored. Model
I.4, the circular Poisson process with minimum spacing. (d)
Numerical distribution for model I.4, with no cell overlaps,
compared to the analytical gamma distribution for large n.

In an act of extreme reductionism, consider a linear
Volvox (termed model I.0 [11]). The gamma distri-
bution has the property of being self-divisible, that is,
Y1;k,λ = Y2; k2 ,λ

+ Y3; k2 ,λ
for independent Y2, Y3 by the

convolution rule for sums of random variables [11]. In
a 1D ECM (Fig. 1c), if Li are the cellular spacings
then Vi = (Li +Li+1)/2 are its Voronoi segments, which
suggests the decomposition of Vi into spacings Li which
are themselves independent and identically distributed
(i.i.d.) gamma r.v.s. Similarly, Li is itself interpretable
as arising from i.i.d. gamma-distributed mass increments
during growth. This leads to two classes (i, ii) of configu-
rations which one may expect to observe experimentally.
The first (i) is that where Li is formed by a large number
k of small random mass increments, where k-gamma con-
verges to a Gaussian by the central limit theorem, and
at fixed mean to a delta distribution [11].

The second (ii) is the case in which Li is formed by a
small number of large mass increments, suggesting some
intermediate piece comprising the ECM is produced at
low copy number. A plausible precedent for fluctuations
possessing this particular distribution is the bursting pro-
tein transcriptional activity observed in simple unicellu-
lar organisms such as E. coli [29]. There, it is known
that mRNA transcription occurs at some rate when a
gene is turned on, individual mRNA molecules are tran-
scribed at some rate into proteins before degrading (e.g.

by RNases) with an exponentially-distributed lifetime,
and individual protein bursts exported into the extracel-
lular environment correspond 1-1 with individual mRNA
transcripts within the cell. Translating this phenomenol-
ogy to Volvox, we hypothesize that Li ∝ Pi where Pi is
the steady-state extracellular concentration of a protein
P governing ECM assembly. Then the time-dependent
concentration Pi(t) is a pure-jump process with some
total number b of exponentially-distributed bursts, re-
sulting in the b-gamma-distributed spacings Li = Yi;b,λ.
(Fractional values of b, representing cross-cell averages,
yield the same stationary b-gamma distribution, as shown
from the master equation for Pi(t) with exponential ker-
nel [30]. We take b ≥ 1 as every cellular neighborhood
grows in Volvox without cell division.) Then, Vi is 2b-
gamma distributed,

Vi =
Xj;λ +Xj+1;λ

2
=

1

2
Yi;2b,λ

pdf∼ 4λ2bv2b−1e−2λv

Γ(2b)
,

(2)
which, apart from the offset vc, is (1) with k = 2b. That
k ≈ 2.4 in Volvox, approaching the 1D lower bound of
k = 2 and apparently falling in class (ii), is consistent
with observations that ISG, a glycoprotein critical to the
ECM organization, is transcribed over a period of 10 min-
utes, quite short compared to its accumulation in the ex-
tracellular matrix over timescales comparable to the 48h
life cycle [31].
In the low-copy number limit b → 1, cellular positions

Ri =
∑

j≤i Lj occur as a Poisson process. This is the
maximum-entropy configuration, in which cell positions
are uncorrelated in the sense that for any fixed num-
ber of cells N occurring within a fixed segment of size
L, {Ri}Ni=1 are i.i.d. uniform random variables [11]. Of
course, the gamma distribution is supported on [0,∞)
and one must consider finite-size effects. It can be shown
[11] that on a circular ECM of fixed circumference C with
fixed or variable cell count N (termed models I.1-I.3), the
marginal distribution of Voronoi lengths given the above
converges in the large-C,N limits at fixed cell number
density to the same 2b-gamma distribution—analogous
to the convergence of ensembles in statistical physics in
the thermodynamic limit.

To complete the 1D analysis, we show that the offset
vc in (1) from finite cell sizes. Suppose cells with centers
of mass at {Ri}ni=1 on a circle of circumference c have
uniform size vc with nvc ≤ c, so that Li ≥ vc for all i. As
we are in 1D, this is expressible as Li = vc + L̃i, where
L̃i are the random spacings of a smaller circle of circum-
ference c − nvc. This reduces to the fixed-N,C case of
model I.2, hence we have the marginal Beta distribution
for Voronoi lengths

Vi = vc +
c− nvc

2
Zi;2b,(n−2)b. (3)

Defining the cell number density within the remainder
as ρ = (n− 2)/(c− nvc) and taking the thermodynamic
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limit n, c → ∞ with ρ and vc fixed, we have [11]

Vi = vc +
n− 2

2ρ
Zi;2b,(n−2)b

n→∞−→ vc + Yi;2b,2ρ. (4)

Thus, the lengths Vi with 2ρ := λ in (4) have precisely
the distribution (1) under the substitution λ = k/(v−vc).

Unlike in 1D where any sequence of partitions forms
the real line, cells in 2D are nearly always interacting
since their neighborhoods are mutually constrained to
be a subdivision of the ECM. Their positions are de-
rived from the neighborhood configurations, as ECM is
secreted during growth, and we should expect that within
a Voronoi description the cell locations will depend on
those partitions. These geometric constraints co-exist
with the possibility of maximum-entropy (Poisson) and
minimum-entropy (crystalline) configurations. The fam-
ily of point processes we introduce below models cellular
interactions based on their Voronoi tessellations, inter-
polates between these phases, and can be interpreted as
arising from a strain energy in each neighborhood. Our
focus on geometry is complementary to recent work on
topological properties of tessellations [32].

Let the ECM now be a bounded domain Ω ⊂ R2, with
area |Ω| > 0 and a fixed number n of cells. We assume
that cells are scattered at positions {xi}ni=1 = X with
cellular neighborhoods {Di}ni=1 = D comprising Ω in a
manner which minimizes

E(X ,D) =
1

2

n∑
i=1

∫
Di

∥x− xi∥2 dx, (5)

Each summand of (5) is the trace of Di’s second area mo-
ment about xi, which for polygonal Di is the small-strain
limit of the bulk energy of a deformation from a regular
n-gon centered at xi [33]. Alternatively, minimizing E
has the interpretation of an optimal cell-placement prob-
lem with a cost for transporting resources produced by
cells at xi to other points x in the neighborhoods Di.

For fixed cell positions X , the set D minimizing
E is precisely the Voronoi tessellation of X . To see
this, note that for Voronoi D, any other D′, and a
point y falling in Di ∈ D and also in D′

i ∈ D′, we
have ∥y − x′

i∥ ≥ ∥y − xi∥ by the Voronoi rule, hence
E(X ,D′) ≥ E(X ,D). Rescaling the coordinates x 7→
x
√
ρ to achieve unit number density ρ = n/ |Ω| 7→ 1, this

motivates the study of the positional energy

V (X ) = ρ2E(X ,Vor(X )), (6)

where Vor(X ) is the Voronoi tessellation. For fixed
neighborhoods D, calculating ∂E/∂xi = 0 shows that
the minimizing positions X are the D-centroids µi =
|Di|−1 ∫

Di
xdx; minimizers of V are centroidal Voronoi

tessellations (CVTs), ubiquitous in meshing problems,
clustering, and models of animal behavior [34].

Define a family of Gibbs point processes [10] whose
joint positional distributions conditional on fixed N are

fβ(X ) ∝ exp (−βV (X )) , (7)

indexed by a temperature-like quantity β−1. Following
others who have investigated phase transitions of this
system [35], we refer to it as the Voronoi liquid, which
differs from classical pair-potential fluids due to many-
body interactions between Voronoi-incident particles.
The maximum-entropy case (ii) is realized in the

infinite-temperature limit β → 0 with equiprobable con-
figurations. This defines the “Poisson-Voronoi tessella-
tion” (PVT) [10], which reduces to the exponentially-
distributed spacings discussed in the 1D models above.
The areas |Di| of 2D PVTs, a realization of which
is shown in Fig. 2(d), have been shown in numeri-
cal studies to conform to k-gamma distributions [36–
38]. A minimum-entropy configuration arises in the zero-
temperature limit β → ∞, where (7) becomes degenerate
and the configuration freezes to a hexagonal lattice as in
Fig. 2(d), which is the globally optimal CVT and dens-
est sphere-packing in 2D [39]. Prior approaches using
a structure factor analysis [40] found that, by contrast,
Lloyd iterations (corresponding to a “fast quench” at zero
temperature [41]) suppress crystalline configurations and
adopt amorphous “hyperuniform” states. We investigate
now the finite-temperature range β ∈ (0,∞), and show
that areas are accurately described by k-gamma distribu-
tions with k an “order parameter” following a monotone
relationship with β, analogous to the burst-count-driven
spacing distributions of the 1D case.
As a generalization of our previous comment on

nonuniqueness, in 2D the entropies of the Voronoi size
distribution and of the positional distribution do not nec-
essarily follow a monotone relation. Volvox itself (Fig.
1b) provides an example; its scaled area distribution (1)
has k ≈ 2.3, while Poisson-Voronoi tessellations of the
flat torus and sphere have k ≈ 3.5 [11], yet their posi-
tional distribution is the maximum-entropy one. Hence,
“entropy” could refer to the differential entropy of its
Voronoi size distribution or to that of its joint distribu-
tion over positions at fixed N .

Since V is C2 [34], (7) is the stationary solution of a
Langevin equation

dRi(t) = − ∂V

∂xi

∣∣∣∣
{Rj(t)}

dt+
√
2β−1dWi(t), (8)

with Wi(t) i.i.d. Brownian motions, and time has been
rescaled to β−1t to allow integration in the limit β → ∞.
Since ∂V/∂xi ∝ |Di| (xi − µi) [11], (8) may be inter-
preted as a neighborhood-centroid-seeking model of cel-
lular dynamics during noisy growth or a Markov Chain
Monte Carlo (MCMC) method to sample the station-
ary distribution (7). An Euler-Maruyama discretization
of (8) does not satisfy detailed balance, but this can be
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FIG. 2: Voronoi liquid interpolates between maximum- and minimum-entropy point configurations in 2D. (a)-(d): Monte Carlo
simulations of the Voronoi liquid at varying temperatures, from the infinite-temperature (Poisson) limit to the zero-temperature
(sphere-packing) limit. (e): Area distributions at all temperatures are approximately k-gamma distributed, with k monotone
increasing with β. (f): k is constant for β < 1 and begins to grow superlinearly for β > 1. (g) Voronoi tessellation of V. carteri
[11]. (h): Minimum spacing r enforced by the Matérn thinning rule [11], with r equal to the minimum spacing in the frozen
limit β → ∞. Voronoi polygons are colored from black to white based on relative area in each panel.

rectified by adding a Metropolis-Hastings step [11, 42].
Using this method, we investigated the statistical prop-
erties of the Voronoi liquid by numerically solving (8) for
n = 103 [11], the somatic cell count of Volvox, in the sim-
plified geometry of a unit square with periodic boundary
conditions to remove curvature and topology effects.

Figures 2(a-d) show samples of the Voronoi liquid at
varying temperatures with evident differences and simi-
larities to Volvox. As seen in Fig. 2(e,f), area distribu-
tions sampled at 13 logarithmically spaced values from
β = 10−3 − 1 and 21 linearly spaced values from 1− 40,
are well-described by k-gamma distributions with k in-
creasing monotonically with β. This is consistent with
the transition of p(|Di| /

∣∣Di

∣∣) to a parabola on the log-
scale in Fig. 2e, the limit in which k-gamma approaches
a Gaussian. It is in this sense that the control param-
eter β is analogous to the protein burst count b in 1D.
A similar monotone relationship between the “granular
temperature” β−1

gr of a packing and k, in which partition
size instead played the role of energy, has been noted
previously in granular physics [8, 43].

The importance of intermediate-entropy configurations
is perhaps more readily seen in 2D. Studies of confluent
tissue [44] found that k-gamma distributions also arise
in the aspect ratios (defined from the eigenvalues of the

second area moment). Poisson-Voronoi tessellations, no-
tably, do not possess gamma-distributed aspect ratios.
They instead follow an approximate beta-prime distribu-
tion, perhaps as a consequence of the gamma-distributed
principal stretches [11]. This is seen in Fig. 2(a), where
high-aspect ratio “shards” occur at β = 0, yet disappear
at low temperature. This raises questions of the underly-
ing physics responsible for aspects of stochastic geometry
than size. As a simple extension, the Voronoi liquid with
hard-sphere thinning [11] (one way to produce the offset
vc (1) in 2D), a realization of which is shown in Fig. 2(h),
does not exhibit these artifacts and more closely resem-
bles the regular arrangement observed in Volvox, with
both gamma-distributed areas and aspect ratios [11].

A biological interpretation of the Voronoi assumption
is that the polygonal boundaries of each cellular neigh-
borhood are the colliding fronts of isotropically produced
ECM material exported from cells. Inverting the typical
modelling procedure by assuming that the Voronoi rule
holds at some temperature β−1, one can infer the distri-
butional parameters using standard maximum-likelihood
estimators for Gibbs point processes [45]. From the esti-
mated temperature, for example, one can invert the k-β
relationship by monotonicity to deduce the copy num-
ber of bursty rate-limiting steps in growth. Such estima-
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tors are critical for elastic models of tissues, where noise
in individual cellular configurations co-exists with stable
geometric properties of the population. The stochastic
Voronoi models we have presented here reproduce as-
pects of configurational noise, such as the empirically ob-
served gamma distributions, and simultaneously provide
a formal framework—an ensemble—within which to infer
features of random finite configurations of cells such as
interaction strength and preferential geometry.

As a purely mathematical construct, a Voronoi tes-
sellation makes no reference to microstructure around
cells, and it thus plays a role for tissues analogous to
the random walk model of polymers and the hard sphere
model of fluids. Yet, each Volvox somatic cell sits within
a polygonal “compartment” whose boundaries are com-
posed of denser material within the larger ECM [46].
Dimly visible in brightfield microscopy, these compart-
ments have recently been labelled fluorescently [47], en-
abling the simultaneous motion tracking of cells and
growth of compartments during development. The strong
correlation observed [47] between the location of these
compartment boundaries and the the associated Voronoi
partitions will enable tests of the connection hypothe-
sized here between properties of stochastic ECM genera-
tion at the single cell level and population-level statistics.
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